The art and science of C

Part One the Basics of C Programming

OVERVIEW

Learning C, or any programming language, is in many respects like learning to
communicate in a foreign language. You need to acquire a vocabulary to know what the
words mean. You need to study syntax so that you can assemble those words into
sentences. And you must come to recognize common idioms so that you can understand
what people actually say. Therefore, Part One introduces you to the vocabulary, syntax,
and idiomatic structure of C. But mastering these conventions is not enough. As in any
language, you must have something to say. The essence of programming is solving
problems. While knowing how to express them Is important learning how to find
solutions is the greater challenge. Thus, Part One focuses on strategies for problem
solving, to enable you not just to write but to think like a programmer.

Part Two Libraries and Modular
Development

OVERVEW

lf you someday take a job in the software industry, you will find that you write
very few programs entirely on your own. ln most companies, programmers work as
terms to build applications that are much larger than those any person could manage
ndividually. Mafking it possible for many programmers to work together is a
Sundamental challenge of modern sofiware engineering. The four chapters in Part
Two teach you how to break large programs down into independent modules and how

1o design those modules so that they can be used as libraries for other applications.

Part Three Compound Data Types

OVERVIEW

http://baike.baidu.com/pic/6/11692797478435927.jpg

Although you know that programs manipulate data, the earlier parts of this text
have focused on the control structures that perform the manipulation, not the
underlying data. In Chapters 11 through 17, yvou will see that, like control structures,
data structures are central to programming. By learning to assemble data into larger
structures, you can extend your programming capabilities considerably and write
programs that are both more usefitl and more exciting.

A Library-Based Introduction to
Computer Science

In loving memory of Grace E.Bloom (1924-1994) for helping me appreciate the
value of ideas and the importance of writing clearly about them.

Abo

}

,_ e than 20 years ago while I
980 I have ﬁh‘c computer
01ate Chair he Computer

¢ undergraduate program in

I first beg
was still a stud
science at Har ."
Science Departm
computer scie n ter science and have
also worked in éresearch in‘ﬂﬁ'stry, my greatest joy comes from opening up the enormous
power of computers to students who are just hﬁgin'ﬂing to learn about them. In their
excitement, mytown love for computer scienesiis ¢ wstantly renewed.

In additio ..to my teaching at Stanford, I h“éerved since 1990 as the president of
Computer Professionals for Social Responsfblhty, a public-interest association of computer
professionals with 2000 membe‘f‘é‘in,,?,Z chapters throughout the United States. Computers
affect our society in many different1'w;ays Just as it is important to lea;rn about the
technology, it is critical that we also take the resp@sﬂalhty to ensure- that—computers are
used for the benefit of all. If you have suggestions as to how I might make the presentation

more clear, or you encounter errors in this text, please let me know. You can reach me by

electronic mail'a "ii':r@aw.cor_n,__._ i — g = d‘,
Eric S.Roberts - ™
DepartniZt ?gp(}i??u} Emlfen??ﬁh fo U aompuler Science
Stanford University

To the Student

Welcome! By picking up this book, you have taken a step into the world of computer
science—a field of study that has grown from almost nothing half a century ago to become
one of the most vibrant and active disciplines of our time.

Over that time, the computer has opened up extraordinary possibilities in almost every
area of human endeavor. Business leaders today are able to manage global enterprises on an
unprecedented scale because computers enable them to transfer information anywhere in a
fraction of a second. Scientists can now solve problems that were beyond their reach until
the computer made the necessary calculations possible. Filmmakers use computers to
generate dramatic visual effects accurately what is going on inside a patient because

computers have enabled a massive transformation in the practice of medicine.

mailto:ericr@aw.com

Computers are a profoundly empowering technology. The advances we have seen up
to now are small compared to what wewill see in the next century. Computers will play a
major role in shaping that century, just as they have the last 50 years. Those of you who are
students today will soon inherit the responsibility of guiding that progress. As you do so,
knowing how to use computers can only help.

Like most skills that are worth knowing, learning how computers work and how to
control their enormous power takes time. You will not understand it all at once. But you
must start somewhere. Twenty-five centuries ago the Chinese philosopher Lao-tzu
observed that the longest journey begins with a single step. This book can be your
beginning.

For many of you, however, the first step can be the hardest to take. Many students find
computers overwhelming and imagine that computer science is beyond their reach.
Learning the basics of programming, however, does not require advanced mathematics or a
detailed understanding of electronics. What matters in programming is whether you can
progress from the statement of a problem to its solution. To do so, you must be able to think
logically. You must have the necessary discipline to express your logic in a form that the
computer can understand. Perhaps most importantly, you must be able to see the task
through to its completion without getting discouraged by difficulties and setbacks. If you
stick with the process, you will discover that reaching the solution is so exhilarating that it
more than makes up for any frustrations you encounter along the way.

This book is designed to teach you the fundamentals of programming and the basics of
C, which is the dominant programming language in the computing industry today. It treats
the w/ys of programming as well as the 4ows, to give you a feel for the programming
process as a whole. It also includes several features that will help you focus on the essential
points and avoid errors that slow you down. The next few pages summarize these features
and explain how to use this book effectively as you begin your journey into the exciting

world of computer science.

Using the Art and Science of C

To make the best possible use of this textbook for learning the C language, be sure to
take advantage of the tools it provides.

For Chapter Review

Each chapter includes easily accessible material to guide your study and facilitate
review of the central topics.

The list of objectives previews the key topics covered by the chapter. Because each
objective identifies a concrete skill, the chapter objectives help you to assess your mastery
of the essential material.

The Summary describes, in more detail, what you should have learned in connection
with the Objectives.

Learning to Program

Programming is both a science and an art. Learning to program well requires much
more than memorizing a set of rules. You must learn through experience and by reading
other programs. This text includes several features to aid in this process.

The text includes a large number of Program examples that illustrate how individual
C complete are used to create complete programs. These examples also serve as models for
your own programs; in many cases, you can solve a new programming problem by making
simple modifications to a program from the text.

Syntax boxes summarize key rules of C syntax, for an at-a-glance review of key

programming concepts.

To Avoid Errors

All programmers, even the best ones, make mistakes. Finding these mistakes, or bugs,
in your programs is a critically important skill. The following features will help you to
build this skill.

To help you learn to recognize and correct bugs, this text includes several buggy
programs that illustrate typical errors. To make sure you do not use thes3 programs as
models, such incorrect programs are marked with a superimposed image of a bug.

Common Pitfalls provide handy reminders about mistakes all beginning programmers
are likely to make, and how to avoid them. Faulty lines of code are highlighted with a bug

image and annotated in color.

After the Chapter

Learning to program requires considerable practice. To make sure that you get the
necessary experience, each chapter includes an extensive set of exercises and questions that
test your mastery of the material.

Each chapter concludes with a wealth of Review Questions, which require brief
answers to chapter content questions, code adoptions, or debugging exercises.

Programming Exercises call for you to try your hand at more extensive programming

projects.

To the Instructor

In 199192, Stanford decided to restructure its introductory computer science
curriculum to use ANSI C instead of Pascal. We chose to adopt ANSI C in our introductory

courses for the following reasons:

O Students demanded a more practical language. Future employers want students to have
more direct experience with the tools industry uses, which today are principally C and

C++. With few employment opportunities listed for Pascal programmers in the

newspaper employment section, our students began to question the relevance of their

education.

O Our Pascal-based curriculum taught students to program in a language that they would
never again use. We discovered that many of those students, when they abandoned
Pascal for more modern languages, often forgot everything they had learned about
programming style and the discipline of software engineering. Having now taught
these skills in the context of a language that the students continue to use, we have
found that they end up writhing much better programs.

O Many of our advanced computer science courses, particularly in the systems area,
require students to program in C. Working with C from the beginning gives students
much more experience by the time they reach the advanced courses.

O Learning C early paves the way to learning C++ and the object-oriented paradigm.
Because our students have a strong background in C programming after their first year
of study, wehave been able to offer our course on object-oriented system design much
earlier in the curriculum.

O C makes it possible to cover several important topics, such as modular development
and abstract data types, that are hard to teach in a Pascal environment.

O In the last five years, Chas make significant headway toward replacing Fortran as the
Lingua Franca of programming for the engineering sciences.

Given our experience over the last three years, | am convinced that the choice was a
good one and that our program is stronger because of the change.

At the same time, it is important to recognize that teaching C in the first programming
course is not always easy. C was designed for programmers, not introductory students.
Many of its features make sense only when understood in terms of a larger conceptual
framework that new students do not recognize. In many respects, C is a complex language.
To teach it at the introductory level, we must find a way to control its complexity.

The library-based approach

One of the central goals of this text is to enable teachers to manage C’s inherent
complexity. Managing complexity, however, is precisely what we do as programmers.
When we are faced with a problem that is too complex for immediate solution, we divide it
into smaller pieces and consider each one independently. Moreover, when the complex ity
of one of those pieces crosses a certain threshold, it makes sense to isolate that complexity
by defining a separate abstraction that has a simple interface. The interface protects clients
from the underlying details of the abstraction, thereby simplifying the conceptual structure.

The same approach works for teaching programming. To make the material easier for
students to learn, this text adopts a library-based approach that emphasizes the principle of
abstraction. The essential character of that approach is reflected in the following two
features that set this book apart from other introductory texts:

1. Libraries and modular development —essential concepts in modern programming

—are covered in considerable detail early in the presentation. Part II focuses

entirely on the topics of libraries, interfaces, abstractions, and modular

development. Students learn how to use these techniques effectively before they
learn about arrays.

2. The text demonstrates the power of libraries by using them. It is one thing to tell
students that libraries make it possible to hide complexity. It is quite another to
demonstrate that concept. This text introduces several new libraries that hide
details from the students until they are ready to assimilate them. The libraries give
students the power to write useful programs that they could not develop on their
own. Later chapters reveal the implementation of those libraries, thereby
allowing students to appreciate the power of abstraction.

In 1992, 1 attempted to teach the introductory course using only the ANSI libraries.

The results were not encouraging. Each new topic required that the student understand so
much about the rest of C that there was no effective way to present the material. For
example, students had to understand the mechanics of arrays, pointers, and allocation
before they could use string data in and\y interesting way, even though string manipulation
is simpler conceptually. My best students managed to understand what was gong on by the
end of the quarter. Most, however, did not. Since we introduced the library-based approach
in early 1993, students have assimilated the material more easily and learned much more
about computer science.

The library interfaces and associated implementations used in this text are reprinted in

Appendix B, which also gives instructions for obtaining the source code electronically
through anonymous FTP (File Transfer Protocol).

The order of presentation

This book presents topics in the same order as Stanford’s introductory course, except
for the material in Chapter 17, which we cover in the second course. Depending on your
audience and the goals of your course, you may want to vary the order of presentation. The
following notes provide an overview of the chapters and indicate some of the more
important dependencies.

Chapter 1 traces the history of computing and describes the programming process. The
chapter requires no programming per se but provides the contextual background for the rest
of the text.

I have designed Chapter 2 and 3 for students with little or no background in
programming. These chapters are conceptual in their approach and focus on problem
solving rather than on the details of the C language. When new students are faced with
detailed rules of syntax and structure, they concentrate on learning the rules instead of the
underlying concepts, which are vastly more important at this stage. If your students already
know some programming, you could move much more quickly through this material.

Chapters 2 and 3 are informal in their approach and concentrate on developing the
student’s problem-solving skills. Along the way, they introduce several basic statement
forms and control structures, but only as idioms to accomplish a specific task. Chapter 4
adds formal structure to this topic by describing each statement form in turn, detailing its

syntax and semantics. The chapter also includes an extensive discussion of Boolean data.

Chapter 5 introduces functions and procedures. It begins with simple examples of
functions and then continues with increasingly sophisticated examples. The mechanics of
parameter passing are discussed in a separate section that includes many diagrams to help
students follow the flow of data from one function to another. The chapter ends with a
significant programming example that illustrates the concept of stepwise refinement.

The algorithmic concepts presented in Chapter 6 are fundamental to computer science
but may not be required for all students. If your audience consists of engineers or potential
computer science majors the material will prove extremely valuable. For less technical
audiences, however, you can eliminate much of this material without disturbing the flow of
the presentation.

[have found that integrating graphics in the introductory course is a great way to
increase student interest in the material. Chapter 7 exists for that reason. At this stage,
students have learned the mechanics of functions but have no burning need to write them.
Letting students draw complex pictures on the screen gives them that incentive. The
graphics library is implemented for several of the major programming environments and
can therefore be used in most institutions.

Chapter8 has two themes, which are in some sense separable. The first part of the
chapter discusses design criteria for interfaces and is essential for anyone who needs to
understand how modern programming works. Then second part of the chapter applies those
principles to build a random number library. The random.h interface itself is less important
than the general principles, although use of the random number library is required for a few
of the exercises later in the text.

Chapter 9 introduces strings as an abstract type and represents, to a certain extent, the
cornerstone of the library-based approach. By using a dynamic string library, students can
easily write programs that perform sophisticated string manipulation, even though they do
not yet understand the underlying representation, which is covered in Chapter 14.
Introducing strings at this point in the presentation enables students to write much more
exciting programs than they could otherwise.

On a first reading, it is easy to miss the purpose of Chapter 10, which appears to be an
extension of the discussion of strings begun in Chapter 9. The fundamental value of
Chapter 10 does not lie in the Pig Latin program, which is more fun than it is practical. The
entire reason for the example is that it provides the motivation to build the scanner interface
used to separate words on the input line. The scanner module proves its usefulness over and
over again, not only in the first course but in subsequent courses as well. It is the most
practical tool students create in the course and therefore serves as a compelling example of
the value for modularity.

Chapter 11 through 16 introduce the fundamental compound structures — arrays,
pointers, files, and records—in an order that has worked well in practice. Because the base
language is C, it is important to resent pointers as soon as possible after introducing arrays
so that you can emphasize the connections between them. Moreover, having established
these concepts, it is then possible in Chapter 14 to consider string data more closely, thereby
revealing the underlying representation that was concealed by the abstract definition.
Chapter 16 integrates the fundamental data structures with the construction of a data-driven

teaching machine, which is the most sophisticated example of programming resented in the

test.

Chapter 17 includes three important topics that often appear in the first programming
course: recursion, abstract data types, and analysis of algorithms. At Stanford, which is on
the quarter system we teach all these topics in the second souse. If you decide to teach
recursion in the first course, [strongly recommend that you do so early enough to allow
students time to assimilate the material. One possibility is to discuss recursive functions
immediately after Chapter 5 and recursive algorithms after Chapter6. Another approach is

to cove recursion and analysis of algorithms together at the end of Chapter 12.

Instructor’s Manual

The Instructor’s Manual Contains supplemental materials including a course syllabus,
suggestions for lecture design, sample assignments and examination, and solutions to all
programming exercises. In addition to the printed manual, instructors who adopt this text
can retrieve electronic copies of solution sets and related materials. For details on obtaining
solutions, please contract your local Addison-Wesley representative. All other supplemental

material is available on-line. For explicit instructions see Appendix B.

Acknowledgments

The text has come a long way from its initial stages as class notes, in large measure
because of suggestions from people who have worked with the text in one capacity of
another. I am particularly grateful to the Stanford lecturers— Jon Becker, Katie Capps,
Stephen Clausing, Todd Feldman, Allison Hansen, Margaret Johnson, Jim Kent, Andrew
Kosoresow, Mehran Sahami, and Julie Zelenski —who have taught this material in 14
different sections of the introductory course over the past three years. [am also indebted to
all the section leaders and teaching assistants as well as the coordinators of the student-
teaching program — Felix Baker, John Lilly, Sandy Nguyen, Bryan Rollins, and Scott
Wiltamuth—who provided much needed logistical support.

Many of the best ideas for the text came from a seminar on teaching introductory
computer science that I conducted beginning in 1992-93. It provided a forum for thrashing
out the hard issues and made a significant difference in the text. I want to thank everyone
who participated: Perry Arnold, Jon Becker, Tom Bogart, Karl Brown, Bryan Busse, Katie
Capps, Peter Chang, Scott Cohen, Stacey Doerr, Jeff Forbes, Stephen Freund, Jon Goldberg,
Tague Griffith, Matt Harad, Lindsay Lack, Christine Lee, Tricia Lee, John Lilly, Albert Lin,
Mara Mather, Hugh McGuire, Jeffrey Oldham, David O’Keefe, Bryan Rollins, Samir
Saxena, Nikhyl Singhal, Eric Tucker, Garner, Garner Weng, Howard Wong-Toi, and John
Youn.

I also want to thank all the students who have used and critiqued the draft version of
the text: Adjo Amekudzi, Eric Anderson, Andrew Arnold, Kevin Berk, Kevin Carbajal, Ajit
Chaudhari, Alida Cheung, Hye-won Choi, Elisabeth Christensen, Ralph Davis, Joel
Firechammer, Peter Frelinghuysen, Trevor Gattis, Teddy Harris, Heather Heal, Enoch Huang,
Ann Lee, Ted Lee, Daphne Lichtensztajn, Lisa Maddock, Allan Marcus, Brad McGoran,

Forrest Melton, Adrienne Osborn, Masatoshi Saito, Anne Stern, Ricardo Urena, and
Nichole Wilson.

In 1993-94, several faculty members at other universities tested this material in draft
form and made several valuable suggestions. I especially want to thank Margo Seltzer at
Harvard University, rob Langsner at the University of Nevada (Reno), Richard Chang at the
University of Maryland (Baltimore County), Jane Turk at La Salle University, and Kim
Kihlstrom at Westmont College for helping to refine the text from its early stages.

[am also indebted to my reviewers:

Stephen Allan Utah State University

James Schmolze Tufts University

Don Goelman Villanova University

Michael Skolnick Renseelaer Polytechnic

Stan Kolasa Rutgers University

Jeffery A. Slomka Southwest Texas State University
Harry R. Lewis Harvard University

Kevin Smith Emory University

Bill Muellner Elmhurst College

Phil Tromovitch SUNY-Stony Brook

Rayon Niemi Rochester Institute of Technology
John A. trono St. Michaels’ College

Robert G. Plantz Sonoma State University

Robert Walker Rensselaer Polytechnic

David Rosenthal Seton Hall

Richard Weinand Wayne state University

In addition, I have received useful advice along the way from several friends and
colleagues, including Josh Barnes, Pavel Curtis, Kathleen Kells, James Finn, and Steve
Lewin-Berlin.

The final version of this text owes much to my editors at Addison-Wesley, who have
been helpful throughout the process. In particular, I thank Lynne Doran Cote, Sue Gleason,
Peter Gordon, Laura Michaels, Jim Rigney, Karen Stone, and Amy Willcutt for all their
work. And I am extremely fortunate to have Lauren Rusk as both my developmental editor
and my partner; without her, nothing would ever come out as well as it should.

Chapter 1Introduction

[The Analytical Engine] offers a new, a vast, and a powerful

language...for the purposes of mankind.

— Augusta Ada Byron, Lady Lovelace, The Sketch of the Analytical Engine In
vented by Charles Babbage, 1843

OBJECTIVES

> To understand the distinction between hardware and software.

» To recognize that problem solving is an essential component of computer
science.

» To understand the meaning of the term algorithm.

> To appreciate the role of the compiler as a translator between a higher-level

programming language and the lower-level machine language.

A\

To recognize the principal types of programming errors.
» To appreciate the importance of software maintenance and the use of good

software engineering practice.

As we approach the end of the twentieth century, it is hard to believe that

computers did not even exist as recently as 1940. Computers are everywhere today,
and it is the popular wisdom, at least among headline writers, to say that we live in

the computer age.

1-1 A brief history of computing

In a certain sense, however, computing has been around since ancient times.
Much of early mathematics was devoted to solving computational problems of
practical importance, such as monitoring the number of animals in a herd, calculating
the area of a plot of land, or recording a commercial transaction. These activities
required people to develop new computational techniques and in some cases, to
invent calculating machines to help in the process. For example, the abacus, a a
simple counting device consisting of beads that slide along rods, has been used in
Asia for thousands of years, possibly since 2000 B.C.

Throughout most of its history, computing has progressed relatively slowly. In
1623, a German scientist named Wilhelm Schickard invented the first known
mechanical calculator, capable of performing simple arithmetical computations
automatically. Although Schickard’s device was lost to history through the ravages of
the Thirty Years” War (1618-1648), the French philosopher Blaise Pascal used similar
techniques to construct a mechanical adding machine in the 1640s, a copy of which

remains on display in the Conservatoire des Arts et Métiers in Paris. In 1673, the
German mathematician Gottfried Leibniz developed a considerably more
sophisticated device, capable of multiplication and division as well as addition and
subtraction. All these devices were purely mechanical and contained no engines or
other source of power. The operator would enter numbers by setting metal wheels to a
particular position; the act of turning those wheels set other parts of the machine in
motion and changed the output display.

During the Industrial Revolution, the rapid growth in technology made it
possible to consider new approaches to mechanical computation. The steam engine
already provided the power needed to run factories and railroads. In that context, it
was reasonable to ask whether one could use steam engines to drive more
sophisticated computing machines, machines that would be capable of carrying out
significant calculations under their own power. Before progress could be made,
however, someone had to ask that question and set out to find and answer. The
necessary spark of insight came from a British mathematician named Charles
Babbage, whois one of the most interesting figures in the history of computing.

During his lifetime, Babbage designed two different computing machines, which
he called the difference engine and the Analytical Engine; each represented a
considerable advance over the calculating machines available at the time. The tragedy
of his life is that he was unable to complete either of these projects. The Difference
Engine, which he designed to produce tables of mathematical functions, was
eventually built by a Swedish inventor in 1854—30 years after its original design. The
Analytical Engine was Babbage’s lifelong dream, but it remained incomplete when
Babbage died in 1871. Even so, its design contained many of the essential features
found in modern computers. Most importantly, Babbage conceived of the Analytical
Engines as a general-purpose machine, capable of performing many different
functions depending upon how it was programmed. In Babbage’s design, the
operation of the Analytical Engine was controlled by a pattern of holes punched on a
card that the machine could read. By changing the pattern of holes, one could change
the behavior of the machine so that it performed a different set of calculations.

Much of what we know of Babbage’s work comes from the writings of Augusta
Ada Byron, the only daughter of the poet Lord Byron and his wife Annabella. More
than most of her contemporaries, Ada appreciated the potential of the Analytical
Engine and became its champion. She designed several sophisticated programs for the
machine, thereby becoming the first programmer. In the 1970s, the U.S. Department
of Defense named its own programming language Ada in honor of her contribution.

Some aspects of Babbage’s design did influence the later history of computation
—an idea that had first been introduced by the French inventor Joseph Marie Jacquard
as part of a device to automate the process of weaving fabric on a loom. In 18990,
Herman Hollerith used punched cards to automate data tabulation for the U.S. Census.
To market this technology, Hollerith went on to found a company that later became
the International Business Machines (IBM) corporation, which had dominated the
computer industry for most of the twentieth century.

Babbage’s vision of a programmable computer did not become a reality until the

1940s, when the advent of electronics made it possible to move beyond the
mechanical devices that had dominated computing up to that time. A prototype of the
first electronic computer was assembled in late 1939 by John Atanasoff and his
student, Clifford Barr, at lowa State College. They completed a full-scale
implementation containing 300 vacuum tubes in May 1942. The computer was
capable of solving small systems of linear equations. With some design modifications,
the Atanasoff-Barry computer could have performed more intricate calculations, but
work on the project was interrupted by World War IL

The first large-scale electronic computer was the ENIAC, an acronym for
electronic numerical integrator and computer. Completed in 1946 under the direction
of J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania, the ENIAC contained more than 18,000 vacuum tubes and occupied a
30-by-50 foot room. The ENIAC was programmed by plugging wires into a
pegboardlike device called a patch panel. By connecting different sockets on the
patch panel with wires, the operators could control ENIAC’s behavior. This type of
programming required an intimate knowledge of the internal workings of the machine
and proved to be much more difficult than the inventors of the
ENIAC had imagined.

Perhaps the greatest breakthrough in modern computing
occurred in 1946, when John von Neumann at the Institute
for Advanced Study in Princeton proposed that programs and
data could be represented in a similar way and stored in the
same internal memory. This concept, which simplifies the
programming process enormously, is the basis of almost all

modern computers. Because of this aspect of their design,

modern computers are said to use von Neumann

architecture.

Since the completion of ENIAC and the development of von Neumann’s stored-
programming concept, computing has evolved at a furious pace. New systems and
new concepts have been introduced in such rapid succession that it would be pointless
to list them all. Most historians divide the development of modern computers into the
following four generations, based on the underlying technology.

v' First generation. The first generation of electronic computers used vacuum tubes
as the basis for their internal circuitry. This period of computing begins with the
Atanasoff-Barry prototype in 1939.

v’ Second generation. The invention of the transistor in 1947 ushered in a new
generation of computers. Transistors perform the same functions as vacuum
tubes but are much smaller and require a fraction of the electrical power. The first
computer to use transistors was the IBM 7090, introduced in 1958.

v’ Third generation. Even though transistors are tiny in comparison to vacuum
tubes, a computer containing 100,000 or 1,000,000 individual transistors requires
a large amount of space. The third generation of computing was enabled by the
development in 1959 of the integrated circuit of chip, a small wafer of silicon

that has been photographically imprinted to contain a large number of transistors

connected together. The first computer to use integrated circuits in its

construction was the IBM 360, which appeared in 1964.

v’ Fowrth generation. The fourth generation of computing began in 1975, when the
technology for building integrated circuits made it possible to put the entire
processing unit of a computer on a single chip of silicon. The fabrication
technology is called large-scale integration. Computer processors that consist
of a single chip are called microprocessors and are used in most computers
today.

The early machines of the first and second generations are historically important
as the antecedents of modern computers, but they would hardly seem interesting or
useful today. They werethe dinosaurs of computer science: gigantic, lumbering beasts
with small mental capacities, soon to become extinct. The late Robert Noyce, one of
the inventors of the integrated circuit and founder of Intel Corporation, observed that,
compared to the ENIAC, the typical modern computer chip “is twenty times faster,
has a larger memory, is thousands of times more reliable, consumes the power of a
light bulb rather than that of a locomotive, occupies 1/30,000 the volume, and costs
1/10,000 as much.” Computers have certainly come of age.

By processing data
electronically, the ENIAC reduced
U.S. census tabulation time from
twelve years to three. The
complexity, cost, and physical
proportions of this machine limited
its accessibility and appeal.

A step ahead of the first
generation, computers like the IBM

—————— e —— - s
7090 were programmed using punched cards.
The integrated circuit reduced the size of
computers and increased their power. With the
introduction of the IBM 360, the number of
computers purchased for business grew
substantially.
Like the telephone and television, the
computer is fast becoming an indispensable

tool giving users access, from their living

rooms, to databases and on-line information

centers around the world.

1-2 What is computer science?

Growing up in the modern world has probably given you some idea of what a
computer is. This text, however, is less concerned with computers as physical devices
than with computer science. At first glace, the words computer and science seem an

incongruous pair. In its classical usage, science refers to the study of natural

phenomena; when people talk about biological science or physical science, we
understand and feel comfortable with that usage. Computer science doesn’t seem the
same sort of thing. The fact that computers are human-made artifacts makes us
reticent to classify the study of computers as a science. After all, modern technology
has also produced cars, but we don’t talk about “car science.” Instead, we refer to
“automotive engineering” or “automobile technology.” Why should computers be any
different?

To answer this question, it is important to recognize that the computer itself is
only part of the story. The physical machine that you can buy today at your local
computer store is an example of computer hardware. It is tangible. You can pick it up,
take it home, and put it on your desk. If need be, you could use it as a doorstop, albeit a
rather expensive one. But if there were nothing there besides the hardware, if a
machine came to you exactly as it rolled off the assemble line, serving as a doorstop
would be one of the few jobs it could do. A modern computer is a general-purpose
machine, with the potential to perform a wide variety of tasks. To achieve that
potential, however, the computer must be programmed. The act of programming a
computer consists of providing it with a set of instructions—a progranmr—that specifies
all the steps necessary to solve the problem to which it is assigned. These programs
are generically known as software, and it is the software, together with the hardware,
that makes computation possible.

In contrast to hardware, software is an abstract, intangible entity. It is a sequence
of simple steps and operations, stated in a precise language that the hardware can
interpret. When we talk about computer science, we are concerned primarily with the
domain of computer software and, more importantly, with the even more abstract
domain of problem solving. Problem solving turns out to be a highly challenging
activity that requires creativity, skill, and discipline. For the most part, computer
science is best thought of as the science of problem solving in which the solutions
happen to involve a computer.

This is not to say that the computer itself is unimportant. Before computers,
people could solve only relatively simple computational problems. Over the last 50
years, the existence of computers has made it possible to solve increasingly difficult
and sophisticated problems in a timely and cost-effective way. As the problems we
attempt to solve become more complex, so does the task of finding effective solution
techniques. The science of problem solving has thus been forced to advance along

with the technology of computing.

1-3 A brief tour of computer hardware

This text focuses almost exclusively on software and the activity of solving
problems by computer that is the essence of computer science. Even so, it is important
to spend some time in this chapter talking about the structure of computer hardware at
a very general level of detail. The reason is simple. Programming is a learn-by-doing
discipline. You will not become a programmer just by reading this book, even if you
solve all the exercises on paper. Learning to program is hands-on work and requires

you to use a computer.

CPU I

memory | Secondary

] storage ©O000

[T I/O devices
Figure 1-1

In order to use a computer, you need to become acquainted with its hardware.
You have to know how to turn the computer on, how to use the keyboard to type in a
program, and how to execute that program once you’ve written it. Unfortunately, the
steps you must follow in order to perform these operations differ significantly from
one computer system to another. As someone who is writing a general textbook, I
cannot tell you how your own particular system works and must instead concentrate
on general principles that are common to any computer you might be using. As you
read this section, you should look at the computer you have and see how the general
discussion applies to that machine.

Most computer systems today consist of the components shown in Figure 1-1.
Each of the components in the diagram is connected by a communication channel
called a bus, which allows data to flow between the separate units. The individual
components are described in the sections that follow.

The CPU

The central processing unit or CPU is the “brain” of the computer. It performs
the actual computation and controls the activity of the entire computer. The actions of
the CPU are determined by a program consisting of a sequence of coded instructions
stored in the memory system. One instruction, for example, might direct the computer
to add a pair of numbers. Another might make a character appear on the computer

screen. By executing the appropriate sequence of simple instructions, the computer

can be made to perform complex tasks.
In a modern computer, the CPU consists of an integrated circuit—a tine chip of
silicon that has been imprinted with millions of microscopic transistors connected to

form larger circuits capable of carrying out simple arithmetic and logical operations.

Memory

When a computer executes a program, it must have some way to store both the
program itself and the data involved in the computation. In general, any piece of
computer hardware capable of storing and retrieving information is a storage device.
The storage devices that are used while a program is actively running constitute its
primary storage, which is more often called its memory. Since John von Neumann
first suggested the idea in 1946, computers have used the dame memory to store both
the individual instructions that compose the program and the data used during
computation.

Memory systems are engineered to be very efficient so that they can provide the
CPU with extremely fast access to their contents. In today’s computers, memory is
usually built out of a special integrated-circuit chip called a RAM, which stands for
random-access memory. Random-access memory allows the program to use the
contents of any memory cell at any time. Chapter 11 discusses the structure of the

memory system in more detail.

Secondary storage

Although computers usually keep active data in memory whenever a program is
running, most primary storage devices have the disadvantage that they function only
when the computer is turned on. When you turn off your compute, any information
that was stored in primary memory is lost. To store permanent data, you need to use a
storage device that does not require electrical power to maintain its information. Such
devices constitute secondary storage.

The most common secondary storage devices used in computers today are disks,
which consist of circular spinning platters coated with magnetic material used to
record data. In a modern personal computer, disks come in two forms: hard disks,
which are built into the computer system, and floppy disks, which are removable.
When you compose and edit your program, you will usually do so on a hard disk, if
one is available. When you want to move the program to another computer or make a

backup copy for safekeeping, you will typically transfer the program to a floppy disk.

I/O devices

For the computer to be useful, it must have some way to communicate with users

in the outside world. Computer input usually consists of characters typed on a
keyboard. Output from the computer typically appears on the computer screen or on
a printer. Collectively, hardware devices that perform input and output operations are
called I/O devices, where 1/O stands for input/output.

I/0 devices vary significantly from machine to machine. Outside of the standard
Alphabetic keys, computer keyboards have different arrangements and even use
different names for some of the important keys. For example, the key used to indicate
the end of a line is labeled Return on some keyboards and Enter on others. On some
computer systems, you make changes to a program by using special function keys on
the top or side of the keyboard that provide simple editing operations. On other
systems, you can accomplish the same task by using a hand-held pointing device
called 2 mouse to select program text that you wish to change. In either case, the
computer keeps track of the current typing position, which is usually indicated on the
screen by flash line or rectangle called the cursor.

In this text, computer input and output are illustrated using an inset box with
rounded corners. In most cases, the contents of the box indicate what appears on the
screen when you execute your program and is called a sample run. For example, the

following sample run illustrates what will appear on the screen after you execute the

This program adds two numbers.
18! number ? 2+

2" number ? 2+

The total is 4.

add

Input from the user is shown in color to distinguish it from the out generated by
the program. To make the use actions more clear, the diagram also uses the symbol «
to indicate that the user has pressed the Return or Enter key, signifying the end of the
input line, although this symbol does not actually appear on the screen.

1-4 Algorithms

Now that you have a sense of the basic structure of a computer system, let’s turn
to computer science. Because computer science is the discipline of solving problems
with the assistance of a computer, you need to understand a concept that is
fundamental to both computer science and the abstract discipline of problem solving
the concept of and algorithm!. Informally, you can think of an algorithm as a strategy
for solving a problem. To appreciate how computer scientists use the term, however, it
is necessary to formalize that intuitive understanding and tighten up the definition.

To be an algorithm, a solution technique must fulfill three basic requirements.

First of all, an algorithm must be presented in a clear, unambiguous form so that it is

! The word algorithm comes to use from the name of the ninth-century Arabic mathematician
Abu Ja’far Mohammed ibn Misa al -Knowarizmi, who wrote a treatise on mathematics entitled
Kitab al jabr w’almugabala (which itself gave rise to the English word algebra).

possible to understand what steps are involved. Second, the steps within an algorithm
must be effective, in the sense that it is possible to carry them out in practice. A
technique, for example, that includes the operation “multiply r by the exact value of
1 ” is not effective, since it is not possible to compute the exact value of 1 . Third, an
algorithm must not run on forever but must deliver its answer in a finite amount of

time. In summary, an algorithm must be

1. Clearly and unambiguously defined
2. Effative,in the sense that its steps are executable.

3. Finite, n the sense that it terminates after a bounded number of steps.

These properties will turn out to be more important later on when you begin to
work with complex algorithms. For the moment, it is sufficient to think of algorithms
as abstract solution strategies —strategies that will eventually become the core of the
programs you write.

As you will soon discover, algorithms—Ilike the problems they are intended to
solve — vary significantly in complexity. Some problems are so simple that an
appropriate algorithm springs immediately to mind, and you can write the programs to
solve such problems without too much trouble. As the problems become more
complex, however, the algorithms needed to solve them begin to require more thought.
In most cases, several different algorithms are available to solve a particular problem,
and you need to consider a variety of potential solution techniques before writing the
final program. You will have a chance to revisit this topic in Chapter 6, which

addresses how to decide which algorithm is best for a given problem.

1-5Programming languages and compilation

Solving a problem by computer consists of two conceptually distinct steps. First,
you need to develop an algorithm, or choose an existing one, that solves the problem.
This part of the process is called algorithmic design. The second step is to express
that algorithm as a computer program in a program in a programming language. This
process is called coding.

As you begin to learn about programming, the process of coding —translating
your algorithm into a functioning C program—will seem to be the more difficult
phase of the process. As a new programmer, you will, after all, be starting with simple
problems just as you would when learning any new skill. Simple problems tend to
have simple solutions, and the algorithmic design phase will not seem particularly
challenging. Because the language and its rules are entirely new and unfamiliar,
however, coding may at times seem difficult and arbitrary. I hope it is reassuring to
say that coding will rapidly become easier as you learn more about the programming
process. At the same time, however, algorithmic design will get harder as the problems
you are asked to solve increase in complexity.

When new algorithms are introduced in this text, they will usually be expressed
initially in English. Although it is offer less precise than one would like, English is a

reasonable language in which to express solution strategies as long as the
communication is entirely between people who speak English. Obviously, if you
wanted to resent your algorithm to someone who spoke only Russian, English would
no longer be an appropriate choice. English is likewise an inappropriate choice for
presenting an algorithm to a computer. Although computer scientists have been
working on this problem for decades, understanding English or Russian or any other
human language continues to lie beyond the boundaries of current technology. The
computer would be completely unable to interpret your algorithm if it were expressed
in human language. To make an algorithm accessible to the computer, you need to
translate it into a programming language. There are many programming languages in
the world, including Fortran, BASIC, Pascal, Lisp, and a host of others. In this text,
you will learn how to use the programming language C—the language that has
become the de facto standard in the computing industry over the last several years.

The programming languages listed above, including C, are examples of what
computer scientists call higher-level languages. Such languages are designed to be
independent of the particular characteristics that differentiate computers and to work
instead with general algorithmic concepts that can be implemented on any computer
system. Internally, each computer system understands a low-level language that is
specific to that type of hardware. For example, the Apple Macintosh computer and the
IBM PC use different underlying machine languages, even though both of them can
execute programs written in a higher-level language such as C.

To make it possible for a program written in a higher-level language to run on
different computer systems, the program must first be translated into the low-level
machine language appropriate to the computer on which the program will run. For
example, if you are writing C programs for a Macintosh, you will need to run a special
program that translates C into machine language for the Macintosh. If you are using
the IBM PC to run the same program, you need to use a different translator. Programs
that perform the translation between a higher-level language and machine language
are called compilers.

Before you can run a program on most computer systems, it is necessary to enter
the text of the program and store it in a file, which is the generic name for any
collection of information stored in the computer’s secondary storage. Every file must
have a name, which is usually divided into two parts separated by a period, as in

. When you create a file, you choose the root name, which is the part of the
name preceding the period, and use it to tell yourself what the file contains. The
portion of the filename following the period indicates what the file is used for and is
called the extension. Certain extensions have preassigned meanings. For example, the
extension .c indicates a program fie written in the C language. A file containing
program text is called a source file.

The general process of entering or changing the contents of a file is called editing
that file. The editing process differs significantly between individual computer
systems, so it is not possible to describe it in a way that works for every type of
hardware. When you work on a particular computer system, you will need to learn

how to create new files and to edit existing ones. You can find this information in the

computer manual or the documentation fro the C compiler you are using.

Once you have a source file, the next step in the process is to use the compiler to
translate the source file into a format the computer can understand directly. Once
again, this process varies somewhat from machine to machine. In most cases, however,
the compiler translates the source file into a second file, called an Object file, that
contains the actual instructions appropriate for that computer system. This object file
is then combined together with other object files to produce an executable file that
can be run on the system. These other object files typically include predefined object
files, called libraries, that contain the machine-language instructions of various
operations commonly required by programs. The process of combining all the
individual object files into an executable file is called linking The entire process is
illustrated by the diagram shownin Figure 1-2

source files object files
#include <stdio.h> 0100010010001001 executable fles
main() 1100010001101010
{ 1010101100100010
} printf{*hello”); ?8]8%] 8?8%‘1?%] 0101010101011110
1010110001001001
0110101010110011
other object 0111100010010010
fileggs/librarie 1101010101010101
0101111000100100
1011010101010100
0110010100100010 14
. 1001 101101010101
Figure 1-2 0101010101101011
0101011010101010

In some computers, the individual steps shown in the diagram occur without any
action on your part. You indicate that you want to run the program, and all of the
necessary steps are carried out automatically. On other computers, you may have to
perform the compiling and linking steps individually.

In any case, the only file that contains something humans can read is the source
file. The other files contain information intended solely for the machine. As a
programmer, all your work takes lace in thee context of the source file. You edit it and

then give it to the compiler for translating.

1-6 Programming errors and debugging

Besides translation, compilers perform another important function. Like human
languages, programming languages have their own vocabulary and their own set of
grammatical rules. These rules make it possible to determine that certain statements
are properly constructed and that others are not. For example, in English, it is not
appropriate to say “we goes” because the subject and verb do not agree in number.
Rules that determine whether a statement is legally constructed are called syntax
rules. Programming languages have their own syntax, which determines how the

elements of a program can be put together. When you compile a program, the compiler

first checks to see whether your program is syntactically correct. If you have violated
the syntactic rules, the compiler displays an error message. Errors that result from
breaking these rules are called syntax errors. Whenever you get a message from the
compiler indicating a syntax error, you must go back and edit the program to correct it.

Syntax errors can be frustrating, particularly for new programmers. They will not,
however, be your biggest source of frustration. More often than not, the programs you
write will fail to operate correctly not because you wrote a program that contained
syntactic errors but because your perfectly legal program somehow comes up with
incorrect answers or fails to produce answers at all. You look at the program and
discover that you have made a mistake in the logic of the program—the type of
mistake programmers call a bug. The process of finding and correcting such mistakes
is called debugging and is an important part of the programming process.

Bugs can e extremely insidious and frustrating. You will be absolutely certain
that your algorithm is correct and then discover that it fails to handle some case you
had previously overlooked. Or perhaps you will think about a special condition at one
point in your program only to forget it later on. Or you might make a mistake that
seems so silly you cannot believe anyone could possibly have blundered so badly.

Relax. You're in excellent company. Even the best programmers have shared this
experience. The truth is that programmers—all programmers—make logic errors. In
particular, you will make logic errors. Algorithms are tricky things, and you will often
discover that you haven’t really gotten it right.

In many respects, discovering your own fallibility is an important rite of passage
for you as a programmer. Describing his experiences as a programmer in the early

1996s, the pioneering computer scientist Maurice Wilkes wrote:

Somehow, at the Moore School and afterwards, one had always assumed there
would be no particular difficulty in getting programs right. I can remember the
exact instant in time at which it dawned on me that a great part of my future

life would be spentin finding mistakes in my own programs.

What differentiates good programmers form the rest of their colleagues is not that
they manage to avoid bugs altogether but that they take pains to minimize the number
of bugs that persist in the finished code. When you design an algorithm and translate ti
into a syntactically legal program, it is critical to understand that your job is not
finished. Almost certainly, your program has a bug in it somewhere. Your job as a
programmer is to find that bug and fix it. Once that is done, you should find the next
bug and fix that. Always be skeptical of your own programs and test them as
thoroughly as you can.

1-7 Software maintenance

One of the more surprising aspects of software development is that programs
require maintenance. In fact, studies of software development indicate that, for most

programs, paying programmers to maintain the software after it has been released

constitutes between 80 and 90 percent of the total cost. In the context of software,
however, it is a little hard to imagine precisely what maintenance means. At first
hearing, the idea sounds rather bizarre. If you think in terms of a car or a bridge,
maintenance occurs when something has broken—some of the metal has rusted away,
apiece of some mechanical linkage has worn out from overuse, or something has
gotten smashed up in an accident. None of these situations apply to software. The
code itself doesn’t rust. Using the same program over and over again does not in any
way diminish its functioning. Accidental misuse can certainly have dangerous
consequences but does not usually damage the program itself; even if it does, the
program can often be restored from a backup copy. What does maintenance mean in
such an environment?

Software requires maintenance for two principal reasons. First, even after
considerable testing and, in some cases, years of field use, bugs can still survive in the
original code. Then, when some unusual situation arises or a previously unanticipated
load occurs, the bug, previously dormant, causes the program to fail. Thus, debugging
is an essential part of program maintenance. It is not, however, the most important part.
Far more consequential, especially in terms of how much it contributes to the overall
cost of program maintenance, is what might be called fezzure enfancement. Programs
are written to be use; they perform, usually faster and less expensively than other
methods, a task the customer needs done. At the same time, the programs probably
don’t do everything the customer wants. After working witha program for a while, the
customer decides it would be wonderful if the program also did something else, or did
something differently, or presented its data in a more useful way, or rana little faster,
or had an expanded capacity, or just had a few more simple but attractive features
(often called bells and whistles in the trade). Since software is extremely flexible,
suppliers have the option of responding to such requests. In either case—whether one
wants to repair a bug or add a feature—someone has to go in, look at the program,
figure out what’s going on, make the necessary changes, verify that those changes
work, and then release a new version. This process is difficult, time-consuming,

expensive, and prone to error.

1-8 The importance of software engineering

Part of the reason program maintenance is so difficult is that most programmers
do not write their programs for the long haul. To them it seems sufficient to get the
program working and then move on to something else.! The discipline of writing
programs so that they can by understood and maintained by others is called software
engineering. In this text, you are encouraged to write programs that demonstrate good
engineering style.

As you write your programs, try to imagine how someone eclse might feel if

! In defense of these programmers, it is important to note that they are often pressed to do just
that since the company has tight cost and deadline constraints. Unfortunately, this kind of a rush to
market often constitutes a false economy because the company ends up paying much more down
the road in added maintenance costs.

called upon to look at them two years later. Would your program make sense? Would
the program itself indicate to the new reader what you were trying to do? Would it be
easy to change, particularly along some dimension where you could reasonable expect
change? Or would it seem obscure and convolute? If you put yourself in the place of
the future maintainer (and as a new programmer in most companies, you will probably
be given that role), it will help you to appreciate why good style is critical.

Many novice programmers are disturbed to learn that there is no precise set of
rules you can follow to ensure good programming style. Good software engineering is
not a cookbook sort of process. Instead it is a skill blended with more than a little bit of
artistry. Practice is critical. One learns to write good programs by writing them, and by
reading others, much as one learns to be a novelist. Good programming requires
discipline—the discipline not to cut corners or to forget about that future maintainer
in the rush to complete a project. And good programming style requires developing
and aesthetic sense—a sense of what it means for a program to be readable and well

presented.

1-9 Some thoughts on the C programming
language

As noted in an earlier section, the language that will serve as the basis for this
text is the programming language C, in the form that has now been accepted by the
American National Standards Institute as ANSI C (ANSI is pronounced “an-see”). The
C language was originally developed by Dennis Richie in the early 1970s. In the two
decades since its invention, C has become one of the most widely used languages in
the world. At all levels of the software industry, more and more programs are written
in C—programs that are used by millions of people throughout the world. More than
many other languages, C was designed to unlock the power of the computer and offers
programmers considerable control over the programs thy write. It is precisely this
power that has contributed to the widespread use of the language.

But power has a down side. For one thing, C tends to be a bit more difficult to
learn than other languages, in part because the language makes visible many of the
low-level constructs one needs to take full advantage of the machine. For another,
programmers can misuse the power of C—and many do, perhaps because they are
careless, or because they think it is somehow a badge of honor to have accomplished a
task in the most intricate and obscure way, or because they have never learned good
programming methodology. It’s as if we can apply to programming the oft-repeated
aphorism that “power corrupts and absolute power corrupts absolutely.” Judging form
the C code that exists in the world, there are more than a few absolutely corrupted
programmers out there.

Fortunately, there is hope. First of all, C is not really so different from other
programming languages in this regard. In one of the most important observations ever
made about programming, Larry Flon of Carnegie Mellon University (later at UCL A)
said, “There does not now, nor will there ever exist, a programming language in which

it is the least bit hard to write bad programs.” The important factors are care and
discipline, not the structure of the language. Second, it may be reassuring to know that
the aphorism about power from the preceding paragraph is in fact a misquote. What
Lord Acton actually wrote in 1887 begins with “power fends to corrupt.” The
additional qualifying verb is critically important. If you learn to use the power of C
well, it is possible to avoid power’s corrupting influence and instead write extremely

good programs that stand as models of programming style and elegance.

SUMMARY

The purpose of this chapter is to set the stage for learning about computer science
and programming, a process that you will begin in earnest in Chapter 2. In this chapter,
you have focused on whatthe programming process involves and how it relates to the
larger domain of computer science.

The important points introduced in this chapter include:
> The physical components of a computer system—the parts you can see and

touch—constitute /ardware. Before computer hardware is useful, however, you

must specify a sequence of instructions, or program, that tells the hardware what
to do. Such programs are called soffware.

> Computer science is not so much the science of computers as it is the science of
solving problems using computers.

» Strategies for solving problems on a computer are known as @/gorit/ims. To be an
algorithm, the strategy must be clearly and unambiguously defined, effective,
and finite.

> Programs are typically written using /Zigher-level language that is then translated
by a compiler into the lower-level machine language of a specific computer
system.

» To run a program, you must first create a sowrce file containing the text of the
program. The compiler translates the source file into an object file, which is then
linked with other object files to create the executable program.

> Programming languages have a set of sywzax rules that determine whether a
program is properly constructed. The compiler checks your program against
these syntax rules and reports a syzzax ervor whenever the rules are violated.

» The most serious type of programming error is one that is syntactically correct
but that nonetheless causes the program to produce incorrect results or no results
at all. This type of error, in which your program does not correctly solve a
problem because of a mistake in your logic, is called a Aug. The process of
finding and fixing bugs is called debugging.

» Most programs must be updated periodically to correct bugs or to respond to
changes in the demands of the application. This process is called soffware
maintenance. Designing a program so that it is easier to maintain is an essential
part of software engineering.

» This text uses the programming language C to illustrate the programming

A

10.

11.
12.
13.

14.
15.

process. Although C programs are often written with too little regard for software
engineering principles, it is possible to write programs in C that are models of

good programming style.

REVIEW QUESTIONS

What new concept in computing was introduced in the design of Babbage’s
Analytical Engine?

Who is generally regarded as the first programmer?

What concept lies at the heart of von Neumann architecture?

What is the difference between hardware and software?

Traditional science is concerned with abstract theories or the nature of the
universe—not human-made artifacts. What abstract concept forms the core of
computer science?

What are the three criteria an algorithm must satisfy?

What is the distinction between algorithmic design and coding? Which of these
activities is usually harder?

What is meant by the term higher-level language? What higher-level language is
used as the basis of this text?

Why is it necessary to use different compilers when you run your programs on
computers made by different manufactures?

What is the relationship between a source file and an object file? As a
programmer, which of these files do you work with directly?

What is the difference betweena syntax error and a bug?

True of false: Good programmers never introduce bugs into their programs.

True or false: The major expense of writing a program comes form the
development of that program: once the program is put into practice,
programming costs are negligible.

What is meant by the term software maintenance?

Why is it important to apply good software engineering principles when you

write your programs?

Chapter 1 Learning by Example

Tigers are easy to find, but I needed adult wisdom to know dragons. “You
have to infer the whole dragon from the parts you can see and touch, ” the old
people would say. Unlike tigers, dragons are so immense, [would never see
one in its entirety. But [could explore the mountains, which are the top of its
head. “These mountains are also like the tops of other dragons ’heads, ” the old
people would tell me.

— Maxine Hong Kingston, The Woman Warrior, 1975

OBJECTIVES

» To get a feel for the structure of C programs by reading through simple examples in
their entirety.
» To appreciate the importance of libraries as toolboxes that simplify the programming

process and to be able to use library functions for simple input and output.

A\

To recognize that many simple programs are composed of three phases: nput,
computation, and output.

To understand the role of variables in a program as placeholders for data values.

To recognize the existence of different data types, including int, double, and string.

To be able to specify simple computation through the use of arithmetic expressions.

To understand the process of numeric conversion.

V VV V V

To be able to write new programs by making simple modifications to existing

programs.

The purpose of this book is to teach you the fundamentals of programming. Along

the way, you will become quite familiar with a particular programming language called C,
but the details of that language are not the main point. Programming is the science for
solving problems by computer, and most of what you learn from this text will be
independent of the specific details of C. Even so, you will have to master many of those
details eventually so that your programs can take maximum advantage of the tools that C
provides.

From your position as a new student of programming, the need to understand both the
abstract concepts of programming and the concrete details of a specific programming
language leads to a dilemma: there is no obvious place to start. To learn about
programming, you need to write some fairly complex programs. To write those programs
in C, you must know enough about the language to use the appropriate tools. But if you
spend all your energy learning about C, you will probably not learn as much as you should

about more general programming issues. Moreover, C was not designed for beginning

programmers. There are many details that just get in the way if you try to master C without
first understanding something about programming, and you end up being unable to see the
forest because you’re distracted by all the trees.

Because it’s important for you to get a feel for what programming is before you
master its intricacies, this chapter begins by presenting a few simple programs in their
entirety. Try to understand what is happening in them generally without being concerned
about details just yet. You will learn about those details in chapter 4. The main purpose of
this chapter and the one that follows is to help build your intuition about programming and

problem solving, which is far more important in the long run.

1-1The “Hello, world” program

In honor of the designers of C, our first programming example comes from the book
that has served as C’s defining document, 7%e C Programming Language, by Brian
Kernighan and Denis Ritchie. That example is called the “Hello world” program and has
become part of the heritage shared by all ¢ programmers—a community that you are
poised to enter. The text of the program is shown in Figure 2-1.

FIGURE 2-1810%

/*
*file: hello.c

*

*This program prints the message “Hello, World.” program
*on the screen. The program is taken from the comment
* classic C reference text “The C programming

*Language” by Brian Kernighan and Dennis Ritchie.

¥/

#include <stdio.h> } library
#include “genlib.h” inclusions
main()
main
printf(*Hello, World.\n");
program

}

The program itself is stored as a file in the permanent storage of the computer system
you are using. The name of the file is hello.c, wherethe .c identifies the file as a C program.

As Figure 2-1 indicates, the hello.c program is divided into three sections: a program
comment, a list of lbrary inclusions, and the main program. Although its structure is
extremely simple, the hello.c program is typical of the programs you will see in the next few
chapters, and you should use it as a model of how C programs should be organized.

Comments

The first section of hello.c is simply an English-language comment describing what the
program does. In C, a comment is any text that is enclosed between the markers /* and */.
Comments may continue for several lines. In the hello.c program, the comment begins with
the /* on the first line and ends with the */ eight lines later.

Comments are written for human beings, not for the computer. They are intended to
convey information about the program to other programmers. When the C compiler
translates a program into a form that can be executed by the machine, it ignores the
comments entirely.

In this text, every program begins with a special comment called the program
comment that describes the operation of the program as a whole. It includes the name of
the program file and a message that describes the operation of the program. Comments
might also describe any particularly intricate parts of the program, indicate who might use
it, offer suggestions on how to change the program behavior, and the like. For a program
this simple, extensive comments are usually not necessary. As your programs become more
complicated, however, you will discover that good comments are one of the best ways for

you to make them understandable to someone else.

Library inclusions

The second section of the program consists of the lines

#include <stdio.h>
#include “genlib.n”

These lines indicate that the program uses two libraries. A library is a collection of
tools written by other programmers that perform specific operations. The libraries used by
the hello.c program are a standard input/output library (stdio) that is supplied along with ANSI
C and a general library (genlib) designed specifically for use with this book. Every program
in this book will include both of these libraries, which means that these lines will appear in
every program immediately after the program comment. Some programs may need to use
additional libraries as well. Those programs must contain an #include line for each library
that is used.

When your write your programs, you can use the tools provided by these libraries,
which saves you the trouble of writing them yourself. Libraries are critical to programming,
and you will quickly come to depend on several important libraries as you begin to write
more sophisticated programs.

To use a library, however, your program must specify enough information for the C
compiler to k now what facilities are available as part of that library. In most cases, that
information is provided in the form of a header file, a file that contains a description for
the compiler of the tools provided by that library. For example stdioh is the name of a
header file that defines the contents of the standard input/output library. Similarly, genlib.h is
the name of a header file that defines the contents of the general library. The .h in each of
these file names indicates a header file, just as the .c in hello.c indicates a C program. The
contents of header files are discussed more thoroughly in Chapters 7 and 8.

Notice that the punctuation differs in the two#include lines:

#include <stdio.h>
#include “genlib.h”

The library stdio is part of the standard set of libraries that are always available when you

use ANSI C. Standard libraries are marked with angle brackets so that you can include stdio

by writing.
#include <stdio.h>

Personal libraries that you write yourself and the extended libraries that accompany this
book are specified using quotation marks. Because the genlib library is one of these extended
libraries, the #include line is written as

#include “genlib.n”

As this text introduces each new library, the corresponding #include line will be shown
with the appropriate punctuation so you’ll know how to gain access to that library.

The main program

The last section of the hello.c file shown in Figure 2-1 is the program itself, which
consists of the lines

main()

{
}

Printf(*Hello, world.\n");

These four lines represent the first example of a function in C. A function is a sequence of
individual program steps that have been collected together and given a name. The name of
this function, as given on the first line, is main. The steps the function performs are listed
between the curly braces and are called statement. Collectively, the statements constitute
the body of the function. The function main shown in the hello.c example contains only one
statement, but it is common for functions to contain several statements that are performed
sequentially.

Whenever you run a C program, the computer executes the statements enclosed in the
body off the function named main, which must exist in every complete C program. In the

hello.c example, the body of main consists of the single statement

Printf{(“Hello, world.\n");

This statement uses the library function printf, which is one of the facilities in the standard
input/output library that became available when the programmer included the line

#include <stdio.h>

earlier in the program.

But what does printf do? Like main, printf is a function, which means that the name printf
corresponds to a sequence of operations. When you want to invoke those operations, you
can simply refer to them collectively by using the function name. In programming, the act
of invoking a function by using its name is referred to as calling that function. Thus the

statement
printf(*Hello, world.\n”);

in the hello.c programrepresents a call to the printf function.

When you call a function, you often need to provide additional information. In C, for
example, printf is a function that displays data on the screen. But what data should it display ?
This additional information is indicated using a list of arguments enclosed in parentheses
after the function name. An argument is information that the caller of a particular function
makes available to the function itself. Here, printf has been given one argument, the

sequence of characters, or string, enclosed in quotation marks, as follows:

“Hello, world.\n”

This string is your first example of data in a programming language. There are many
different types of data in C, and you will devote a great deal of your attention to the
question of how to use data. For the moment, however, you can consider data to be thee
information manipulated by the program: any messages displayed, input requested from
the user, values delivered as the result of computation, or intermediate results generated
along the way.

In this program, the single statement in main tells the printf library function to display all
the characters that make up the string passed to printf as an argument. The printf function
dutifully responds by displaying the H, the ¢ the I, and so on, until the entire message
appears on the screen as shown:

Hello, word.

The final character in the string is a special character called newline, indicated by the
sequence \n. When the printf function reaches the period at the end of the sentence, the
cursor is sitting at the end of the text, just after the period. If you wanted to extend this
program so that it wrote out more messages, you would probably want to start each new
message on a new screen line. The newline character, defined for all modern computer
systems, makes this possible. When the printf function processes the newline character, the
cursor on the screen moves to the beginning of the next line, just as if you hit the Return
key on the keyboard (this key is labeled Enter on some computers). In C, programs must
include the newline character to mark the end of each screen line, or all the output will run

together without any line breaks.

1-2 A program to add two numbers

To get a better picture of how a C program works, you need to consider a slightly
more sophisticated example. The program add2.c shown in Figure 2-2 asks the user to

enter two numbers, adds those numbers together, and then displays the sum.

FIGURE 2-2P771s

/*
* File: add2.c

* This program reads in two numbers, adds them toge ther,
*and prints their sum.
*/

#include <stdio.h>
#include “genlib.n”
#include “simpio.h”

main()

{
int n1, n2 total;

printf{(“This program adds two numbers.\n");
printf{“1st number ? *);
n1 = Getinteger();
printf(“2nd number ? *);
n2 = Getlnteger():
total = n1+ n2;
pprinf(“The total is %d\n", total);
}

The add2.c program incorporates several new programming concepts that were not
part of hello.c. First, add2.c uses a new library called simpio, simplified input/output. This
library is an extension used in this text, so the #include line uses quotation marks, just as it
did in the case of genlib:

#include “simpio.h”

Another new programming feature that deserves special attention appears as the first line of
the function main

int n1, n2, total;

This line is the first example of a variable of a variable declaration. Within a program, a
variable is a placeholder for some piece of data whose value is unknown when the
program is written. For example, when you write a program to add two numbers, you don’t
yet know what numbers the user will want to add. The user will enter those numbers when
the program runs. So that you can refer to these as-yet-unspecified values in your program,
you create a variable to hold each value you need to remember, give it a name, and then use
its name whenever you want to refer to the value it contains. Variable names are usually
chosen so that programmers who read the program in the future can easily tell how each
variable is used. In the add2.c program, the variables n1 and n2 represent the numbers to be
added, and the variable total represents the sum.

Before you use a variable in C, you must declare that variable. Declaring a variable
tells the C compiler that you are introducing a new variable name and specifies the type of
data that variable can hold. For example, in add2.c the line

int n1, n2, total;

declares all three of the variable names—n1, n2, and total—and indicates to the compiler
that each holds a value of type int. The type name int stands for integer, a number without

fractional parts. Variables and declarations are discussed in more detail in the section on

“Variables” later in this chapter.
As with any program, the computer runs the add2.c program by executing each of the
statements in the body of main. The first statements in add2.c is similar to the statement that

formed the entire body of the earlier hello.c example:
Printf (“This program adds two numbers.\n”);

When this statement is executed, the computer simply displays the message on the screen
and returns the cursor, represented by the vertical line, to the beginning of the following

line. The purpose of the message is to tell the user what the program does.

[This program adds two numbers.]

After displaying the introductory, the strategy for the rest of the program can be
divided into three phases:
1. The input phase, in which the program asks the user to enter the two numbers to
be added
2. The computation phase, in which the program computes the sum
3. The output phase, in which the program displays the results of the computation

on the computer screen

The input phase

In the input phase, the program must ask the user to enter each of the two numbers and
the store those numbers in the variables n1 and n2, respectively. For each number, the input
process consists of two steps. First, the program needs to display a message on the screen
so that the user knows what in expected; this type of message is generally called a prompt.
As with other messages to the user, you can use printf to display the prompt, as follows:

printf{“1st number ? *);

Note that this time there is no newline character at the end of the argument string given to
printf. Leaving out the newline character means that the cursor will remain at the end of the
displayed text, right after the space following the questions mark, as the following sample

run shows:

This program adds two numbers.
1st number ? |

the cursor at the end of the line tells the user that an input value is required, and the prompt
message indicates what value is required. In most cases, you will include the newline
character in printf calls that are used to display output data but not in those that are used to
display prompts for input data.

To read the number itself, the program uses the statement

n1 = Getinteger();

This statement is the first example of an extremely important programming construct called
an assignment statement. In C, an assignment statement stares a value written to the right
of an equal sign in a variable written to the left of that equal sign. In this case, the right-
hand side of the assignment statement is a call to the function Getinteger ; the left-hand side
for the assignment statement is the variable nl.

The function Getinteger is part of the simpio library and is used to read integer values
from the user. When Getinteger is called, the program waits for the user to enter a whole
number using the keyboard. When the user has finished typing the number and has pressed
the Return key, that value is then passed back to the main program as the result of the
Getinteger function. In programming terminology, we say that Getinteger returns the value the
user typed. The effect of the assignment statement as a whole is to call the Getinteger
function, let the user enter a value, and finally store the value returned by Getinteger in the
variable nl.

It is useful to review in more detail the execution of the statements

printf(“1st number ? *);
n1 = Getinteger();

The first statement simply displays the specified prompt on the screen, leaving the cursor at

the end of the line. The computer ten goes on to execute the statement
n1 = Getinteger();

As part of the call to Getinteger , the program waits for the user to enter a numeric value,
which is interpreted as an integer. For example, the user might enter the number 2. The
screen now looks like the following sample run. (To make the user actions more clear, the
diagram uses the «' symbol to indicate that the user has pressed the Return or Enter key
signifying the end of the input line. That symbol does not actually appear on the screen. In
this book, the user’s input is shown in color to distinguish it form the text generated by the

program.)

This program adds two numbers.
1st number ? 2+

The value 2 is then stored in the variable n1.

When tracing through the operation of a program on paper, programmers often use a
simple box diagram to indicate that a variable has been given a particular value. Each
variable corresponds to a box in the diagram. Each box has a name, which is fixed
throughout the time the function runs, and a value, which changes as new values are stored
in that variable. Thus, to illustrate that the assignment statement has stored the value 2 in
the variable n1, you draw a box, name the box n1, and then indicate its value by writing a 2
mside the box, as follows:

nl

2

After reading in the first number, the program reads in the second by repeating the

same basic steps:

printf(“2nd number ?)’
n2 = Getinteger();

For example, if the user’s second number were 3, the screen would look like

This program adds two numbers.
1st number? 2+
2" number ? 3+

You can now diagram the values for the two variables this way:
nl n2
2 3

The computation phase

The computation phase of the program consists of calculating the sum of these two
numbers. In programming, computation is specified by writing an expression that indicates
the necessary operations. The result of the expression is then stored in a variable using an
assignment statement so that the result can be used in subsequent parts of the program. The
structure of expressions is defined more formally later in this chapter. Even without a
complete definition, however, it is usually easy to understand how C expressions work
because they look very much like expressions in traditional mathematics.

In the add2.c program, you want to add the values stored in the variables n1 and n2. To
do so, you use the + operator, which is familiar from basic arithmetic. To keep track of the
result, you store it in the variable fotal, which you declared for precisely that purpose. The

assignment statement that performs these operations is

total = n1+ n2;
As is the case with any assignment statement in C, the computer calculates the value
represented by the expression on the right-hand side of the equal sign and then stores it in
the variable written on the left-hand side. Here, the effect of the assignment statement is to

add the values stored in the variables n1 and n2 and then to assign that result to the variable
total .

The output phase

The output phase of the program consists of displaying the computed result. As with
other output operations, displaying the result is accomplished using the printf function. This

time, however, there’s a new twist. The last statement in the add2.c program is
printf(“The total is %d\n, total);

As before, printf displays each of the characters in the argument string on the screen. When it

gets to the percent sign (%), however, print does something special. The % and the letter that
follows it are called a format code. Here, for example, the format code is %d A format
code in a printf string acts as a placeholder for a value, which is inserted at that point in the
output. The letter that appears in the format code is used to specify the output format. In
this case, the %d format code means that the output should be displayed as a decimal
integer. Thus, the program at this point is point to display a message that looks like

[The fotal is___. }

Where the underlined area is replaced with a decimal integer value.
To know what integer to display, printf takes the value from the next argument in the

call, which in this case is the variable total. That value is displayed on the screen, and the
newline character causes the cursor to move to the next line. Combining this last line with

the messages already on the screen shows the complete sample run for the add2.c program:

This program adds two numbers.
1st number? 2 <

2nd number ? 3+

The total is 5.

The printf function can display any number of data values as part of the output. For each
integer value you want to appear as part of the output, you need to include the code %din
the string that is used as the first argumentin the printf call. The actual values to be displayed
are given as additional arguments to printf, listed in the order in which they should appear.
For example, if you changed the last line of the add2.c program to

printf(“% d+%d = %dn’, n1, n2, total);

the value of n1 would be substituted in place of the first %d, the value ofn2 would appear in
place of the second %d, and the value of total would appear in place of the third %d The
final image on the computer screen would be

This program adds two numbers.
1st number? 2+

2nd number ? 3+

2+3=5

The printf function is discussed in more detail in Chapter 3.

1-3 Perspectives on the programming process

Section 2.2 analyzed the add2.c program in detail, taking each statement in the program
and describing its specific function. To become a successful programmer, you need to learn
what the different statements available in C do and how to use them. At times, you will
certainly find yourself going through your own programs statement by statement,

particularly when you are searching for a bug that keeps your programs. Sometimes it helps

to stand back and look at the program as a whole.
Look at the main program for the add2.c program again and try to express in one
sentence what it does:

main()

{
int n1, n2, total;

Printf(“This program adds two numbers.\n”);
printf(“1st number ? *);

n1 = Getinteger();

printf{(“2nd number ? *);

n2 = Getinteger();

total = n1+ n2;

printf(“The fotal is % d\n’, total);

}

Even if the first call to printf were not a dead giveaway, the odds are good that you could
figure out what this program does without having read the explanations from the previous
section and without understanding how any of the different kinds of statements works in
detail. The program adds two numbers and displays the result.

What perhaps more important is that you can also modify the add2.c program to do
something a little different. For example, changing the program so that it adds three
numbers would not be difficult at all. Recognizing large-scale patterns and building new
programs form existing models are essential strategies for programming.

When you look at a program like add2.c, you can choose to perceive it in either of two
ways. If you go through the program line by line, as in Section 2.2, you develop an
understanding of the program from the perspective of its individual parts—a reductionistic
approach. But you can also look at program from a more global perspective—as a complete
entity whose operation as a whole is of primary concern. This holistic perspective allows
you to see the program in a different light—one that is critical to successful programming.

Reductionism is the philosophical principle that the whole of an object can best be
understood by understanding the parts that make it up. Its antithesis is holism, which
recognizes that the whole is often more than the sum of'its parts. As you learn how to write
programs, you must learn to see the process from each of these perspectives. If you
concentrate only on the big picture, you will end up not understanding the tools you need
for solving problems. However, if you focus exclusively on details, you will miss the forest
for the trees.

In learning about programming, the best approach is usually to alternate between these
two perspectives. Taking the holistic view helps sharpen your intuition about the
programming process and enables you to stand back from a program and say, “I understand
what this program does.” On the other hand, to practice writing programs, you have to
adopt enough of the reductionistic perspective to know how those programs are put
together.

For the rest of this chapter, we will take the reductionistic approach and delve more
deeply into two concepts that were introduced in the context of the add2c program: data
types and expressions. You will learn enough about those concepts to begin writing some
interesting programs. In Chapter 3, however, we return to the holistic approach and focus
on the abstract process of solving problems.

1-4Data types

To be useful in a wide variety of applications, programs must be able to store many
different types of data. The add2.c program works with integers, but they are only one of
many kinds of data available in C. In many applications, you need to work with numbers
that are not integers but instead have fractional parts, such as 1.5 or 3.1415926. When you
use a word-processing program, the individual data values are characters, which are then
assembled into larger units, such as words, sentences, and paragraphs. As your programs
get more complicated, you will begin to work with large collections of information
structured in a variety of ways. All these different classes of information constitute data.

Whenever you work with some piece of data—an integer or a number with a fractional
part or a character—the C compiler needs to know its data type. Holistically speaking, a
data type is defined by two properties: a set of values, or domain, and a set of operations.
For data types, the domain is simply the set of values that are elements of that type. For
example, the domain of the type int includes all integers (...-2, -1, 0, 1, 2...) up to the limits
established by the hardware of the machine. For character data, the domain is the set of
symbols that appear on the keyboard or that can be displayed on the terminal screen. The
set of operations comprises the tools you have to manipulate values of that type. For
example, given two integers, you might add them together or divide one by another. Given
text data, on the other hand, it is hard to imagine what and operation like multiplication
might mean. You would instead expect to use operations such as comparing two words to
see if they are in alphabetic order or displaying a message on the screen. Thus, the
operations must be appropriate to the elements of the domain, and the two components
together—the domain and the operations—define the data type. The next two sections
introduce two new types—double and sting—so that you get used to the idea that data comes
in different forms.

Floating-point data

Many applications require the use of numbers that can include fractional parts. For
example, if you wanted to write a program that dealt with distances, it would certainly be
limiting if you were forced to deal only with whole numbers. A measurement might come
out to be exactly 1 inch or exactly 3 inches, but it could just as well be 2.5 inches or 0.73
inches. Programs that work with such measurements must be able to represent these
nonintegral values as well.

In most programming languages, numbers that include a decimal fraction are called
floating-point numbers, which are used to approximate real numbers in mathematics. The
most common type of floating-point number in C is the type double, which is short for
double-precision floating-point!. If you need to store floating-point values in a program,

you must declare variables of type double, just as you had to declare variables of type int in

! This particular typeis called double-precision because it offers twice as much accuracy as the
floating-point type float, which was much more commonly used when C was first developed. Today, most
programmers tend to use the type double for all floating-point values.

add2.c.

To write a complete program that works with floating-point values, you also must be
able to read in and display numbers of type double. As with integers, reading in floating-
point numbers is accomplished using a function from the simpio library. To read in a
floating-point number, you call the function GeReal, which is identical in operation to the
Getinteger function described in the section on “The input phase” earlier in this chapter,
except that it returns a value of type double. To display a floating-point value on the screen,
you again use the function printf. This time however, instead of using %d to indicate a
decimal integer, you use a different format code. There are several format codes that apply
to floating-point numbers, but the easiest one to use is %g which stands for the general
floating-point format.

The programming example in Figure 2-3 shows how easy it is to change the entire
add2.c program into one that adds two floating-point numbers. The only differences are the
change in the types of the variables, the use of GefReal in the place of Getinteger, and the use
of %gin place of %d in the printf line.

| (€18) I MPEX add2f.c

/*
*File: add2f.c

*This program reads in two floa ting-point numbers, adds them
*toge ther, and prints their sum.
i)

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()

{
double n1, n2, total;

printf(“This program adds two floa ting-point numbers.\n”);
printf(*1st number ? *);

n1 = GetReal();

Printf(“2nd number ? “);

n2 = GetReal();

total = n1+ n2;

printf(“The total is % gin”, total):

String data

Although the first computers were designed primarily to solve numeric problems (and
computers are still sometimes called “number crunchers” as a result), modern computers
spend less of their time working with numbers than they do with text. Because the
operations on numbers are so simple, the programming examples in the first few chapters of
this book concentrate on numeric data. In practice, however, it is very important to be able
to manipulate text data as well.

The most primitive elements of text data are individual characters. Characters,
however, are most useful when they are collected together into sequential units. In

programming, a sequence of characters is called a string. Strings make it possible to display

informational messages on the screen. You have already seen several examples of strings in
the example programs, beginning with hello.c. It is important, however, to recognize that
strings are data and that they can be manipulated and stored in much the same way that
numbers can.

When considered in detail, strings turn out to be a complicated data type for which a
full treatment lies well beyond the scope of this chapter. Even so, it is useful to know a little
about strings at this point for two reasons. First, strings provide an example of a data type
that is quite different from either int or double. Because they both refer to numbers and use
the same basic set of arithmetic operations, the types int and double are in fact quite similar.
Strings are sued in very different ways. Second, strings make it possible to write more
interesting programs, even if you do not yet know how to manipulate them in a very
sophisticated way.

To use string data at all, you need a way to name the data type. Although the designers
of C provided several operations that work with strings in the libraries associated with the
language, they did not define and explicit string type. This omission poses a problem for
the student programmer. To make up for this deficiency, however, the type string is defined
in the header file genlib.h.

The details of the definition for string are not important at this point, provided you
know how objects of type string behave. Moreover, it doesn’t matter whether sting is
defined as part of the language or as part of a library. Types defined in libraries simply
become part of the repertoire of data types and are used just as built-in types are. In your
programming, you should think of the type sting as if it were an integral part of C, even
though you know it is actually defined by the genlib library.

You can declare variables of type string in the same way that you declared variables of
type int or double in earlier programs. For example, if you want to keep track of someone’s
name, which consists of a sequence of characters and is therefore a string, you could write

the declaration
sting name;

at the beginning of your program.

For the moment, we will not define any operations on strings other than the ones
necessary to read them from the keyboard and display them on the screen. Reading in a
string is handled in much the same way as reading in a number. The simpio library contains
a function GetLine that reads in an entire line and returns it as a string. Given a value of
type string, you can use printf to display it on the screen, just as you do with number data.
The only difference is that you need to use the format code %s instead of the %d or %g you
use for numeric types. These two string operations, by themselves, provide you witha great
deal of additional power. For example, you can make a small extension to the “Hello
world” program so that it offers a more personal welcome than the generic greeting

provided by hello.c. The new version is shown in Figure 2-4.

|3 (€18) 23 D 2V greeting.c

/*
* File: greeting.c

* This program prints a more personal greeting than did

* the original “Hello, world.” program by reading in the
* name of the user.

¥

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()

{

string user;

printf(*What is your name? “);
user = GetLine();
printf(“Hello, %s\n”, user):

}

If you runthis program using my first name, you would get the following sample run:

What is your name? Eric+!
Hello, Eric.

Strings are so important to programming that this book devotes several chapters to them.

You will have a chance to learn more about strings beginning in Chapter 9.

1-5 Expressions

Whenever you want a program to perform calculations, you write an expression that

specifies

the necessary operations in a form similar to that used for expressions in

mathematics. For example, to add the values in the variables n1 and n2 in the add2.c program,

the appropriate expression is

n1 +n2;

In C, an expression is composed of terms and operators. A term, such as n1 and n2 in the

previous expression, represents a single data value. An operator, such as the + sign, is a

character (or sometimes a short sequence of characters) that indicates a computational

operation. In an expression, a term must be one of the following:

O

A constant. Any explicit data value that appears as part of the text of the program
is called a constant. Numbers such as 0 or 3.14159 are examples of constants.

A variable. Variable serve as placeholders for data that can change during the
execution of a program.

A function call. Values are often generated by calling other functions, possibly in
libraries, that return data values to the original expression. In the add2.c program,
the function Getinteger is used to read in each of the input values; the function call
Getinteger() is therefore an example of a term. Function calls are discussed further
in Chapter 5.

An expression in parentheses. Parentheses may be use in an expression to
indicate the order of operations, in the same way they are used in mathematics.

From the compiler’s point of view, the expression in parentheses becomes a term

that must be handled as a unit before computation can proceed.

When a program is run, the process of performing each of the specified operations in an
expression is called evaluation. When an expression is evaluated, each operator is applied
to the data values represented by the surrounding terms. After all the operators have been
evaluated, what remains is a single data value that indicates the result of the computation.
For example, given the expression

nt +n2

the evaluation process consists of taking the values in the variables n1 and n2 and adding
them together, and the result of the result of the evaluation is whatever that sum happens to
be.

Constants

When you write a formula in mathematics, some symbols in the formula typically
represent unknown values while other symbols represent constants whose values are known.
Consider, for example, the mathematical formula for computing the circumference (C) of a

circle given its radius (r):
C=2mar

To translate this formula into a program statement, you would use variables to record the
radius and circumference. These variables change depending on the data. The values 2 and
7, however, are constants—explicit values that never change. The value 2 is an integer
constant, and the value m is a real number constant, which would be represented in a
program by a floating-point approximation, such as 3.14159. Because constants are an
important building block for constructing expressions, it is important to be able to write
constant values for each of the basic data types.

1. Znteger constants. To write an integer constant as part of a program or as input data,
you simply write the digits that make up the number. If the integer is negative, you
write a minus sign before the number, just as in mathematics. Commas are never used.
Thus, the value one million must be written as 1000000 and not as 1,000,000.

2. Floating-point constants. Floating-point constants in C are written with a decimal
point. Thus, if 2.0 appears in a program, the number is represented internally as a
floating-point value; if the programmer had written 2, this value would be an integer.
Floating-point values can also be written in a special programmer’s style of scientific
notation, in which the value is represented a floating-point number multiplied by an
integral power of 10. To write a number using this style, you write a floating-point
number in standard notation, followed immediately by the letter E and an integer
exponent, optionally preceded by a + or - sign. For example, the speed of light in

meters per second is approximately
2.9979 x 108

which can be written in C as

2.9979E+8

where the E stands for the words zmes /0 to the power.
3. String constants. You write a string constant in C by enclosing the characters that
comprise the string in double quotation marks. For example, the very first example of

data used in this text was the string
“Hello, world.\n”

in the hello.c program. This string consists of the characters shown between the
quotation marks, including the letters, the space, the punctuation symbols, and the
special newline character. The quotation marks are not part of the string but sever only

to mark its beginning and end.

Variables

A variable is a placeholder for a value and has three important attributes: a zame, a
value, and a fpe. To understand the relationship of these attributes, think of a variable as a
box with a label attached to the outside. The name of the variable appears on the label and
is used tell the different boxes apart. If you have three boxes (or variables), you can refer to
a particular one using its name. The value of the variable corresponds to the contents of the
box and put new values in as often as you like. The type of the variable indicates what kind
of data values can be stored in the box. For example, if you have a box designed to hold
values of type int, you cannot put values of type string into that box.

Variable names in C are constructed according to the following rules:

1. The name must start with a letter or the underscore character (). In C,
uppercase and lowercase letters appearing in a variable name are considered to

be different, so the name ABC, Abc, and abc refer to three separate variables.

2. All other characters in the name must be letters, digits, or the underscore. No
spaces or other special characters are permitted in names.
3. The name must not be one of the following keywords, which are names that C
defines for a specific purpose:
Atuo double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
defaul't goto sizeof volatile
do if static while
4. Variable names can be of any length, but C compilers are required to consider

only the first 31 characters as significant!. Thus, if two variable names have the
same first 31 characters, subsequent differences may not be recognized by

some compilers. For example, the variable name

! Variable names that are shared between separate program files often consider even fewer
characters to be significant. To be safe, it is best to make sure that any names that are shared between files
can be distinguished by considering their first six characters.

anExfremely LonVariableNameWith4 3Characters

may be treated as identical to
anExtremely LongV ariableN ameWithAdifferen tEnding

Because the twonames are exactly the same through the first 31 characters. As
a general rule to guard against such mix-ups, it is usually best to avoid using
names with more than 31 characters.

5. The variable name should make it obvious to the reader what value is being
stored. Although names of friends, expletives, and the like may be legal
according to the other rules, they do absolutely nothing to improve the

readability of your programs.

As noted in the discussion of the add2.c program, you must explicitly specify the data
type of every variable before you use it in a program. This process is known as declaring
the variable. Variables are usually declared at the beginning of a function. (So far in this
text, the only function in which variables have been declared is the function main, but it is
legal to declare variables in any function.) The declaration itself consists of a type name,
followed by a list of variables to be declared as instances of that type. For example, the

add2.c program declares three variables with the line
int n1, n2, total;

The names of these variables are n1,n2, and total, all of which are of type int. Thus, using the
box analogy for variables, the effect of this declaration is to create the following three
boxes, with the names n1, n2, and total:

nl n2 total

The initial value of each variable is undefined, and you should not make any assumptions
about what values these boxes hold when the program begins. The variable nl might
contain 73 or any other random value; you won’t know what value is there until you put
one there yourself.

If you need to declare values of a different type, you can use additional declaration
statements at the beginning of the function. For example, you could declare the variable msg
to be of type sting by writing the declaration

string msg;

Once again, the effect of this declaration in terms of the box analogy is to create a new

box with the name msg:

msg

D

In this diagram, I have chosen a different shape for the box to emphasize that the type of

the variable msg is different from that of the variables n1, n2, and total. The variable nl, for

example, is of type int and can hold only integer data; the variable msg is of type string and

can hold only string data. Trying to put the wrong type of data into one of these variables is
the computational equivalent of attempting to put a square peg into a round hole and will be
caught by the compiler as an error.

Assignment statements

As illustrated in the add2.c program earlier in this chapter, variables are given values
through the use of assignment statements. In C, an assignment statement has the following

form:

variable = expression;

As you will learn in Chapter 3, the line above is an example of a programming paradigm.
The words in italics represent items you fill in with anything that fits the indicated class. In
writing an assignment statement, you can use any variable name on the left-hand side of the
equal sign and any expression on the right-hand side. The remainder of the paradigm—in
this case the semicolon—is fixed. Thus, in order to write an assignment statement, you start

with a variable name, followed by an equal sign, an expression, and a semicolon, in that

order. i
for assignment statements

When new statements are introduced in this text,))
variable = expressior,

they will be accompanied by a .syzzar box like the one |\ pere:

to the right. Syntax boxes contain a capsule summary variable is the variable you wise to set

of the grammatical structure for a particular statement expression specifies the value

type and sever as a handy reference.

As noted in the preceding section, jotting down box diagrams can help you visualize
the roles of variables in a program. Whenever a variable is declared as part of a function
definition, you can draw a new box to hold its value and label the box with the variable
name. For example, if a function begins with the declarations

int n1, n2;
string mst;

you can represent the variables in that function graphically by drawing a box for each
variable, as follows.

nl n2 msg,

C)

In this text, the double-line border surrounding all the variables is used to indicate that

those variables are all defined within the same function.
In box diagrams of this sort, the boxes are initially empty, which indicates that you

have not yet assigned values to the variables. Ifthe program executes the statement
ni= 42;

you can represent this assignment in the diagram by writing 42 inside the box name n1

nl n2 msg

° C)

similarly, you can indicate the effect of the statement
msg = “Welcome! ”;

as follows:

nl n2

msg
42 (Welcome!)

Again, a variable can only hold a value of the appropriate type. If, for instance you were to

write the statement
msg = 173,

in your program, the C compiler would mark this statement as an error because the variable
msg has been declared as a string.

The most important property illustrated by the diagram is that each variable holds
precisely on value. Once you have assigned a value to a variable, the variable maintains
that value until you assign it a new one. The value of one variable does not disappear if you
assign its value to another variable. Thus the assignment

n2 =nft;

changes n2 but leaves n1 undisturbed:

nl n2

msg
42 42 (Welcome!)

Assigning anew value to a variable erases its previous contents. Thus, the statement

msg = “Alohal”;

Changes the picture to

nl n2 msg

42 42 (Aloha!)

The previous value of the variable msg is lost.

Operators and operands

In an expression, the actual computational steps are indicated by symbolic operators
that connect the individual terms. The simplest operators to define are those used for

arithmetic expressions, which use the standard operators from arithmetic. The arithmetic

operators that apply to all numeric data types are:

+ Addition

Subtraction (or negation, if written with no value to its left)

¥ Multiplication

/ Division
Each of these operators forms a new expression by connecting two smaller expressions, one
to the left and one to right of the operator. These subsidiary expressions (or subexpressions)
to which the operator is applied are called the operands for that operator. For example, in

the expression
X+3

the operands for the + operator are the subexpressions x and 3. Operands are often
individual terms, but they can also be more complicated expressions. For example, in the

expression

@*x)+@"y)

the operands to + are the subexpressions (2 * x) and (3 * y).

As in conventional mathematics, the operator — can be used in two forms. When it is
positioned between two operands, it indicates subtraction, as in x - y. When used with no
operand to its left, it indicates negation, so —x denotes the negative of whatever value x has.
When used in this way, the — operator is called a unary operator because it applies to a
single operand. The other operators (including — when it denotes subtraction) are called
binary operators because they apply to pair of operands.

These new operators make it possible to write programs that compute much more
interesting and useful results than the sum of two numbers. For example, suppose you want
to write a program to convert a length given in inches to its metric counterpart in
centimeters. All you really need to know is that 1 inch equals 2.54 centimeters you can
construct the rest of the program just by adapting lines from the add2f.c example and

putting them back together in the appropriate way the final result is shown in Figure 2-5.

|3 (€18) 2 MWL inchtocm.c

/*

*File: inchtocm.c

* This program reads in a length given in inches and converts it
*1o its metric equivalent in centimeters.

¥

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()

{

double inch, cm;

printf(“This program converts inches to centimeters.\n”);
printf(“Leng th in inches? *);

inch = GetReal();

cm =inch * 2.54;

printf(*%gin = %gcm\n”, inch, cm):

Combining integers and floating-point numbers

In C, values of type int and double can be freely combined. If you use a binary
operator with two values of type in, the result is of type int. If either or both operands are
of type double, however, the result is always of type double. Thus, the value of the

expression
n+1

is of type int, if the variable n is declared as type int. On the other hand, the expression
n+15

is always of type double. This convention ensures that the result of the computation is as
accurate as possible. In the case of the expression n + 1.5, for example, there would be no

way to represent the .5 if the result were computed using integer arithmetic.

Integer division and the remainder operator

The fact that applying a binary operator to two integer operands always results in an
integer leads to an interesting situation with respect to the division operator. If you write
an expression like

9/4

C's rules specify that the result of this operation must be an integer because both operands
are of type int. When the program evaluates this expression, it divides 9 by 4 and throws
away any remainder. Thus, the value of the expression is 2, not 2.25. If you want to
compute the mathematically correct result, at least one of the operands must be a floating-

point number. For example, the three expressions

9.0/4
9/4.0
9.0/4.0

each produce the floating-point value 2.25. The remainder is thrown away only if both
operands are of type int.

There is an additional arithmetic operator that computes a remainder, which is
indicated in C by the percent sign (%). The % operator requires that both operands be of
type int. It returns the remainder when the first operand is divided by the second. For

example, the value of
9% 4

is 1, since 4 goes into 9 twice, with 1 left over. The following are some other examples of

the * operator:

0%4=0 19%=3
1%4=1 20%4=0
4%4=0 2001 %4=1

The / and % operators turn out to be extremely useful in a wide variety of programming

applications. The % operator, for example, is often used to test whether one number is
divisible by another. For example, to determine whether an integer n is divisible by 3, you
just check whether the result of the expression n %3 is 0.

C behaves in a confusing way when one or both of the operands to % are negative. In
fact, different implementations of C can behave differently in such cases. If you rely on
one particular behavior, you might be surprised if you move your program to another
computer. To ensure that your programs will work the same way on all machines, you
should avoid using % with negative operands.

Precedence

If an expression has more than one operator, the order in which those operators are
applied becomes an important issue. In C, you can always specify the order by putting
parentheses around individual subexpressions. For example, the parentheses in the

expression
2*x)+@3*y)

indicate that C should perform each of the multiplication operations before the addition.

But what happens if the parentheses are missing? Suppose that the expression is simply
2°x+3%y

How does the C compiler decide the order in which to apply the individual operations?
In C, as in most programming languages, that decision is dictated by a set of ordering

rules chosen to conform to standard mathematical usage. They are called rules of

precedence. For arithmetic expressions, the rules are:

1. The C compiler first applies any unary minus operators (a minus sign with no
operand to its left).

2. The compiler then applies the multiplicative operators (*, /, and %). If two of these
operators apply to the same operand, the leftmost one is performed first.

3. It then applies the additive operators (+ and -). Once again, if two operators at this

level of precedence apply to the same operand, C starts with the leftmost one.

Thus, in the expression
2%x+3%y

the multiplication operations are performed first, even when the parentheses are missing.
Using parentheses may make the order clearer, but in this case their use is not required
because the intended order of operations matches the precedence assumptions of
traditional mathematics. If you instead want the addition to be formed first, you must

indicate that fact explicitly by using parentheses, as in
2% (x+3) "y

The rules of precedence apply only when two operators compete for a single operand. For

instance, in the expression

2°x+3%y

the operators * and + compete for the operand x. The rules of precedence dictate that the * is
performed first because multiplication has higher precedence than addition. Similarly,
looking at the two operator next to the value 3, you can again determine that the * is
performed first, for precisely the same reason. Note, however, that the rules of precedence
do not specify which of the two multiplications is performed first. These subexpressions are
entirely independent, and the C compiler is free to evaluate them in either order. The left-
to-right rule applies only when two operators at the same precedence level compete for the
same operand. For example, precedence rules make a big difference in the evaluation of the

expression
10-5-2

Because the precedence rules dictate that the leftmost - be performed first, the computation

is carried out as if the expression had been written
(10 - 5)- 2

which yields the value 3. If you want the subtractions performed in the other order, you
must use explicit parentheses:

10-(5-2)

In this case, the result would by 7.

There are many situations in which parentheses are required to achieve the desired
result. For example, suppose that, instead of adding two floating-point numbers the way
add2fc does, you wanted them averaged instead. The program is almost the same, as shown
in Figure 2-6.

|3 (@18) 23 A averf.c

/*
*file: ave2f.c

*

* This program reads in two floating-point numbers and
* computes their average.
*/

#include <stdio.h>
#include " gelib.h"
#include "simpio.h"

main()

{

double n1, n2, average;

printf("This program averages two floa ting-point numbers.\n");
printf("1st number ? ");

n1 = GetReal();

printf("2nd number ? ");

n2 = GefReal();

average = (n1 +n2) / 2;

printf("The average is %gn", average);

}

Note that the parentheses are necessary in the statement

average = (n1 +n2) /2

to ensure that the addition is performed before the division. If the parentheses were missing,
C's precedence rules would dictate that the division be performed first, and the result

would be the mathematical expression

72
nl+ —

instead of the intended

A+ n2
2

Applying precedence rules

To illustrate precedence rules in action, let's consider the expression
8*(7-6+5)%(4+3/2) -1

Put yourself in the place of the computer. How would you go about evaluating this
expression?

Your first step is to evaluate the parenthesized subexpressions, and you might as well
star with the first on: (7 - 6 + 5)!. To compute the value of this expression, you subtract 6
form 7 to get 1 and the add 5 to get 6. Thus, after evaluating the first subexpression, you
are left with

8*[6]%@+3/2)-1

where the box indicates that the value is the result of a previously evaluated subexpression.

In the second parenthesized subexpression, you must do the division first, since
division and multiplication take precedence over addition. Thus, your first step is to divide
3 by 2, which results in the value 1 (remember that integer division throws away the
remainder). You then add the 4 and 1 to get 5. At this point, you are left with the following

expression:

8* [6]%[5]-1

From here, C's precedence rules dictate that you perform the multiplication and remainder
operations, in that order, before the subtraction: 6 times 8 is 48, and the remainder of 48
divided by 5 is 3. Your last step is to subtract 1, leaving 2 as the value of the complete

expression.

Type conversion

You have already learned that it is possible to combine values of different numeric

types within a C program. When you do so, C handles the situation by suing automatic

! The C compiler is actually free to evaluate the parenthesized subexpressions in either order
depending on what is most convenient for the machine, but the final answer is the same in either case. In
writing your programs, it is important to avoid situations in which the evaluation order might make a
difference.

type conversion, a process by which values of one type are converted into another
compatible type as an implicit part of the computation process. For example, whenever an
integer and a floating-point value are combined using an arithmetic operator, the integer is
automatically converted into the mathematically equivalent double before the operation is

applied. Thus, if you write the expression
1+23

the integer 1 is converted internally into the floating-point number 1.0 before the addition
is performed.

In C, automatic type conversions are also performed whenever and assignment is
made. Thus, if the variable total is declared to be of type double, and you write the
assignment statement

total = 0;

the integer 0 is converted into a double as part of making the assignment. Some

programming languages (and some programmers) insist on writing this statement as

total = 0.0;

which has the same effect. On the other hand, the values 0 and 0.0 mean different things
mathematically, so it is logical to use the form that is most appropriate to the sense of the
application. Writing the value 0 indicates that the value is precisely 0, because integers are
exact. When 0.0 appears in a statistical or mathematical context, however, the usual
interpretation is that it represents a number close to zero, but one whose accuracy is known
only to one significant digit after the decimal point. To avoid ambiguity, this text uses
integers to indicate exactness, even in floating--point contexts.

Assigning a value of type double to a variable of type int also triggers an automatic
conversion, which consists of dropping any fraction. Thus, if n is declared to be of type,
the assignment

n = 1.9999;

has the somewhat surprising effect of setting n to 1. The operation of throwing away the
decimal fraction (which happens both here and in integer division) is called truncation.

Suppose that you have been asked to write a program that translates a metric distance
in centimeters back into English units—the inverse of the inchtocm.c program in Figure 2-5.
If all you need is the number of inches, the body of the program looks pretty much the
same as before:

main()

{

double inch, cm;

printf{" This program converts centimeters to inches.\n");
printf("Length in centimeters? ");

cm = GetReal();

inch =cm/ 2.54;

printf("%g cm= %gin\n, cm, inch);

}

The only real difference is that you divide by the conversion factor 2.54 instead of
multiply ing.

Suppose, however, that your employer wants you to display the answer not simply as
the total number of inches, but as an integral number of feet plus the number of leftover
inches. To compute the whole number of feet, you can divide the total number of inches
by 12 and throw away any remainder. To calculate the number of inches left over, you can
multiply the number of feet by 12 and subtract that quantity from the total number of
inches. The entire program is shown in Figure 2-7.

FIGURE 2-7 8 32

/*
* file: cmtofeet.c

*

* This program reads in a length given in centimeters and converts
* it fo its English equivalent in feet and inches.
¥

#include <stdio.h>
#include "genlib.h"
#include "simpio.h"

main()

{

double totallnches, cm, inch;

printf(" This program converts centimeters to feet and inches.\n");
printf("Length in centimeters? ");

cm = GetReal();

totallnches = cm /2.54;

feet = totallnches - feet * 12;

printf("%g cm= %df %gin\n", cm, feet, inch);

The assignment statement

feet = totallnches /12,

throw away the remainder because feet is declared to be an integer variable.

There are also cases in which you need to specify a type conversion even though the
rules for automatic conversion do not apply. Suppose, for example, you have declared two
integer variables, num and den, and you want to compute their mathematical quotient

(including the fraction) and assign it to the double variable quotient. You can't simply write
quotient =num / den;

because both num and den are integers. When the division operator is applied to two
integers, it throws away the fraction. To avoid this problem, you have to convert at least
one of the values to double before the division is performed.

In C, you can specify explicit conversion by using what is called a type cast, a unary
operator that consists of the desired type in parentheses followed by the value you wish to

convert. For example, you can convert the denominator of the fraction by writing
quotient = num / (double) den;
Since the denominator is now of type double, the division is carried out using floating-point

arithmetic and the fraction is retained. Equivalently, you can convert the numerator by
writing

quotient = (double) num / denl

This statement has the same effect, but only because the precedence of a type cast is

higher than that of division, which means that the expression is evaluated as if it had been

written

quotient = ((double) num) / den;

If the precedence of the type cast were lower than division, C would divide one integer by

the other, throw away the fraction, and then convert the integer result back to a double,

which would not give the mathematically correct answer.

SUMMARY

In

this chapter, you have had the opportunity to look at several complete C programs

to get an idea of their general structure and how they work. Your principal objective has

been to focus on the programming process itself by adopting a holistic view. By building on

the programming examples provided here, you should be ready at this point to write simple

programs that involve only the following operations:

Reading in numeric values supplied by the user.
Displaying text and data on the screen.

Computing new results by applying arithmetic operations to existing data.

Important points about programming introduced in this chapter are:

Well-written programs contain comments that explain in English what the program
is doing.

Most programs use /zbraries that provide tools the programmer need not recreate
from scratch. Every program in this textbook uses two libraries—stdio and
genlb—and may use additional libraries as well.

You gain access to libraries by adding at the top of the program a #include line that
specifies a /eader file. As shown in the sample programs, header files for system
libraries (such as stdio.h) are enclosed in angle brackets; header files for personal
libraries and those designed for use with this text (such as genlib.h and simpio.h) are
enclosed in quotation marks.

Every complete C program contains a function main. When the program is run, the
statements in the body of main are executed in order.

Many programs are composed of the following three phases: /npus, computation,
and output.

To accept input typed by the user, you use the functions Getinteger , GetReal, and GetLine
form the simpio library, depending on the type of data.

To display messages and data values on the computer screen, you use the function
printf from the stdio library.

Data values come in many different types, each of which is defined by a domarn
and a sez of operations.

Constants are used to specify values that do not change within a program.

Variables have three attributes: a name, a value, and a type. All variables used in a
C program must be dec/ared, which establishes the name and type of the variable.
Variables are given values through the use of assignment statements. Each variable
can hold only one value at a time; when a variable is assigned a new value any,
previous value is lost.

Expressions are composed of individual zerms connected by operators. The
subexpressions to which an operator applies are called its operands.

When an operator is applied to two operands of type int, the result is also of type int.
If either or both operands are of type double, so is the result.

If the / operator is applied to two integers, the result is the integer obtained by
dividing the first operand by the second and then throwing the remainder away. The
remainder can be obtained by using the % operator.

The order of operations in an expression is determined by 7u/es of precedence. The

operators introduced so far fall into three precedence classes:

unary - (type cast) (highest)
ol %

+ - (lowest)

For the binary operators introduced so far, whenever two operators from the same
precedence class compete for the same operand, those operators are applied in left-
to-right order.

Automatic conversion between numeric types occurs when values of different types
are combined in an expression or when an assignment is performed.

Explicit conversion between numeric types can be indicated by using a type cast.

REVIEW QUESTIONS

What is the purpose of the comments shown at the beginning of each program in this
chapter?

What is the purpose of a programming library?

ANSI C defines a library called math, which provides several trigonometric and
algebraic functions. Even though you do not yet know what these functions are, what
line would you need to add to your program to gain access to them?

In Chapter 7, you will learn about a specialized library called graphics that provides
some simple functions for drawing pictures on the screen and was designed
specifically for use withthis text. What line would you need to add to your program to
gain access to the facilities provided by that library? Why is the punctuation for this
line different from that used in the answer to the preceding question?

What is the name of the function that must be defined in every C program?

What is the purpose of the special character \n that appears at the end of most strings
passed to pintf? Why is this special character not ordinarily used when displaying a

prompt for user input?

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

What does the word argument refer to in programming? What purpose do arguments
serve?

What declarations would you need to write to introduce two integer variables named
voteCount! and voteCoun2? What declarations would you write to introduce three
floating-point variables named x, y and z?

What are the three phases that comprise the simple programs presented in this chapter?
What is the purpose of the Getinteger function? How would you use it in a program?
What is the significance of %d and %g when they appear in a printf string? What is the
difference between the two?

Describe the difference between the philosophical terms holism and reductionism.
Why are these concepts important to programming?

What are the two attributes that define a data type?

What are the #include line for the genlib library used in conjunction with all programs
throughout the remainder of this text?

Identify which of the following are legal constants in C. For the ones that are legal,
indicate whether they are integers or floating-point constants.

a. 42 g. 1,000,000
b. -17 h. 3.1415926
c.2+3 i. 123456789
d-23 j- 0.000001
e. 20 k. 1.1E+11
f.2.0 L 1.1X+11

Rewrite the following floating-point constants in C’s form for scientific notation:

a. 6.02252 x 10%

b. 299799250000.0

¢. 0.00000000529167

d. 3.1415926535
(Each of these constants represents an approximation of an important value from
chemistry, physics, or mathematics: (a) Avogadro’s number, (b) the speed of light in
centimeters per second, (c) the Bohr radius in centimeter, and (d) the mathematical
constant T , there is no advantage in using the scientific notation form, but it is
nonetheless possible and you should know how to do so.)

Indicate which of the following are legal variable names in C:

a. X g. total output

b.formulal h. aReasonably LongVariableName
¢. average rainfall i. 12MonthTotal

d. %correct jo marginal-cost

e. short k. b4hand

f. tiny . stk depth

What can you assume about the value of a variable before it is assigned a value in a
program?
Indicate the values and types of the following expressions:

a.2+3 g.3%6.0

b.19/5 h.19% 5

20.

21.

22.

23.

c.190/5 12%7
If the variable k is declared to be of type int, what value does k contain after the

program executes the assignment statement
k =3.14159;

what value would k contain after the assignment statement
k =2.71828;

What is the difference between the unary minus operator and the binary subtraction
operator?
By applying the appropriate precedence rules, calculate the result of each of the
following expressions:

a.6+5/4-3

b.2+2*(2%2-2)%2/2

C10+9*(8+7)%06)+5*4%3*2+1

d1+2+@B+H*((5*6% &*8)-9)-10

In C, how do you specify conversion between numeric types?

PROGRAMMING EXERCISES

1. Typein the hello.c program exactly as it appears in this chapter and get it working.

2. The following program was written without comments or instructions to the user,

except for a few input prompts:

#include <stdio.n>
#include “genlib.h”
#include “simpio.h”

main()

Eiouble b, h, a;
printf(“Enter b:);
b = GetReal();
printf(“Enter h: “);
h = GetReal();
a=(b*h/2
printf(*a = %dn”, a);
}

Read through the program and figure out what it is doing. What result is it

calculating? Rewrite this program so it is easier to understand, both for the user

and for the programmer who must modify the program in the future.

3. Extend the inchtocm.c program given in Figure 2-5 so that it reads in two input
values: the number of feet, followed on a separate line by the number of inches.

Here is a sample run of the program:

This program converts from feet and inches to centimeters.
Number of feet? 5+

Number of inches? 11+

The corresponding lenath is 180.34 cm.

Write a program that reads in two numbers: an account balance and an annual
interest rate expressed as percentage. Your program should then display the new
balance after. There are no deposits or withdrawals—just the interest payment.

Your program should be able to reproduce the following sample run:

Extend the program you wrote in exercise 4 so that it also displays the balance
after two years have elapsed, as shown in the following sample run:

Note that the interest used in this example is compounded annually, which means

the interest from the first year is added back to the bank balance and is therefore
)

Interest calculation program.
Starting balance? 6000 «

N Aanp)

~

Interest calculation program.
Starting balance? 6000 «'
Annual interest rate percentage? 4.25 <
Balance after one year: 6255
Balance after two vear: 6520.84
- Y J

itself subject to interest in the second year. In the first year, the $6,000 earns 4.25
percent interest, or $255. In the second year, the account earns 4.25 percent
interest on the entire $6.255.

Write a program that asks the user for the radius of a circle and then computers
the area of that circle (A) using the formula

A =nr?
Where © is approximately 3.14159. Note that there is no “raise to a power”’
operator in C. Given the arithmetic operators you know C has, how can you write
an expression that achieves the desired result?

Write a program that reads in a temperature in degrees Fahrenheit and returns the

corresponding temperature in degrees Celsius. The conversion formula is
5
= —(F-132)
9

The following is a sample run of the program:

Program to convert Fahrenheit to celsius.
Fahrenheit temperature? 212+
Celsius equivalent 100

If you write this program carelessly, the answer always comes out 0. What bug
causes this behavior?

In Norton Juster’s children’s story The Phantom Tollbooth, the Mathemagician

gives Milo the following problem to solve:
4+9-2*16+1/3*6-67+8"2-3+26-1/34+3/7+2-5

According to Milo’s calculations, which are corroborated by the Mathemagican,

this expression “all works out to zero.” If you do the calculation, however, the

10.

11.

expression comes out to zero only if you start at the beginning and apply all the
operators in strict left-to-right order. What would the answer be if the
Mathemagician’s expression were evaluated using C’s precedence rules? Write a
program to verify your calculation.

Write a program that converts a metric weight in kilograms to the corresponding
English weight in pounds and ounces. The conversion factors you need are

1 kilogram = 2.2 pounds

1 pound =16 ounces

Write a program that computes the average of four integers.

There’s an old nursery rhyme that goes like this:

As | was going to Stlves,

I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,

Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were going to Stlves?

The last line turns out to be a trick question: only the speaker is going to St.Ives;
everyone else is presumably heading in the opposite direction. Suppose, however,
that you want to find out how many representatives of the assembled
multitude—kits, cats, sacks, and wives—were coming form St.Ives. Write a C
program to calculate and display this result. Try to make your program follow the

structure of the problem so that anyone reading your program would understand
what value it is calculating.

Chapter 1 Problem Solving

You re either part of the solution or part of the problem

— Attributed to Eldridge Cleaver, 1968

OBJECTIVES

» To appreciate that problem solving is an important conceptual skill that requires more
than learning the mechanics of a programming language.
> To discover that many interesting problems can be solved by applying a few simple

tools called programming idioms.

Y

To be able to recognize and use C's shorthand assignment forms.

» To be able to use the for statement, the while statement, and the if statement in simple
idiomatic forms.

> To recognize how easy it is to introduce errors into a program and therefore to
appreciate the need for thorough testing and a disciplined approach to program
development.

» To understand how to use the formatting features of printf.

» To appreciate the importance of designing programs so that they can be understood

by other programmers.

Chapter 2 introduced several simple C programs to give you a general sense of their

structure and how they work. This chapter focuses on what makes programming
interesting: the process of solving problems. Once you come up with a solution strategy,
the process of coding the program—transforming the strategy into a working program—is
relatively straightforward, usually much easier than designing the strategy itself.

This chapter shows you how to write several new programs that build on the add2.c
example in Chapter 2. Here, however, the main focus is not on the C programs themselves
but rather on the general process of designing solutions. As you read, you should try to
maintain a holistic perspective and concentrate on understanding the big picture. Don’t
worry if the syntactic rules seem a bit confusing or if you’re not sure how a particular
statement works, as long as you have a sense of what the program is ding as a whole. You
will have the opportunity to lean the syntactic rules and various other details of the coding

process in Chapter 4.
1-1Programming idioms and paradigms

Before the invention of writing, history and religion passed from generation to
generation as part of an oral tradition. The Iliad and The Odyssey of Homer, the Vedic

literature of India, the Old Norse mythologies, the sermons and songs that kept African
tradition alive through centuries of slavery—all are examples of an oral tradition. These
works are characterized by the patterned repetition of phrases, which make it easier for
singers, preachers, and storytellers to remember them. These repeated patterns, called
formulas, provide the memory cues that make it possible to remember and make
variations on a long and detailed story.

In its entirety, C is itself a long and detailed story with many rules and techniques to
remember. Even so, as you write your programs, you will notice many patterns that come
up repeatedly, like formulas from oral tradition. If you learn to recognize these patterns and
think of them as conceptual units, you will soon discover that there is less to remember
about programming in C than you might have thought. Programmers call these common
patterns programming idioms, which refers to a statement or group of statements in C for
which much of the structure is fixed but which nonetheless allow you to change individual
aspects of the pattern to fit a particular situation. To write effective programs, you must
learn how to apply these programming idioms to the task at hand. Eventually, you should
be able to do so without devoting any conscious attention to the process. A general idea
will come into your mind as part of a solution strategy, and you will automatically translate
that idea into the appropriate idiom as you compose the program.

As an example of a programming idiom, consider the add2.c program in Chapter 2. As
part of the input phase of the program, the user was asked to supply an integer value. On
each occasion, the add2.c program accomplished this task using the following statements:

1. A call to printf to display a prompt

2. A call to Getinteger to read in the integer
These statements represent a programming idiom—the read-an-integer idiom—that has
the form

printf(“prompt string’);
variable = Gelinteger ();

These two lines are an example of a programming paradigm, a fragment of C code that
shows the syntactic structure of a particular statement or idiom. Within a paradigm, italics
indicate the parts you need to replace with something of the indicated category. In this
paradigm, for example, you can fill I any prompt string or variable name in the spaces
provided. By substituting “1st number?” in place of prompt string and nl in place of variable,
you get the statements formadd2.c that request the first input value.

printf{“1st number ? *);
n1 = Getinteger();

by using “2nd number? " and n2 instead, you get the statements that request the second nput

value.

printf(“2nd number ? “);
n2 = Getinteger();

You can substitute any string for prompt string and any variable name for variable. By

doings so, you can use the same basic idiom to request any integer value.

Shorthand assignment idioms

Some idioms in C exist principally to provide convenient shorthand forms for
common operations. Of these, the most important are shorthand assignment operations,
which are extremely common in C.

Before shorthand assignment operations are defined formally, it is useful to
understand the situations in which they occur. Suppose that the variable balance contains
your bank balance and that you want to deposit an amount whose value is stored in the
variable deposit. The new balance is given by the expression balance + deposit You might

therefore write an assignment statement like
newblance = balance + deposift;

In most cases, however, you don’t want to use a new variable to store this result. The point
of making a deposit is that it changes the bank balance, and it therefore makes sense to
change the value stored in the variable balance to account for the additional funds. Instead of
storing the result of the expression in a new variable such as newbalance, it would be more
useful to add balance and deposit together and then store the result back in the variable
balance, using the following assignment statement:

balance = balance + deposit,

To understand what this assignment is doing, you cannot think of the equal sign in the
assignment as a mathematical expression of equality. As a mathematical equation, the
formula

X=Xty
is solvable only if y is equal to 0. Otherwise, there is no way that x can equal x +y. An

assignment statement is an active operation that explicitly stores the value of the expression
on the right in the variable on the left. Thus, the assignment statement

balance = balance = deposit;

is not an assertion that balance is equal to balance + deposit. It is a command to change the
value of balance so that it is equal to the sum of its previous value and the value of deposit.
Although the statement

balance = balance + deposit:

has the desired effect—adding deposit to balance and leaving the result in balance—it is not the
statement that a C programmer would usually write. Statement that perform some
operation on a variable and then store the result back in that same variable occur so
frequently in programming that the designers of C included an idiomatic shorthand for it.

For any binary operator op, the statement
variable = variable op expression;

can be replaced by
variable op= expression;

The combination of an operator with the = used for assignment form is called a shorthand

assignment operator.
Using the shorthand assignment operator for addition, the more common form of the

statement

balance = balance + deposit,
is therefore

balance += deposit;

which means, in English, “add deposit to balance .”
Because this same shorthand applies to any binary operator in C, you can tract the
value of surcharge from balance by writing

Balance -= surcharge;
divide the value of x by 10 using
x [=10;
or double the value of salary by using

salary *=2

Increment and decrement operators

Beyond the shorthand assignment operators, C offers a further level of abbreviation
for two particularly common programming operations—adding or subtracting 1 from a
variable. Adding 1 to a variable is called incrementing that variable; subtracting 1 is called
decrementing that variable. To indicate these operations in an extremely compact form, C

uses the operators ++ and --. For example, the statement
X++;

in C has the same ultimate effect as
X+=1;

which is itself short for
X=X+1;

Similarly,
Y-

has the same effect as
y-=1

or
y=y-1,

The ++ and -- operators occur all the time in C programs!. As you will discover in Chapter

! The ++ and --- operators are in many ways the most readily identifiable features of C. Nothing else
so clearly jumps out at you and declares that a particular program is a C program and not one written in
another language. As an indication of how pervasive these operators have become, the successor language
to C, which was developed to take advantage of a set of techniques known as object-oriented

13, however, these operators are both more complicated and more useful than this section

suggests.

1-2 Solving problems on a larger scale

Programming idioms and paradigmatic forms act as building blocks from which you
can construct programs. When faced with a problem, your job as a programmer is to
assemble these building blocks into a coherent program that solves it. The rest of this
chapter introduces several new programming idioms in the context of specific
enhancements to the add2.c program from Chapter2.

The add2.c program presented in Figure 2-2 reads in two numbers, adds them together,
and prints their sum. Adding two numbers, however, is not a very challenging task. If all
problems were that simple, we wouldn’t need computers. One of the main advantages of
computers is their ability to process considerable amounts of data very quickly. The
interesting problem from a practical perspective is not how to add two numbers, but how to
perform addition on a much larger scale.

Suppose you want to modify add2.c to add 10 or 100 or even 1000 numbers. Would
you choose the same strategy? Probably not. For 10 numbers, the same strategy would
certainly work, but the idea of declaring 100 variables and then reading them in using
separate statements is more than a little daunting. If there were 1000 input values, the
strategy used in add2.c would result in an extremely repetitive program over 50 pages long.

Let’s consider the problem of finding the sum of 10 numbers. How can you get around
having to declare 10 variables? Solving problems like this one is what makes computer
programming hard; it is also what makes it interesting and fun. Think about the problem
for a minute. Imagine that you are adding up 10 numbers—without a computer—and that I
start calling those numbers out to you: 7, 4, 6, and so on. What would you do? You could
write down the numbers and then add them at the end. This strategy is analogous to the one
used in theadd2.c program. It's effective, but it won’t win any prizes for speed or cleverness.
Alternatively, you could try adding the numbers as you go: 7 plus 4 is 11, 11 plus is 17, and
so on. You don’t have to keep track of each individual number, just the current total. When
you hear the last number, you’re all set to announce the answer.

The fact that you don’t have to remember each individual number should help answer
the question of how to add 10 numbers without declaring 10 variables. With this new
strategy, you should be able to write a new add10.c program using only two variables: one
for each number as it comes in and on for the current total. Each time you read in a new
number, you simple add it to the variable that holds the total of all the numbers so far. At
that point, you can use the same variable to hold the next number, which is treated in
precisely the same way.

This insight should enable you to begin the task of coding a program that uses the new
strategy. Knowing that you need to declare two variables —a current value and a running

total—you could begin the program with the following declaration:

programming, is called C++, because that name means “the successor to C” in the iconography of the C
programming language.

Int value, tofal;

You also know that you must execute the following steps for each input value:
1. Request an integer value from the user and store it in the variable value.
2. Add value to the running sum stored in the variable total.
You already know how to code the first step; it is a perfect example of the request-an-

integer idiom introduced in the preceding section and therefore looks like this:

Printf(* 7 *);
Value = Getinteger();

You also know how to code the second step. Adding value to total is an instance of the
shorthand assignment idioms introduced earlier in this chapter. To add value to total, the
idiom is

Total +=valug;

The two idioms—one for reading in an integer and one for adding that integer to a
running total—give you everything you need to code the operations that must occur for
each input value in the add10.c program. For each of the 10 input values, the program must
execute the following statements:

printf(* 2 ");

value = Getinteger();
total += value;

At this point, all you need to do is find some way to make the program execute this set of
statements 10 times. As it happens, there is a simple idiom for achieving this goal. Before
introducing that idiom, however, it is useful to consider how such an idiom differs form

those you have encountered so far.

1-3 Control statements

In every program in Chapter 2, all the statements have some direct effect: they read in
numbers, compute results, or display data on the screen. Moreover, the statements in these
programs are always executed sequentially, beginning with the first statement in the
function main and ending with the last. As you begin to solve more sophisticated problems,
however, you will discover that strictly sequential execution is not enough. To complete the
add10.c program, for example, you must be able to execute a set of statements over and over
again—10 times, to be exact. To specify that repetition, you need to use a control
statement, which is a statement that affects how other statement are executed.

In this chapter, control statements are introduced only in the context of particular
idioms used to accomplish common tasks. Chapter 4 covers the same control statements
form a more general perspective, which will enable you to apply them to a wider class of
programming problems.

The repeat-N-times idiom

Before discussing control statements as a general class, it is useful to consider a
specific example. In the evolving add10.c program, you already have a set of statements that
read in a value and add it to a running total. To complete the process, you need to repeat
that set of statements 10 times.

To repeat an operation a specified number of times, the standard approach in C is to
use the for statement, which is an example of a control statement. The details of the for
statement are explained in Chapter 4. For now, you will use it in the following form, which
represents the repeat-N-times idiom:

for (i = 0; 1 <N; i++)q
Statements to be repeated

In the repeat-N-times idiom, the value N indicates the number of repetitions you want!. For
example, if you replace N with 5, the statements enclosed with the braces will be executed
five times. To use this idiom in the add110.c program, you need to replace N by 10. The
statements enclosed in the braces are the three statements that (1) print a prompt, (2) read
an integer into value, and (3) add that value to total. If you make these substitutions in the
paradigm, you get the following code:
for (i=0;i<10; i++){
printf(“ ?);

value = Getinteger();
total +=value;

The for statement idiom provides a concrete example of how control statements are written

in C. Control statements in C consist of two distinct parts:

1. The control line. The first line of a control statement is called the control line. It
begins with a keyword that identifies the statement type and typically contains
additional information that defines the control operation as a whole. In the case of the
for statement idiom, the control is

for (1= 0;i < N;i++)
the control line in the for statement is used to control the number of times the
statements enclosed within the curly braces should be executed.

2. The body. The statements enclosed within the curly braces constitute the body of the
control statement. In the case of the for statement, these statements are repeated the
number of times indicated by the control line. By convention, each statement within
the body is written on a separate line. Moreover, each statement within the body is
indented four spaces with respect to the control line so that the range of statements

affected by the control statement is easy to see.

The control line and the body are conceptually independent. Once you have written the
control line for a control statement, you can put any statements you want inside the body.

! The variable i used in this idiomatic pattern is called an index variable and can actually be any
integer variable.

Thus the for statement can be used to repeat any operation. For example, if you execute the
statements

for i=0;i<2 i++){
printf(“a rose is “);
}

printf(“a rose.\n);

you get one of Gertrude Stein’s most familiar lines:

[a rose is a rose is a rose.]

The fact that the for statement can be applied to any set of statements makes it an

enormously powerful tool.

Iteration and loops

In programming, the process of repeating an operation is called iteration. Iteration is
essential to the solution strategy for many problems, particularly those that involve large
amounts of data. Typically, programs to solve such problems need to execute the same
operations for each data value. For example, the add10.c program repeats the process of
reading a value and adding it to the running total for each of the 10 input values.

Programmers generally use the term loop to refer to any portion of the program that is
repeated through the action of a control statement such as the for statement. The origin of
the word loop lies in the early days of computing, when programs were fed into computing
machines in the form of punched paper tape. To repeat the same set of operations over and
over, programmers connected the ends of a short segment of tape, so that the tape formed a
physical loop. Instructions on the tape passed through the tape reader and then came back
around to be executed again and again as needed.

When a for loop runs, the computer executes each instruction in the body in sequential
order. When the last statement has been executed, the program returns to the beginning of
the loop and checks to see if the desired number of repetitions have been completed. If so,
the program exits form the entire loop and continues with the statements that follow the
closing brace at the end of the for statement. If more repetitions are required, the computer
starts again with the first statement in the loop body and then goes on to each subsequent

statement in turn. A complete execution of the statements within the loop is called a cycle

Index variables

In the control line of the for statement
for (i=0;i<N;i++)
the variable i is called the index variable. Although you can use any integer variable,

using 1 follows a strong historical tradition. When programmers see the variable i in a for
loop, they assume that it is keeping track of the number of cycles and don't pay much

attention to it.

Regardless of whether you use i or some other variable, that variable name must be
declared at the beginning of the function just like any other variable. Thus, the program to
add 10 numbers must include a declaration of i. Since the program already declares two

other integer variables—value and total—you can add the declaration of i to the same line:
int value, total, i;

Inside the for loop, the variable i1 keeps track of how many cycles have been executed. On
the first cycle, the value of i is 0. On the next cycle, i has the value 1. On each subsequent
cycle, the value ofi increases by one, until, on the last cycle, it has the value N-1, whereN is
the limit specified in the for control line. Thus, over the entire execution of the loop, the
variable i counts form 0 to N-1. For this reason, for loops are sometimes called counting
loops.

Although most for loops you will encounter in C programs start counting at 0, it is
possible to modify the for loop idiom so that the counting begins with any other number.
The new idiom is

for (i = first i <=last, i+=) {
statements to be repeated
}

When using this idiom, the value of the index variable i begins with the value frst and
counts upward until it reaches the value /asz. Note that this new idiom uses the <= operator
(less than or equal to) instead of the operator < (less than) used in the original idiom.

The major advantage of the revised for loop idiom is that it allows you to begin
counting with 1, which is more customary in the real world than starting with 0. For
example, the program count10.c shown in Figure 3-1 counts form 1 to 10, displaying each
number as it goes. As you will see in Chapter 11, however, C programmers often have
good reasons for starting counts from 0. If all you need to do is repeat an operation V
times, it is usually best to conform to traditional C practice and use the for control line

for (1 = 0; i< N; i++);
even though the following line would also work:
for (i=1; i<=N; i+4)

The second version should be used only when you need the value of i, as in the count10.c

program in Figure 3-1.

| (@181 3 MK B | count10.c

/*

* File: count10.c

*This program counts from 1 to 10, displaying each number
*on the screen.

*/

#include <stdio.h>
#include “genlib.h”

main()

{

inti;

for (i=1;i<=10; i++) {
printf{(“"% dn”, i);
}

}

The importance of initialization

The for loop provides you with almost everything you need to write the add10.c program,
but there is still one important detail to consider. The heart of the add10.c program is the for
loop

for(i =0; i < 10; i++) {
printf(“ ? “);

value = Getinteger();
total += value;

}

which repeats the operations required for each individual number for each of the input
values. As each new input value is read in, the program adds it to the variable total, which
serves to keep track of the total so far.

This strategy works perfectly once the program is underway. For example, if total is
123 and the user enters the value 17, the program simply adds 17 to the contents of total to
give it a new value of 140. But what about the first time through? The very first number is
read into the variable value and added into total using the line

total += value;

You know that this idiom instructs the computer to take value and add it to the
previous contents of total, leaving the result in total. But what are the previous contents of total ?
On the first cycle of the loop, you don’t know the answer to this question. Until you assign

a value to a variable within a function, its value is undefined.

Even so, you know what its value ought to be. For the program to work correctly, the
value of total must be 0 before the first cycle of the for loop so that its value will be correct
after the first value is added in. To ensure that total has the correct initial value, you need to
set it to 0 explicitly before the loop begins. Thus, you need to write the following statement

at the beginning of the program:
total = 0;

Using an assignment statement to ensure that a variable has its proper initial value is called
initialization. Failure to initialize variables is a common source of error.
You now have all the pieces you need to complete the add10.c program. The complete

program is shownin Figure 3-2.

FIGURE 3-2P%tilRe

/*
*File: add10.c

*

*This program adds a list of the number, printing
*the total at the end. Instead of reading the numbers

*into separate variables, this program reads in each
*number and adds itto a running total.
*/

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()

{

int i, value, total;

printf(“This program adds a list of ten numbers.\n");
total = 0;
for (i=0;i<10; i++){

printf(“ ?);

value = Getinteger();

total +=value;

}
printf{(“The total is % din”, total);

The read-until-sentinel idiom

The add10.c program is a useful illustration of how to use the for statement, but in its
present form it is unlikely to meet the needs of any significant number of users. The
program always adds precisely 10 values; to use the program with a different number of
values would require an explicit, albeit minor, change in the program. What you really need
is a more general program that can add any number of input values.

If you wanted to convert the add10.c program into one that solves this more general
problem, there is one approach that requires only a minor programming change. Instead of
using a constant value like 10 tin the for statement control line, you could ask the user to
enter the number of data values at the beginning and store that number in a variable.
Assuming that n has been declared as an integer, the first few lines of the program would

then change to

printf(“This program adds a list of numbers.\n);
printf(“How many number in the list?”);

n = Getinteger();

total = 0;

for (i=0;i<n;itt){

The only problem with this strategy is that the user will almost certainly hate it. If you want
your computer to add a column of figures, you probably won’t be happy about having to
count those numbers first. You need to take a different approach.

For the user’s point of view, the best approach is to define a special input value and let
the user enter that value to signal the end of the input list. A special value used to terminate
a loop is called a sentinel. The choice of an appropriate value to use as a sentinel depends
on the nature of the input data. The value chosen as a sentinel should not be a legitimate
data value; that is, it should not be a value that the user would ever need to enter as normal
data. For example, when adding a list of integer, the value 0 is an appropriate sentinel.
There might be some Os in a column of figures, but the user can always ignore them

because they don’t affect the final total. Note that the situation would be different if you
were writing a program to average exam scores. Averaging in a 0 score does change the
result, and some students have been known to get 0 scores form time to time. In this
situation, O is a legitimate data value. To allow the user of the program to enter 0 as a score,
it is necessary to choose a different sentinel value that does not represent an actual score.
On most exams, it is impossible to have a negative score, so it would make sense to choose
some value like -1 as the sentinel for that application.

To extend add10.c into the new addistc program, the only change you need to make is
in the loop structure. The for loop, which is most commonly used to execute a set of
operations a predetermined number of times, is no longer appropriate. You need a new
idiom that reads data until the special input sentinel is found. That idiom is the read-until-
sentinel idiom and has the following form:

while (TRUE) {
prompt user and read in a value
if (value == senzinel) break;
rest of body

}

This new idiom for a sentinel-based loop enables you to complete the addistc program,

which is shownin Figure 3-3.

| (€18 MK ER' addlist.c
/*
* File: addlist.c

*

*This program adds a list of number. The end of the
*input isindicated by entering 0 as a sentinel value.

)

#include <stdio.h>

#include “genlib.n”
#include “simpio.h”
main()

int i, value, total;

printf(“This program adds a list of numbers.\n");
printf(*Signal end of list with a 0.\n");

total = 0;
while (TURE) {
printf(“ ?);

value = Getinteger();
if (value == 0) break;
total +=value;

}
printf(“The total is % dn”, total);

In Chapter 4, you will learn much more about the control statements out of which the
read-until-sentinel idiom is formed. You will find the idiom very useful, even before you
understand the details. I realize that setting aside your curiosity and relying on an idiom you

don’t really understand can be difficult. As you learn more about programming, however,

you will discover that this situation happens frequently, even for expert programmers. In
fact, one of the marks of an expert programmer is being able to use a library or a piece of
code without understanding all its details. As programs become more complex, the ability

to use tools that you understand only at the holistic level is an increasingly important skill.

Building a more practical application

A program to add a column of figures is not likely to sell a million copies or turn you
into the next software billionaire. Who needs a program to add lists of numbers anyway?

The answer, of course, is that most people need to add lists of numbers once in a while,
but they rarely think about the problem in this abstract form. Most people think in terms of
more specific day-to-day activities, for which adding a list of numbers may be essential.
For example, most of us spend some time each month balancing out checkbooks—an
activity that consists of little more than adding and subtracting numbers. If you wanted to
solve this more practical problem, it might make sense to repackage the addistc program as
a checkbook balancer.

How would the program change if you were to rewrite it as a checkbook balancer?
The answer depends largely on how fancy you want it to be. For an initial version, you
might simply make the following alterations:

1. Change the comments at the beginning of the program so that future readers
understand the program’s purpose.
Change the variable names to make them more appropriate to the problem.

3. Provide more explicit instructions to the user.

4. Change the program to use floating-point numbers so that the user can enter
both dollars and cents.
Allow the user to enter and initial balance.
Enable the program to display the current balance on each cycle of the loop, so
that the user can track the account through every transaction.

A program that incorporates this first set of changes is the balance.c program shown in
Figure 3-4. To make this program work without changing the basic structure, you must rely
on the user to indicate checks by entering them as negative values. Adding the negative
value to the running total corresponds to subtracting the value of the check. The convention
also makes reasonable intuitive sense, and the user should be able to follow that convention

as long as the program provides the necessary instructions.

|) (€18) M IRE”' halancel.c(initial version)

/*
*File: balance1.c

*

*This file contains the first version of a program to

*balance a checkbook. The user enters checks and deposits.
*throughout the month (checks are entered as negative
*numbers). The end of the input is indicated by entering

*0 as a sentinel value.

i)

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()

{

double entry, balance;

printf(“This program helps you balance your checkbook.\n");
printf(“Enter each check and deposit during the month.\n");
printf(“To indicate a check, use a minus sign.\n");
printf(“Signal the end of the month with a 0 value.\n");
printf(“Enter the initial balance: \n");
balance = GetReal();
while (TURE) {

printf(“ Enter check (-) or deposit “);

entry = GetReal();

if (entry == 0) break;

balance +=entry;

printf(“Current balance = % din’, balance);

printf(“The final balance = %dn’", balance);

If you run the program, it might produce the following sample run showing an initial
balance of $100 against which the user has written four checks (for $50, $35, $10, and $25)
and to which the user has made a single deposit of $50, resulting in a final balance of $30.

~

This program helps you balance your checkbook.
Enter each check and depositduring the month.
To indicate a check, use a minus sign.

Signal the end of the month witha 0 value.
Enter the initial balance: 100«

Enter check (-) or deposit: =50+

Current balance =50

Enter check (-) or deposit -35+
Currentbalance =15

Enter check (-) or deposit =10+
Currentbalance =5

Enter check (-) or deposit 50«

Current balance =55

Enter check (-) or deposit =25+

Current balance =30

Enter check (-) or deposit 0+

Final balance = 30

J

Although the program is still not as versatile or fancy as you might like, it is now able to

perform a function that potential users might regard as valuable.

Conditional execution and the if statement

Suppose you want to extend this program by adding some additional features. For
example, you might want it to detect when the user has bounced a check. To add such a
feature, you must first learn how to write programs that can make decisions. When writing a
program, you often encounter situations in which you want the program to execute a
statement only if some condition applies or to choose between two alternative courses of

action depending on the result of some test. This style of operation within a program is

called conditional execution.
The simplest way to express conditional execution in C is with the if statement, which

can be used in either of two basic forms:

if (conditional-test) {
...Statements executed if the test is true...

}

or

if (conditional-test) |

...Statement executed if the test is true...
else

...Steatements executed if the test is false...

}

The first form of the if statement is used when your solution strategy calls for a set of
statements to be executed only in a particular circumstance. If that circumstance does not
apply, those statements are skipped. The second form is used when the solution strategy
calls for two distinct contingencies: if some condition holds, the program executes one set
of statements; if not, it executes another set of statements.

The conditional-fext component shown in these paradigms is a special type of
expression that asks a question. You will learn a great deal more about this sort of
expression in Chapter 4, but for now, you can get by with a very simple class of conditional
tests formed by using C’s relational operators. The six relational operators defined in C
are given in the following list, along with their more conventional mathematical equivalents
in parentheses. Because some of the mathematical forms (#, <, and >) do not exist on a

standard keyboard, C uses a combination of two symbols to suggest the mathematical form.

== Equal =
I= Not equal #
> Greater than >
< Less then <
>= Greater than orequal o =
<= Less than or equal to <

Each of these operators is used to compare two values, one on each side. For example, to
test whether the value of the variable x is greater than or equal to 0, you would write the
following conditional test:

x>=0

Conditional tests make it possible to implement the proposed change in the check-book
balancing program: determining whether a check has bounced. If the user enters a check
that exceeds the current balance, you can make the program do two things:

1. Print out a message to the user indicating that a check has bounced.
2. Deduct the service charge assessed by the bank as a bounced-check penalty, which

we will assume for the moment is $10.

To make this extension to the program, you need to include a conditional test to check
whether the user has exceeded the current balance. An approach that seems particularly

inviting is simply to check whether these is a negative balance at the end of operation, as
shown in Figure 3-5. Note the bug symbol on the program example, which indicates that
the program contains an as-yet-undiscovered bug. To make sure that you don’t copy
incorrect code, I have marked all buggy examples in this book with such symbols.

The only change form the previous version of this program is that the following if
statement has been added to the end of the while loop:

if (entry ==0) {
printf(“This check bounces. $10 fee deduc ted.\n");
balance -= 10;

}

In English, this statement says that if the balance is less than 0, the program prints out a
message to that effect and makes the appropriate charge against the balance. The last line
within the body of the if statement is

balance -= 10;
which is a shorthand for the longer

balance = balance - 10;

1-4 An exercise in debugging

This change in the checkbook-balancing program seems so simple that it hardly merits
a second thought. All too often, programmers make changes that appear small and
innocuous without bothering to test the resulting program thoroughly. Failure to test code is
a very serious error. A more important error, however, is the failure to recognize that all
code, no matter how simple it seems, needs testing. The program shown in Figure 3-5
contains a subtle bug. Finding the bug is complicated by the fact that the program seems to
work if you test it superficially. For example, the following sample run makes it seem as if

the program is functioning correctly:

4 N
This program helps you balance your checkbook.

Enter each check and deposit during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100+

Enter check (-) or deposit: -50«

Current balance =50

Enter check (-) or deposit: -60 «

This check bounces. $10 fee deduc ted.
Current balance =-20

Enter check (-) or deposit 50+

Current balance =30

Enter check (-) or deposi t
- J

|3 (€18) 23 IRES balance2.c(buggy version)

/i(
*File: balance2.c

*

*This file contains a buggy second attemptat a program to
*balance a checkbook.

¥/

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()
double entry, balance;

printf(“This program helps you balance your checkbook.\n");
printf(“Enter each check and deposit during the month.\n”);
printf(“To indicate a check, use a minus sign.\n");
printf(“Signal the end of the month with a 0 value.\n");
printf{(“Enter the initial balance: \n");
balance = GetReal();
while (TURE) {
printf(“ Enter check (-) or deposit “);
entry = GetReal();
if (entry == 0) break;
balance +=entry;
if (balance < 0) {
printf{“This check bounces. $10 fee deduc ted.\n”);
balance -= 10;

}

printf(“Current balance = %dn’, balance);

printf(“The final balance = %dn", balance);

}

When the user enters the $60 check, the program correctly determines that this amount is
more than there is in the account because the value of balance becomes negative. To let the
user know about this state of affairs, the program writes out a message and deducts the $10
charge, as instructed. So far, so good.

If you decided to end your testing here, you would never discover the bug in this
program. Let’s try a different ser of input data, which is the same except that the last deposit
is $10, not $50. This time the sample runlooks like this:

4)
This program helps you balance your checkbook.

Enter each check and depositduring the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100+

Enter check (-) or deposit: =50 «

Current balance =50

Enter check (-) or deposit: -60

This check bounces. $10 fee deduc ted.
Current balance =-20

Enter check (-) or deposit 10+

This check bounces. $10 fee deduc ted.
Current balance =-20

Enter check (-) or d it
L nter check (-) or deposi)

The sample run reveals a serious problem: when the user makes the $10 deposit trying to
move the account back into the black, the program decides that user has bounced a c/eck
and promptly charges another $10 fee.

After you discover the symptoms of the failure, the problem is easy to identify. For a

check to bounce, two things must be true. First, the user must have just written a check.

Second, the act of writing that check must have resulted in a negative balance. Your
program tests only the second condition. To correct the error, you must include both of
these conditions in your test. In particular, the program must determine whether a check
was written before looking to see whether that check might have bounced. To test for both

conditions, you use the && operator, which is C’s way of spelling “and”:

if (entry <0 && balance < 0) {
printf{“This check bounces. $10 fee deduc ted.\n);
balance =10

}

Making this change in the program results in the corrected checkbook-balancing program
shownin Figure 3-6.

|3 (@318) 23 YREYV balance3.c (corrected version)

/*
*File: balance3.c

*

*This file contains a corrected version of a program to
*balance a checkbook, including a working bounced-check

*feature.
¥/

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

main()
double entry, balance;

printf(“This program helps you balance your checkbook.\n");
printf(“Enter each check and deposit during the month.\n");
printf(“To indicate a check, use a minus sign.\n");
printf(*Signal the end of the month with a 0 value.\n");
printf(“Enter the initial balance: \n");
balance = GetReal();
while (TURE) {
printf(* Enter check (-) or deposit *);
entry = GetReal();
if (entry == 0) break;
balance +=enfry;
if (balance < 0 && entry < 0) {
printf(“This check bounces. $10 fee deduc ted.\n");
balance -= 10;

}

printf{(“Current balance = %dn’, balance);

printf(“The final balance = %dn’", balance);

Are you finished with the program? Probably not. All you’ve done so far is discover

and fix one bug. To be confident that your program works, you should test it more

4 N
This program helps you balance your checkbook.

Enter each check and deposit during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100+

Enter check (-) or deposit: -50 !

Current balance =50

Enter check (-) or deposit: -60+

This check bounces. $10 fee deduc ted.
Current balance =-20

Enter check (-) or deposit 10+

Current balance =-10

Enter check (-) or deposit:

thoroughly. In particular, you should see if it works correctly on the example for which it
failed before. Running the same set of data through the balance.c program yields the
following sample run:

So far, so good. The $10 deposit is handled correctly, indicating that the bug you sought to
fix is indeed gone. But what about other bugs? When you are writing a program, how can
you be sure that you have found all the problems?

The short answer is: you can’t. Many programs that have gone through years and years
of testing without any apparent problems suddenly fail when a previously untested
condition occurs. The best you can do with a program is to be as thorough as possible in
your testing so that the chance of leaving in one of these lingering bugs is minimized.

In the case of the checkbook balancer, it certainly pays to attempt some additional tests.

So far, all the numbers used in the examples have been integers. To test it properly, you
need to run the program using values that include cents. Suppose, for example, that, after
again starting from and initial balance of $100, the user writes checks for $49.95 and

$19.95. The following sample run shows the balance after these two checks.

s N
This program helps you balance your checkbook.
Enter each check and deposit during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100.00 <
Enter check (-) or deposit: -49.95+
Current balance =50.05
Enter check (-) or deposit -19.95«+
Current balance =30.1
Enter check (-) or deposit:
\ J

The last balance display seems a little odd at first glance. The balance in the account after
the two checks is 30 dollars and 10 cents, and it is somewhat disconcerting to see that vale
displayed as 30.1 instead of 30.10. When working with dollars and cents, it is customary to
write out exactly two digits after the decimal point. Unfortunately, the %g specification in
printf, which is used here to display the floating-point values, always shows the result in the
shortest possible form. Numerically, 30.1 and 30.10 are equivalent, and printf chooses the
first one, even though it is not appropriate to the application.

The fact that the balance. ¢ program displays 30.10 might not be a bug in the technical
sense. The answer is, after all, mathematically correct. On the other hand, it is almost
certainly not what the user wants to see. To satisfy the user, you need to correct this
deficiency.

Fortunately, changing the program to display two digits after the decimal point is easy.
All you need to do is replace the %g in the two printf calls with % 2f. This format code tells
printf to display floating-point output with two digits to the tight of the decimal point. Thus,
the final statement in the program should look like this:

printf(“final balance =%.2\n", balance);

But what do the characters in the % 2f specification mean? What other options exist for
controlling the format of the output data? These questions are important of you want to

deign programs that will satisfy your users, who often have exacting requirements

concerning how output is displayed. The next section answers these questions by looking

more closelfy at printf and its operation.

1-5Formatted output

The printf function is one of C’s most distinctive features and has been part of the
standard library since early in the history of the language. It provides as powerful and
convenient mechanism for displaying information. So far in this book, you have used printf
to display integers, real numbers, and strings, but you have only scratched the surface of its
capabilities. To write programs that are more sophisticated in the way they display output
data, you will need to take a more in-depth look at what print has to offer.

A call to the printf function has the following paradigmatic form:

printi(‘control strring’, expression,, expression,,...),

The number of expressions passed as arguments depends on the number of date values that

need to be displayed. There may be no values, in which case the call is simply
printf(“ control string’),

or there may be a long list. As you learned in Chapter 2, printf operates by moving through
the control string, character by character, displaying each one on the terminal screen. Thus,

in the statement
printf{ “Hello,world.\n");

the call to printf prints the H, the e, thel, and so on, up to the period and the newline character
at the end of the string.

If printf encounters a percent sign (%) as it goes through the characters in the control
string, it responds in a special way. As noted earlier in this chapter, printf treats the percent
sign and the letter that follows it as a placeholder for a value that should be printed in that
position. That value is supplied by the first unused expression in the printf argument list. The
first percent sign in the control string goes with the fist expression after the control string,
the second percent sign goes with the second expression, and son, on until all the arguments

and percent signs have been used up. For example, in the statement
prinff(“%d + %d= %\r", n1, n2, total);
The first %dis used to print the value of nl, the second %dis used to print the value of n2,

and the third %dis used to print the value of total. If the values of n1, n2, and total were 2, 3,

and 5, respectively, the printf statement above would generate the following output:

2+3=5

As a programmer, it is your responsibility to ensure that the number of percent sign
substitutions in the control string precisely matches the number of expressions beyond the

control string that are passed as arguments to printf. Unfortunately, the C compiler has no

way to check whether this rule is obeyed. If you write a call to printf in which the number of
substitution slots does not match the number of values, your program will generate

unpredictable output, if it continues to run at all.

Format codes for printf

The real power of the printf function comes from the fact that it can display values in a
variety of formats (the f at the end of printf stands for formatted). In order to determine
precisely how a value should be displayed, the percent sign in the control string is followed
by a key letter that specifies an output format. The combination of the percent sign and the
key letter is called a format code. In the example from the preceding section, the format
code is %d, which specifies a decimal integer. In addition to the %d format code, you have
already seen examples of the %g and %s format codes, which stand for floating-point and
string output, respectively. Not that each of these format codes requires it s corresponding
expression to be of a particular data type. When you use the %d format, you must make sure
that the expression you provide is of type int. Similarly, the %g format require a floating-
point expression, and the %s format requires a string. Unfortunately, the C compiler is
unable to check whether these types match, and it is therefore important to exercise extra
caution to make sure that the format codes are appropriate for their arguments.

The most common format codes for printf are listed below, arranged by the data type to
which they apply. A complete listing of the format codes available for use with printf appears
in Appendix A.

%d Decimal integer. In %d format, the value is displayed as a string of digits in
standard base-10 (decimal) notation. If the number is negative, the value is
preceded by a minus sign.

%f Floating-point. In %f format, the value is displayed as a string of digits with a
decimal point in the appropriate place.

%e Exponential In %e format, the value is displayed in scientific notation using the

standard programming language representation
d. dddddetxx

which corresponds to the mathematical quantity
d. dddddx10""

If you use the format code %E instead of %e the output is exactly the same except
that the letter E used to indicate the exponent appears in upper case in the output.

%g General/. In this format, the value is displayed using either %f or %e format,
whichever is shorter. If you use the format code %G instead of %g any output
appearing in scientific notation will use an uppercase E. The %g format is probably
the best format to use if you have no way to predict in advance how large the
values will be.

%s String. In %s format, the corresponding expression must be a string, which is
displayed on the terminal screen, character by character. Percent sigh appearing

within this string have no special effect.

COMMON
PITFALLS

When using the printf
function, be certain
that the number of
arguments matches
the number of percent
sign substitutons in
the control string.
Moreover, be sure that
the type of each
argument is consis tent
with the corresponding
format code.

%% Percent sign. The %% specification is not really a format but instead provides a way

for printing a percent sign as part of the output.

Controlling spacing, alignment, and precision

When Charles Babbage first envisioned the automatic computer in the middle of the
nineteenth century, a large part of his motivation to create one was to generate tables of
mathematical functions that would no longer be subject to the enormous rate of error
associated with tables generated by hand. Today, computers still produce a great deal of
tabular data. Thus, the ability to generate tables and reports organized in columns remains
an important facet of practical programming.

One of the most important features in the printed version of a table is that the
information is lined up vertically in columns. Suppose, for example, that you had been
commissioned to generate, as part of an environmental study, a table showing the total area,
forested area, and percentage of forestation for each state in the United States!. Ideally, the

first few lines of your table would look something like this:

(1\
State Area Forest Percent
Alabama 50750 33945 66.9%
Alaska 591000 201632 34.1%
Arizona 114000 30287 26.6%
Arkansas 53187 26542 49.9%
California 158706 61532 38.8%
Colorado 104000 33340 32.1%

In tables of this sort, it is important that the values for each entry line up vertically in such a
way that whoever reads the table can tell what each value means. Given the tools you have
learned about so far, it would be impossible to generate a table in this form. If you were
limited to the printf format codes alone, the best you could do would be to use a printf
statement like

Pritnf(*% s % d %d %% %\, state, totalArea, forestArea, percent);

Unfortunately, this call would run all of the data together and the output would come out
looking like this:

State Area Forest Percent
Alabama 50750 33945 66.9%
Alaska591000 201632 34.1%
Arizona 114000 30287 26.6%
Arkansas 53187 26542 49.9%
California 158706 61532 38.8%
Colorado 104000 33340 32.1%

In this version of the table, the columns swim across the screen and are almost impossible
to read.

In order to generate a table in the more readable columnar form shown earlier, you

I Data source: The world Almanac and Book of Facts, New York: Pharos Books, 1992.

need to be able to control several properties of the output format. First of all, the vertical
columns are created by making sure that each data entry occupies a certain amount of space.
The number of character positions allocated to the entries in a particular column is called
the field width. In the nicely formatted version of the table, the name of the state is printed
in a field 14 characters wide, and the two areas (total area and forested area) are each
printed in a field six characters wide. The field widths are chosen so that they can hold the
largest data item that might legitimately appear in that column. The longest state name
(North or South Carolina) is 14 characters long, so a 14-chatacter field is adequate, at least
for the present. As the largest state, Alaska determines the field width necessary to hold the
area information, and you can see from the data (Alaska’s areais 591,000 square miles) that
a six-digit field is sufficient. As a software engineering strategy, it often pays to leave room
for some expansion in such fields, though the example is easier to understand if the amount
of extra space is minimized.

The second formatting property that you need to consider is alignment. When
numbers are displayed in a table, the standard approach is to line the numbers up so they all
end at the same position because doing so makes them much easier to read. This style of
alignment is called right alignment because all the data entries line up on the right. On the
other hand, you would like the names of the states to line up at the left margin. This style of
alignment is called left alignment and is the most common style for nonnumeric data.

Finally, it is extremely useful to be able to control the numeric precision at which the
data values are displayed. In the ugly version of the table, the percentage of forested area
for Alabama is shown as 66.8867% because

33945 %100
50750

= 66.8867

when calculated to the limits of precision used with %g format output. While this value is
indeed what the formula gives, displaying it with all those digits is silly and misleading.
Given the likely accuracy of the input data, you can have no confidence whatever that the
percentage of forested area is 66.8867 rather than 66.8868 square miles and not 50,751
square miles, which would result in a slightly different forested percentage. Moreover, the
last few digits in the percentage are almost certainly not significant for the study. In the first
version of the table, the percentage of forested area for Alabama is listed as 66.9%, which is
probably as much precision as you need. By specifying that you want only one digit to
appear after the decimal point, you can ensure that the table does not include extra digits
that are unlikely to be correct!.

The printf function gives you the opportunity to control the width, alignment, and
precision of the output data by including additional formatting information as part of the
format code. This additional information, written between the percent sign and the key
letter, looks like a floating-point number but is actually composed of the following parts,
each of which is optional:

! Unfortunately ,many people who come across this sort of data in a table assume that all of the
digits are accurate; after all, they came out of a computer. The truth is that the output data can never be
more precise than the input data, and displaying too many digits creates a false impression of accuracy
that is impossible to justify on statistical grounds. To avoid creating that sort of misimpression, you
should make sure that data values are never printed with extra digits beyond those you know to be correct.

® A minus sign, which indicates that the data in this field should be left aligned. If
the minus sign does not appear, the data will be aligned on the right.

® A numeric field width, which specifies the minimum number of characters to be
used for the output field. If you attempt to display a value that would otherwise
take less space than is indicated by the field width, the field will be padded with
extra blank space until it reaches the appropriate size. If no minus sign precedes
the field width, the extra space is added on the left so that the fields are right
aligned; if a minus sign is present, the extra space is added on the right, after the
value. Note that the field width indicates a minimum width. If a value is too large
to fit into a field of the specified size, the field is simply expanded to include the
complete value, even though doing so will disturb the column alignment. If the
field width does not appear, the data value is displayed using exactly the number of
character positions required, with no padding on either side.

® A decimal point followed by a specification of numeric precision. The
interpretation of this specification depends on the format code. For the %e and %f
formats, the precision specification indicates the number of digits that should
follow the decimal point; for the %g format, the precision specifies the maximum
number of significant digits. For the %s format, the precision specifies the
maximum number of characters to display or the string, which makes it possible to
avoid having a longer-than-expected string adversely affect the column widths. If
the precision specification is missing, printf displays the value in its entirety.

You already used the precision specification earlier in this chapter to improve the output of
the checkbook-balancing program. Since checkbooks deal with amounts of money
expressed in dollars and cents, it is conventional to specify that exactly two digits be shown

after the decimal point. This goal is easily accomplished by using the format specification
% 2f

which indicates that the value should be printed with exactly two digits after the decimal
point.

These new formatting specifications make it possible to develop the printf call to
display the forestation data in the columnar table presented earlier in this section. To make
the state appear at the left edge of a 14-character string field, you need to use the format
specification

%-14s
The minus sign specifies left alignment; the 14 indicates the width of the field. If you also
wanted to ensure that a new state with an even longer name didn’t extend past the column

boundary, you could include a precision specification indicating that only the first 14
characters should be printed. That complete format specification would look like this:

%-14.14s

Using this format, if printf were given the string “Distict of Columbia”, only the first 14 characters

would appear:

[District of Co J

Without the precision specification, the string “Distict of Columbia” would appear in full, and all
of the other fields on that line would be shifted six characters to the right.
For each of the two areas—total and forested—you need a right-aligned numeric field

six digits wide, so the appropriate format specification would be
%6d

For the percentage of forestation, the field widthis four: two digits before the decimal point,
the decimal point itself, and one digit after the decimal point. Moreover, since you only
want to display a single digit after the decimal point, the format specification for the

percentage of forested land is
%4.1f

By putting all these specifications together, you can write the printf statement necessary to

produce the properly formatted table:

printf(*%-14.14s %6d %6d %4.1% %\n',state, totalArea, forestArea, percent);
1-6 Crafting a program

In any program, no matter how polished and complete it seems, the odds are good that
someone—the original programmer or someone who inherits the project—will want to
change something about it later. There may be bugs to fix or new capabilities that need to be
added. Part of our job as programmers is to realize that all programs will someday need to
be changed, and it is also our responsibility to make life easier for those who have to make
the changes.

Programming style

An important way you can help simplify the task of maintaining programs you write is
to make your programs easy to read. One of the fundamental truths about software
development is that programs are read more often than they are written. Moreover, the most
crucial readers of a program are not machines but people—the other programmers who will
work on that program over its lifetime. Getting your program into a state the compiler can
accept is only part of the programming process. Good programmers spend most of their
time on aspects of the program that the compiler ignores entirely, such as the comments.
When the compiler sees the /* symbol that indicates the beginning of a comment, it stops
paying any attention to characters until it sees the closing */. If your human readers do the
same, your comments are not doing their job. Good style and program readability are
critical for program maintenance. Writing good comments and ensuring that your code
makes sense to human readers may take some extra time initially, but that investment will
end up saving considerable time when the program is later revised.

What constitutes good programming style? How do you achieve it. From a stylistic
point of view, what are the criteria that determine whether a particular program is well
written or badly written? Unfortunately, it is difficult to provide precise answers to these

questions, just as it is difficult to provide rules for maintaining good writing style in English.

This book presents some guidelines and strategies for achieving good programming style,

but the real proof lies in whether your programs are in fact easy for other people to read. As

an experiment, take a look at one of your programs and ask yourself how easy it would be

to understand if you wereseeing it for the first time.

There are, however, several stylistic guidelines that you can follow to help you write

better programs. The following are some of the most important ones:

Use comments to tell your readers what they need to know. Explain anything that
you think is complicated or that might be difficult for someone to understand
simply by reading the program itself. If you anticipate that someone might want
to modify a program, indicate briefly how you might go about doing so. On the
other hand, don’t cloud the issue by talking at length about obvious aspects of the

program. For example, some programmers insist on writing comments like

total += value; /* Add value to total */

Anyone who needs this comment should not be working on the program in the
first place. Finally, and perhaps most importantly, make sure the comments you
write correctly reflect the current state of the program. When you make changes,
be sure to update the comments as well.

Use indentation to mark the various levels of program control. Careful use of
indentation to highlight the bodies of functions, loops, and conditionals is critical
to readability and makes the program structure much clearer. Indentation rules for
each of the control statements will be discussed in Chapter 4.

Use meaningfiu/ names. For example, in the checkbook program, the variable
name balance indicates clearly to the reader the value that variable contains. Using
just the single character b would make your program shorter and easier to type,
but it would not be nearly as useful to the reader.

Develop a convention for variable names that helps readers identify therr

Junction. In this text, names of variables and data types always begin with a

lowercase letter, such as n1, total, or sting. By contrast, function names (such as
Getinteger) usually begin with an uppercase letter. Moreover, whenever a name
consists of several English words run together, as in Getineteger, the first letter in
each of those words is capitalized to make the name easier to read.

Use standard idioms and conventions when appropriate. Many software
companies publish local rules about style or program structure, some of which
may be at odds with the practice suggested in this book. Following the old adage,
“when in Rome, do as the Romans do,” you should adhere to local standards
when they exist so that other programmers will have an easier time understanding
the programs you write. On the whole, programming prospers when a community
can agree on a commit on set of basic conventions.

Avord unnecessary complexity. 1t is often worth sacrificing some efficiency in the
interest of readability.

The bottom line is that you want your programs to be easy to read. To make sure that they

are, you should proofread your own programs for style, just as a writer would proofread an

article. Start each programming assignment early enough that you can put it away for a day.
Then take it out and look at it from a fresh perspective. How easy is the program for you
to understand? How easy would it be for someone ease to maintain the program in the
future? If you discover that your program doesn’t make sense or is somehow difficult to

read, you should take the time to revise it.

Designing for change

You can also make programs easier to modify by designing them to accommodate
change. Because programmers know that programs are more likely to change in certain
areas than in others, you can usually make an educated guess about which aspects of a
program should be made as flexible as possible.

Think back to the balance.c program presented earlier in this chapter. What aspects of
that program are programmers most likely to want to change? If nothing else, it is almost
certain that the charge assessed for bouncing a check will change over time. How easy
would it be for a programmer to alter that value? As the program is written now, that
programmer would have to ferret around in the details of the program to discover exactly
where the $10 figure appears in the program. The Programmer would then need to make

two changes. The most obvious one is in the line

balance = 10;

However, it is equally important to update the printf statement on the previous line as
follows:

printf(“This check bounces. $10 fee deduc ted.\n");
Considering this problem from the perspective of those who will make future changes, you
really want to be able to make a single edit that then propagates its effect throughout the

entire program. By doing so, you are programming defensively. No one can come along and

break the program by changing something in one place but not in another.

The #define mechanism

The best tool available in C for centralizing editing changes is the #define construct. In

its simplest form, #define has the following paradigmatic form:
#define symbol value

In this paradigm, symbo/ represents a name that follows the same rules used for variables
and va/ue represents a C constant. Whenever the symbol appears anywhere in the program
after #defne is introduced, the specified value is substituted in place of the symbol. For
example, if you put the line

#define bouncedCheckFee 10.00

at the beginning of the checkbook program, you could then rewrite the if statement as

follows to take advantage of the definition:

if (enfry <0 && balance <0){
printf{“This check bounces. $% 2f fee deduc ted.\n", bouncedCheckF ee);
balance -= BouncedC heckF ee;

}

To change the bounced-check fee in the future, the programmer who inherits this program
would only have to change the #define statement at the top of the program.

The final version of the checkbook-balancing program, which includes both the change in
the printf format specification and the definition of the BouncedCheckFee constant, is shown in
Figure 3-7. Note that the program also includes additional comments to help new

programmers understand how to change BouncdCheckFee to some different value.

FIGURE 3- balance4.c(final version)

/*
*File: balance4 .c

*

*This file contains the version of a program to
*balance a checkbook.
¥/

#include <stdio.h>
#include “genlib.h”
#include “simpio.h”

/*
*Constant BouncedC heckF ee

*

*To change the charge assessed for bounced checks, change
*the definiion of this constant. The constant must be a

*floa ting-point value (i.e., must contain a decimal point).

*/

#define BouncedCheckFee 10.00
/* Main program */

main()

{

double entry, balance;

printf(“This program helps you balance your checkbook.\n");
printf(“Enter each check and deposit during the month.\n");
printf(“To indicate a check, use a minus sign.\n");
printf(*Signal the end of the month with a 0 value.\n");
printf(“Enter the initial balance: \n");
balance = GetReal();
while (TURE) {
printf(* Enter check (-) or deposit *);
entry = GetReal();
if (entry == 0) break;
balance +=entry;
if (balance < 0 && entry < 0) {
printf{“This check bounces. $% .2f fee deduc ted.\n",BouncedCheckF ee);
balance -= BouncedCheckF eg;

printf(“Current balance = % 2fin", balance);

printf(“Final balance =% .2f\n”, balance);

Using #define to set values of constant that are likely to change is an important part of

good software engineering. You will see many additional examples of this technique
throughout the text.

SUMMARY

In Chapter 2, you learned how to write simple programs that accept input data,
calculate results, and generate output. Chapter 3 has sought to extend your knowledge by
introducing the concept of control statements. By using control statements, you can make
your programs solve much more sophisticated problems, such s those that involve testing to
see whether a condition holds or those that require repetition of certain operation.

This chapter encourages you to approach control statements by thinking about the
kinds of problems they can solve. Each statement is a tool appropriate to a particular
situation, and you have seen how to apply particular tools through the use of simple idioms
and paradigms. Chapter 4 looks at control statements in more detail.

Beyond becoming familiar with control statements, you also had the
opportunity—primarily through the evolution of the balance.c example—to discover that
writing programs to solve problems is not as easy as it might appear. Particularly if you
think too quickly about your modifications to a program or fail to test programs thoroughly,
it is easy to introduce subtle bugs into your programs that keep them from working as you
intend. To some extent, such bugs are an unavoidable part of the programming process, but
you can save yourself considerable time and aggravation by using good programming
discipline. To help you develop that discipline, this chapter includes several useful
guidelines and conventions to improve you programming skills.

Important points about programming introduced in this chapter are:

O Common operations within a program can be represented as programming idioms,
which permit you to learn one simple pattern that is applicable to a variety of
programming problems.

O C defines several shorthand assignment operators that make it easier for you to specify
certain common operations.

O Strategies that work for twoor three data values are often not appropriate as the scale
of the problem grows.

O The for statement can be used to repeat a set of statements a specified number of times.
O When used in the particular idiomatic form given in this chapter, the while statement
can be used to repeat a set of statements until a designated sentinel value is entered.

O Theif statement is used to specify that a particular set of statements should be executed
only Ifa certain condition applies. The condition itself is ordinarily expressed by using
relational operators to compare two data values.

O Seemingly innocuous changes can introduce serious bugs. You should always be
suspicious of your program and test them as thoroughly as you can.

O The printf function provides considerable control over output formatting.

O Programs should be written so that they can be understood easily by other
programmers. It is important for you to write your programs with future readers in

mind.

=N W

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

REVIEW QUESTIONS

Explain the concept of a programming idiom. What role do such idioms play in the
process of learning to program?

What is the idiom that corresponds to the English command “request an integer value
from the user and store it in a variable"?

What idiom would you use to multiply the value of the variable cellCount by 27

What is the most common way in ¢ to write a statement that has the same effect as
X=x+1;

What idiom would you use to repeat a set of commands 15 times?

Define the following terms: loop, control line, cycle, body, and index variable.
What for control line would you use to count from 15 to 25?

In the add10.c program, the statement

total = 0;

appears before the for lop. Why is this statement important? On the other hand, why is
it not necessary to include the following statement as well?

value = 0,

Explain how the different use of these variables makes it necessary to initialize total
but not value.

What is a sentinel? What considerations are involved in choosing a sentinel value for a
particular application?

What is the idiom presented in this chapter for repeating an operation on a list of input
values until a sentinel value appears?

What statement is used in this chapter to specify conditional execution, and what are its
two forms?

What are the six relational operators that exist in C, and what are the corresponding
mathematical symbols?

Why is it important to test programs thoroughly, even after making simple, seemingly
innocuous changes?

In the balance.c program, what is the reason for using the format specification $.2f in the
printf calls?

How would you write a printf statement to display the string value stored in the variable
name, so that the resulting output was left justified in a 20-character field? How would
you ensure that names longer than 20 characters would not affect the alignment of
other items in a table?

How would you write a printf statement to display the floating-point value stored in the
variable distance so that exactly three digits appear to the right of the decimal point?
What factors should you consider when choosing variable names for your programs?
What is the advantage of the #define construct in terms of program maintenance?

How would you use #define to introduce a constant name pi with the value 3.14159?

In the balance.4c program (Figure 3-7), the comment associated with the definition of

21.

22.

BouncedCheckfee indicates that the constant value must be a floating-point number. What
statement in the program would fail to operate correctly if BouncedCheckfee were defined
as an integer in violation of this rule? How could you change the program to eliminate
this restriction?

As a programmer, you must be able to put yourself in the position of a user. From this
perspective, consider the balance.c program presented in this chapter. Is the program
easy to use? Does it provide the capabilities you want? What changes would you make
in the behavior of the program?

In any form of writing, it is important to consider your audience. If your audience
misses the point, the text has not accomplished its purpose. In writing a program, who

is your most important audience?

PROGRAMMING EXERCISES

As noted I the section on “The read-until-sentinel idiom,” one strategy for
generalizing the add10.c program is to allow the user to enter the number of values to
be added when the program is run. As outlined in the text, make the modifications
necessary to change the addd10.c program so that it reads in the number of values first,

followed by the actual numbers to be added.

Write a program that displays the message

Hello, world.

10 times on separate lines.

Using the Gertrude Stein “arose is a rose is a rose” example as an model, write the for
loop that displays the repeated parts of Macbeth’s lament

Tomorrow and tomorrow and tomorrow.

Modify the add10.c program so that instead of adding integers, it adds 10 floating-

point numbers.

Write a program that prints out the squares of the numbers from 1 to 10, using the

format shown in the following sample run:

~

1 squared is 1

2 squared is 4

3 squared is 9

4 squared is 16

5 squared is 25

6 squared is 36

7 squared is 49

8 squared is 64

9 squared is 81
10 squared is 100

Design your program so that the limits 1 and 10 are easy to change.

6. According to legend, the German mathematician Karl Friedrich Gauss (1777-a855)
began to show his mathematical talent at a very early age. When he was in elementary
school, Gauss was asked by his teacher to compute the sum of the numbers between 1
and 100. Gauss is said to have given the answer instantly: 5050. Write a program that
computes the answer to the question Gauss’s teacher posed.

7. Write a program that reads in five integers from the user and then displays their

average, as illustrated by the following sample run:

4 N
This program averages a list of 5 integers.
795 +
7100 <
789 +
791 <
797 <
The average is 94.4
S J

Note that even though all the input values are integers, the average may have a decimal
fraction. Also, remember to design your program so that it is easy to change the number
of input values to some number other than five.

8. Modify the program you wrote in exercise 7 so that the program begins by asking the
user for the number of values, like this:
4

This program averages a list of 5 integers.
How many values are there in the list> § <
795 «

7100 «

789

791 <

n

4 N
This program averages a list of 5 integers.

\ Enter -1to signal the end of the list
795 <
7100 <
789 <
791 <
707 <
?7-1+
The average is 94.4
& J

9. Using the addistc example as a model, write a program that reads in a list of integers
until the user enters the value —1 as a sentinel. At that point, the program should
display the average of the values entered so far. Your program should be able to
duplicate the follow ing sample run:

Writing this program requires more thought than writing the addistc program in the

text and is a good test of your problem solving abilities.

10. The section on “The repeat-N-times idiom” uses the following code to display one of

Gertrude Stein’s familiar lines:

11.

12.

13.

for (=0;i<2;i++){
printf(“a rose is “);
}

printf{“a rose.\n");

Rewrite this program so that the word rose appears only once. Your new program
should generate exactly the same output as the original, including the period and the

newline character.

In the program you wrote for exercise 5, the output was not formatted into columns,
which makes the result more difficult to read. Change the program so that it prints a
tabular version of both the squares and cubes of the numbers from 1 to 10, as follows:

Number Square Cube)
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 454
8 64 512
9 81 729
10 100 1000
- J

Suppose you are writing a program to display a table of vote totals for candidates at a
convention. When your program is ready to display the output data, the name of the
candidate is stored in the string variable candidate, and the votes for that candidate are
stored in the integer variable votes. How would your write a printf statement to display
the name and vote count so that the names line up on the left and the numbers line up
on the right, as illustrated by the following table, which shows the delegate tallies
from the Democratic Party convention of 1992:

Clinton 3372
Brown 59
Tsongas 209
Other 74

In writing this printf statement, display the name of each candidate in a 15-character field;
if the name is longer than that, only the first 15 characters should appear. You may
assume that there are fewer than 10,00 delegates at the convention and therefore that
the number of votes never requires more than four digits to represent.

Remember that you need not write a program to generate the entire table—just the
one printf statement. Even so, try to think of a way to test your printf statement to be sure
it works in the desired way.

In exercise 4 in Chapter 2, you wrote a program to calculate compound interest over
two years. Rewrite the program so that it displays the accumulated balance after each

of N years, where N is a number entered by the user.

14. Write a program that reads in a list of integers from the user until the user enters the
value 0 as a sentinel. When the sentinel appears, your program should display the

largest value in the list, as illustrated in the following sample run:

4 N

This program finds the larges tinteger in a list.
Enter 0 fo signal the end of the list.

217 <

742 <

M <

719 <

73+

720+

The larges t value is 42

- J

Think about the problem before you start to write the program. What strategy do
you plan to use?

Figuring out how to find the largest number in a list is by far the most
conceptually important exercise in this chapter. Once you understand how to solve the
fundamental problem—not the problem of how to write the necessary statements in C
but rather of how to design the algorithmic strategy—you are ready to go on and learn

more about details of programming.

Chapter 1 Statement Forms

THE STATEMENTS WAS INTERESTING BUT TOUGH.

— Mark Twain, Adventures of Huckleberry Finn, 1884

OBJECTIVES

» Tounderstand the relationship between statements and expressions.

> To recognize that the equal sign used for assignment is treated as a binary operator in
C.

» To understand that statements can be collected into blocks.

» To recognize that control statements fall into two classes: conditional and iterative.

» To learn how to manipulate Boolean data and to appreciate its importance.

» To increase your familiarity with the relational operators:=, =, <,<= >, and >=.

» Tounderstand the behavior of the &8, ||, and ! operators.

» To master the details of the if, switch, while, and for statements.

In Chapter 2, you learned that a C program operates by executing the statements

contained within the body of a function called main. This chapter covers the different
statement types available in C and, in the process, extends the set of tools you have for
solving problems.

As in most programming languages, statements in C fall in to one of two principal
classifications: simple statements, which perform some action, and control statements,
which affect the way in which other statements are executed. You have already seen a
variety of simple statements in C, such as assignments and calls to the printf function. You
have also encountered various control statements. The for statement makes it possible to
repeat a set of program steps a given number of times, the while statement allows you to
specify repetition until some condition depending on some conditional test. Up to now,
however, you have studied these statements in an informal, idiomatic way. To use the full
power these statements provide, you need a more detailed understanding of how each type

of statement works and how it can be applied as part of your problem-solving repertoire.

1-1Simple statements

In the programs in Chapter 2 and 3, you saw simple statements used to accomplish a
variety of tasks. In particular, there were statements that read in data from the user, such as

n1 = Getlnteger();

statements that compute new values, such as
total = n1+ n2;

and statements that display information, such as
printf(“Thde total is % \n", total);

Informally, it makes sense to think of each of these statement types as a separate tool
and to use them idiomatically. If you need to read an integer, all you need to do is
remember that there is an idiom for that purpose, which you can then write down. If you
need to display a value, you know that you should use the printf function along with the
special facilities for printf formatting described in the section on “Formatted output” in
Chapter 3. Viewed formally, however, these simple statements all have a unified structure
that makes it easy for the C compiler to recognize a legal statement in a program. In C, all

simple statements—regardless of their function—fit the following rule

SIMPLE A simple statement consists of an expression followed
STATEMENT by asemicolon.
RULE

Thus, the paradigm for a simple statement is imply this:
Expression;

Adding the semicolon after the expression turns the expression into a legal statement form
Even though any expression followed by a semicolon is a legal statement in C, it is
not true that every such combination represents a useful statement. To be useful, a

statement must have some discernible effect. The statement
n1 +n2;

consists of the expression n1+n2 followed by a semicolon and is therefore a /ega/ statement.

It is, however, an entirely useless one because nothing is ever done with the answer; the
statement adds the variables n1 and n2 together and then throws the result away'. Simple
statements in C are typically assignments (including the shorthand assignments and
increment/decrement operators) or calls to functions, such as printf, that perform some
useful operation.

It is easy to see that program lines such as
pnti(Hello, world.\n");

are legal statements according to the Simple Statement Rule. In the definition of expression
given in Chapter 2, function calls are legal expressions, so that the function call part of the
above line—everything except the semicolon—is a legal expression. Putting the semicolon
at the end of the line turns that expression into a simple statement.

But what about assignments? If a line like

Total =0;

is to fit the Simple Statement rule, it must be the case that

! Some C compilers are clever enough to issue a warning for useless statements of this sort.

Total =0

is itself an expression.

In C, the equal sing used for assignment is simple a binary operator, just like + or /.
The = operator takes two operands, one on the left and one on the right. For our present
purposes, the left operand must be a variable name, although that restriction is relaxed in
Chapter 11. When the assignment operator is executed, the expression on the right-hand
side is evaluated, and the resulting value is then stored in the variable that appears on the
left-hand side. Because the equal sign used for assignment is an operator,

total = 0

is indeed an expression, and the line
total = 0;

is therefore a simple statement.

Embedded assignments

The description of assignment in the previous section should seem familiar because it
is equivalent in effect to the earlier, less formal definition given in the section on
“Assignment statements” in Chapter 2. Now comes the interesting wrinkle. If an
assignment is an expression, then that expression must itself have a value. Moreover, if an
assignment produces a value, it must also be possible to embed that assignment in some
more complicated expression.

When an assignment is used as part of some larger expression, the value for the
assignment subexpression is the value assigned. For example, if the expression

X=6

appears as an operand to another operator, the value of that assignment as an expression is

the value assigned to the variable x, which is 6. Thus, the expression
(x=6)+(y=7)

has the effect of setting x to 6 and y to 7, which makes the value of the expression as a
whole 13. The parentheses are required in this example because the - operator has a lower
precedence than +. Assignments that are written as part of larger expressions are called
embedded assignments.

Although they have some important and extremely convenient uses, embedded
assignments often make programs more difficult to read because they tend to hide the fact
that the values of variables are changing somewhere in the middle of a more complicated
expression. For this reason, this text limits the use of embedded assignments to a few
special circumstances where they seem to make the most sense.

Multiple assignments

Of these special circumstances in which embedded assignments are used, the easiest

one to describe occurs when you want to set several variables to the same value. Instead of

writing separate assignment statements, C’s definition of assignment makes it possible to

write a single statement like
n1=n2=n3=0;

which has the effect of setting all three variables to 0. This statement has the desired result
because C evaluates assignment operators from right to left. The entire statement is
therefore equivalent to

nt = (n2 = (n3 = 0));

the expression n3 =0 is evaluated, which set n3 to 0 and then passes 0 along as the value of
the assignment expression. That value is assigned to n2, and the result is then assigned to n1.
Statements of this sort are called multiple assignments.

When writing multiple assignments, it is good practice to ensure that all the variables
are of the same type to avoid the possibility that automatic conversion will lead to
unintended results. To illustrate the type of problem that can occur suppose that the variable
d has been declared as a double and the variable i1 has been declared as an int. Whatis the

effect of the following statement?
d=i=15 % This statement is likely to confuse the reader.

when this expression is evaluated, the value 1.5 is truncated to an integer before it is
assigned to i, so i gets the value 1. The value of the embedded assignment expression is the
value assigned, so it is the integer 1, not the floating-point value final result is that d is
assigned the value 1.0.

In C’s precedence hierarchy, assignment operators, including the shorthand
assignment operators like += and *=, are evaluated after the arithmetic operators. If two
assignments compete for the same operand, the assignments are applied from right to left.
This rule runs counter to the rule used for the other operators, which are applied from left to
right. The direction in which operators of the same precedence class are evaluated is called
the associativity of that class. Traditional operators like + and - are evaluated from left to
right and are therefore called left associative. The assignment operators are evaluated from
right to left and are called right associative. A table showing the precedence and
associativity for all the operators introduced through Chapter 4 appears in the Summary at
the end of this chapter, and a complete precedence table for all the operators in C is

provided in Appendix A.

Blocks

Simple statements allow programmers to specify actions. Except for the hello.c
program in Chapter 2, however, every program you have seen so far requires more than
one simple statement to do the job. For most programs, the solution strategy requires a
coordinated action consisting of several sequential steps. The add3.c program, for example,
had to first get one number, then geta second, then add the two together, and finally display
the result. Translating this sequence of actions into actual program steps required the use of
several individual statements that all became part of the main program body.

To specify that a sequence of statements is part of a coherent unit, you can assemble

those statements into a block, which is a collection of statements enclosed in curly braces,
as follows:

statement,
statement,
statement,

statement,

You have already seen blocks in several of the programming examples from the previous
chapters. The body of each main program is a block, as are all the control statement bodies
in the programs in Chapter 3.

As discussed i the section on “Programming style” in Chapter 3, the statement in the
interior of a block are usually indented relative to the enclosing context. The compiler
ignores the indentation, but the visual effect is extremely helpful to the human reader
because it makes the structure of the program jump out at you from the format of the page.
Empirical research has shown that using either three or four spaces at each new level makes
the program structure easiest to see; the programs in this text use four spaces for each new
level. Indentation critical to good programming, so you should strive to develop a
consistent indentation style in your programs.

The only aspect of blocks that tends to cause any confusion for new students is the
role of the semicolon. In C, the semicolon is part of the syntax of a simple statement; it acts
as a statement zerminator rather than as a statement separator. While this rule is perfectly
consistent, it can cause trouble for people who have previously been exposed to the

language Pascal, which use a different rule. In practical terms, the differences are:

1. There is always a semicolon at the end of the last simple statement in a block in
C. In Pascal, the semicolon is usually not present, although most compilers allow
it as an option.

2. There is never a semicolon after the closing brace of a statement block in C. In
Pascal, a semicolon may or may not follow the END keyword depending on the
context.

The convention for using semicolons in C has advantages for program maintenance and
should not cause any problem once you are used to it.

When the C compiler encounters a block, it treats the entire block as a single
statement. Thus, whenever the notation .szazement appears in an idiom or a paradigm, you
can substitute for it either a single statement or a block. To emphasize that they are
statements as far as the compiler is concerned, blocks are sometimes referred to as
compound statements.

1-2 Control statements

In the absence of any directive to the contrary, statements in a C program are executed

one at a time in the order in which they appear. For most applications, however, this strictly

top-to-bottom ordering is not sufficient. Solution strategies for real-word problems tend to
involve such operating a set of steps or choosing between alternative sets of actions.
Statements that affect the way in which other statements are executed are called contro/
Sstatements.

Control statements in C fall into two basic classes:

1. Conditionals. In solving problems, you will often need to choose between two or
more independent paths in a program, depending on the result of some
conditional test. For example, you might be asked to write a program that
behaves one way if a certain value is negative and some different way otherwise.
The type of control statement needed to make decisions in called a conditional.
In C, there are two conditional statement forms: the if statement introduced in
Chapter 3 and the switch statement introduced later in this chapter.

2. [lteration. Particularly as you start to work with problems that involve more than a
few data items, your programs will often need to repeat an operation a specified
number of times or as long as a certain condition holds. In programming, such
repetition is called iteration. In C, the control statements used as the basis for
most iteration are the while statement as the for statement, which were introduced
in Chapter 3.

Each control statement in C consists of two parts: the contro/ /ine, which specifies the
nature of the repetition or condition, and the 4oy, which consists of the statements that are
affected by the control line. In the case of conditional statements, the body may be divided
into separate parts, where on set of statements in executed in certain cases and another set
of statements is executed in others.

The body of each control statement consists of other statements. The effect of the
control statement itself—no matter whether it specifies repletion or conditional
execution—is applied to each of the statements in the body. Those statements moreover,
can be of any type. They may be simple statements, they may be compound statements,
other may themselves be control statements, which in turn contain other statements. When
a control statement is used within the body of another control statement, it is said to be
nested. The ability to nest control statements, on e inside another, is one of the most

important characteristics of modern programming languages.

1-3Boolean data

In the course of solving a problem, it is often necessary to have the program test a
particular condition that affects the subsequent behavior of the program. For example, the
final version of the blance.c program in Chapter 3 uses an if statement involving a conditional
test to determine whether a check has bounced. The if statement, along with many of the
other facilities that control the execution of a program, use expressions whose values are
either true for false. This type of data—for which the only legal values are true and
false—is called Boolean data, after the mathematician Georag Boole, who developed an
algebraic approach for working with such values.

Most modern programming languages define a special Boolean type whose domain

consists of precisely these two values. C does not define such a type—a deficiency that

makes understanding the nature of logical decision and much more difficult for new

programmers. To correct this shortcoming, the genlib library defines a special type called bool.

It also defines the constant names TURE and FALSE, both of which must be written entirely in
upper case. You can declare variables of type bool and manipulate them in the same way as
other data objects.

C defines several operators that work with Boolean values. These operators comprise
two major classes, relational operators and logical operators, which are discussed in the

next two sections.

Relational operators

The relational operators arc used to compare two values. C defines six relational
operators, which actually fall into two precedence classes. The operators that test the
ordering relationship between two quantities are

> Greater than

< Less than

>= Qreater than or equal to

<= Less than or equal to
These operators appear in the precedence hierarchy below the arithmetic operators + and -
and are followed in the hierarchy by the following operators, which test for equality and
inequality:

== Equal

= Not equal
When you write programs that test for equality, be very careful to use the == operator, which
is composed of two equal signs. A single equal sign is the assignment operator. Since the
double equal sign violates conventional mathematical usage, replacing it with a single
equal sign is a particularly common mistake. This mistake can also be very difficult to track
down because the C compiler does not usually catch it as an error. A single equal sign
usually turns the expression ito an embedded assignment, which is perfectly legal in C; it
just isn’t at all what you want. For example, if you wanted to test whether the value of the

variable x were equal to 0 and wrote the following conditional expression

This is incorrect.

The results would be confusing. This statement would not check to see if x wereequal to 0.
It would instead insist on this condition by assigning the value 0 to x, which ¢ would then
interpret (for reasons too arcane to describe at this point) as indicating a test result of FLASE.

The correct test to determine whether the value of the variable x is equal to 0 is
If (x == 0)...

Be careful to avoid this error. A little extra care in entering your program can save a lot of
debugging time later on.

The relational operators can only be used to compare atomic data values—data
values that are not built up from smaller component parts. For example, integers, floating-

COMMON

PITFALLS

When wriing programs
that test for equality,
be sure to use the ==
operator and not the
single = operator,
which signifies
assignment. This error
is extremely common
and can lead to bugs
that are very difficult ot
find, because the
compiler cannot detect
the error.

point numbers, Boolean values, and characters (which are introduced in Chapter 9)
constitute atomic data because they cannot be decomposed into smaller pieces. Strings, on
the other hand, are not atomic because they are composed of individual characters. Thus,
you can use relational operators to compare two values of the types int, double, or bool, but
you cannot use them to compare two values of type sting. A mechanism by which to
compare strings will be introduced in Chapter 5.

Logical operators

In addition to the relational operators, which take atomic values of any type and
produce Boolean results, C defines three operators that take Boolean operands and combine

them to form other Boolean values:

! Logical not (TRUE if the following operand is FALSE)
&& Logical and (TRUE if both operands are TRUE)
I Logical or (TRUE if either or both operands are TRUE)

These operators are called logical operators and are listed in decreasing order of
precedence.

The operators &8, || and ! closely resemble the English words and, or, and not. Even so,
it is important to remember that English can be somewhat imprecise when it comes to logic.
To avoid that imprecision, it is often helpful to think of these operators in a more formal,
mathematical way. Logicians define these operators using truth tables, which show how
the value of a Boolean expression changes as the values of its operands change. For
example, the truth table for the && operator, given Boolean values p and g, is

p q paé&q
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

The last column of the table indicates the value of the Boolean expression p && g given
individual values of the Boolean variables p and q shown in the first two columns. Thus,
the first line in the truth table shows that when p is FALSE and q is FALSE, the value of the
expression p && q is also FALSE.

The truth table for || is

P q pllq
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

Note that the || operator does not indicate one or the other, as it often does in English, but
instead indicates either or both, which is its mathematical meaning.

The ! operator has the following simple truth table:

P Ip
FALSE TRUE
TRUE FALSE

If you need to determine how a more complex logical expression operates, you can break it
down into these primitive of operations and build up a truth table for the individual pieces
of the expression.

In most case, logical expressions are not so complicated that you need a truth table to
figure them out. The only common case that seems to cause confusion is when the ! or |=
operator comes up in conjunction with && or || When talking about situations that are not
true (as is the case when working with the | and != operators), conventional English is
sometimes at odds with mathematical logic, and you should use some extra care to avoid
errors . For example, suppose you wanted to express the ideal “x is not equal to either 2 or
3” as part of a program. Just reading from the English version of this conditional test, new
programmers are very likely to write

if (x!=2]x!=3)... This test is incorrect!

If you look at this conditional test from the mathematical point of view, you can see that the
expression within the if test is TRUE if either (a) x is not equal to 2 or (b) x is not equal to 3.
No matter what value x has, one of the statements must be TRUE, since, if x is 2, it cannot
also be equal to 3, and vice versa. Thus, the if test as written above would always succeed.
To fix this problem, you need to refine your understanding of the English expression
so that it states the condition more precisely. That is, you want the test in the if statement to
succeed whenever “it is not the case that either x is 2 or x is 3.” You could translate this

statement directly to C by writing
If ((x ==2 ||x ==))...
But the resulting statement is a bit ungainly. The question you really want to ask is whether

both of the following conditions are TRUE:

B xisnot equal to 2, and
B xis not equal to 3.

If you think about the question in this form, you could write the test as
If (x 1= 2 &&x 1= 3)...

This simplification is a specific illustration of the following more general relationship from

mathematical logic:
I(p || q)is equivalent to 'p && !q
for any logical expressions p and g. This transformation rule and it s symmetric counterpart

I(p && q) isequivalent to 'p || !q

COMMON

PITFALLS

Be careful when using
the && and || operators
with relational tests
thatinvolve the !and
I= operators,. English
can be somewhat
fuzzy in its approach to
logic; programming
requires you to be
precise.

COMMON

PITFALLS

To test whether a number
is in a particular range, it is
not sufficientto combine
relational operators, as is
conventional in
mathematics. The two
parts of the condition must
be written explicitly using
&&, sin (0<x) && (x<10)

are called De Morgan’s laws. Forgetting to apply these rules and relying instead on the
English type of logic is a common source of programming errors.

Another common mistake comes from forgetting to use the appropriate logical
connective when combining several relational tests. In mathematics, one often sees an

expression of the form
1<x<10

While this expression makes sense in mathematics, it is not meaningful in C. In order to test
that x is both greater than 0 and less than 10, you need to indicate both conditions explicitly,
as follows:

0<x&&x<10

Short-circuit Evaluation

C interprets the && and || operators in a way that differs form the interpretation used in
many other programming languages. In Pascal, for example, evaluating these operators
(which are written as AND and OR) requires evaluating both halves of the condition, even
when the result can be determined halfway through the process. The designers of C took a
different approach thatis often more convenient for programmers.

Whenever a C program evaluates any expression of the form

expl && exp2

or
exp1 || exp2

the individual subexpressions are always evaluated from left to right, and evaluation ends
as soon as the answer can be determined. For example, if exp?1 is FALSE in the expression
involving &8, there is no need to evaluate exp2 since the final answer will always be FALSE.
Similarly, in the example using ||, there is no need to evaluated the second operand if the
first operand is TRUE. This style of evaluation, which stops as soon as the answer in known,
is called short-circuit evaluation.

A primary advantage of short-circuit evaluation is that it allows one condition to
control the execution of a second one. In many situations, the second part of a compound
condition is meaningful only if the first part comes out a certain way. For example, suppose
you want to express the combined condition that (1) the value of the integer x is nonzero
and (2) x divides evenly into y. You can express this conditional test in C as

(x 1= 0) &&(y % x ==0)

because the expression y % x is evaluated only if x is nonzero. The corresponding expression
in Pascal fails to generate the desired result, because both parts of the Pascal condition will
always be evaluated. Thus, if x is 0, a Pascal program containing this expression will end
up dividing by 0 even though it appears to have a conditional test to check for that case.
Conditions that protect against evaluation errors in subsequent parts of a compound
condition, such as the conditional test

(x!1=0)

in the preceding example, are called guards.

Flags

Variables of type bool are so important that they have a special name: flags. For

example, if you declare a Boolean variable using the declaration
bool done;

the variable done becomes a flag, which you can use in your program to record whether or
not you are finished with some phase of the operation. You can assign new values to flags

just as you can to any other variable. For example, you can write
done =TRUE;
or

done =FALSE;
More importantly, you can assign any expression that has a Boolean value to a Boolean
variable. For example, suppose the logic of your program indicates that you are finished

with some phase of the operation as soon as the value of the variable ittmsRemaining becomes

0.To set done to the appropriate value, you can simply write
done = (itemsRemaining == 0);

The parentheses in this expression are not necessary but are often used to emphasize the
fact that you are assigning the result of a conditional test to a variable. The statement above
says, “Calculate the value of (ittmsRemaining == 0), which will be either TRUE or FALSE, and

store that result in the variable done.”

Avoiding redundancy in Boolean expressions

Even though the staement
Done = (itemsRemaining == 0);

Is sufficient to store the correct Boolean value in the variable done, this type of statement
seems difficult for people to learn. New programmers have a tendency to achieve the same
effect with the following, much longer if statement:

If (itemsRemaining == 0} .

Done == TRUE; %g These lines are a highly inefficient way to
} else { achiever the desired result.

done = FALSE;

}

Although these lines have the desired effect, they do not have the efficiency or the
elegance you should seek to achieve in you programs. The second version requires five
lines to do the work of one and will make your programs much longer than they need to be.
As you work with Boolean data, it is important to remember that you can assign Boolean

values just like any other values and that explicit tests are no t necessary.

A similar problem occurs when you use a flag as part of a conditional test. To test

whether done has the value TREU, an experienced programmer writes
if(done) ...

and not
if (done ==TRUE)... % The==TRUE is redundant

Even though this second expression also works, the equality test is redundant. The value of
done is already guaranteed to be either TRUE or FALSE, which is precisely the sort of value the
if statement wants. You don’t need to ask whether done is equal to TRUE, since the extra test

provides no new information.

An example of Boolean calculation

As astronomers have known for centuries, the earth takes a little more than 365 days
to make a complete revolution around the sun. Because it takes about a quarter of a day
more than 365 days for it to complete its annual cycle, an extra day builds up every four
years, which must then be added to the calendar, creating a leap year. This adjustment helps
keep the calendar in sync with the sun’s orbit, but it is still offby a slight amount. To ensure
that the beginning of the year does not slowly drift through the seasons, the actual rule used
for leap years is slightly more complicated. Leap years come every four years, except for
years ending in 00, which are leap years only if they are divisible by 400. Thus, 1900 was
not a leap year even though 1900 is divisible by 4. The year 200, on the other hand, is a leap
year because it is divisible by 400.

Suppose you have been asked to write a program that reads in a year and determines
whether that year is a leap year. How would you write the Boolean expression necessary to

answer that question? In order to be a leap year, one of the following conditions must hold:

O The year is divisible by 4 but not divisible by 100, or
O The year is divisible by 400.

If the year is contained in the variable y, the following Boolean expression has the correct

result:
(Y %4 == 0) 8& (y % 100 '= 0)) ||(y % 400 ==0)

Given C’s rules of precedence, none of the parentheses in this expression are actually
required, but using parentheses makes long Boolean expressions easier to read. If you take
the result of this expression and store it in a flag called isLeapY ear, you can the test the flag at
other points in the program to determine whether the isLeapY ear condition is true. A program

that performs the leap-year calculation is shown in Figure 4-1.

Fi V1B | Main program from leapyear.c

main()
{
int year;
bool isLeapyear;

COMMON

PITFALLS

Be careful to avoid
redundancy when using
Boolean data. Standard
warning signs include the
comparison of a Boolean
value against the constant
TRUE and the use of an f
statement o produce a
Boolean result that was
already available as a
conditional expre ssion.

printf(“Program to determine whether a year is a leap year.\n");
printf(“What year? “);
year = Getinteger();
isLeapyear =((year %4==0) && (year %100 !=0)) || (year % 400 ==0);
if (isLeapY ear){
printf(“%dis a leap year.\n”, year);
}else {
printf{(“% dis not a leap year.\n” year);
}

1-4 The if statement

The simplest way to express conditional execution in ¢ is by using the if statement,

which comes in two forms:

It (condition) statement
It (condition) statement else statement

The condition component of this paradigm is a Boolean-valued expression. The statements
can be either simple statements or blocks.

You use the first form of the if statement when your solution strategy calls for a set of
statements to be executed only if a particular condition applies. If that condition does not
apply, the statements that form the body of the if statement are simply skipped. For example,

in the balance.c example in Chapter 3, the statement

If (entry < 0 0 && balance <0) {
Printf(“This check bonces. 410 fee deduc ted.\n");
Balance -= 10;

}

fits into this category: either a check bounces or it doesn’t, and the program needs to take
action only in the bounced-check case.

You use the second form of the if statement for situations in which the program must
chose between two independent sets of actions based on the result of a test. This statement
form is illustrated by the odd even. C program given in Figure 4-2, in which the program
reads in a number and classifies it as either even or odd. The conditional expression used to

determine the answer is
n%2==

See if it is 0, which would indicate that n is an even number. If so, the statement
immediately after the if line is executed, which reports that the number is indeed even. If the
remainder is not 0, n must be odd, and the statement following the else line reports that fact.
The block of statements executed when the conditional expression is tue is called the then
clause of the if statement. The block of statements executed when the condition is FALSE is
called the else clause.

|3 (€18) 28 DFBY- Main program from oddeven.c

main()

{

intn;

printf(“Program to classify a number as even or odd.\n’);
printf{*n =7,
n = Gerlnteger();
if (n% 2==0){
printf(“That number is even.\n’);
} else {
printf(*That number is odd.\n”);

The fact that the else clause is optional in the if statement sometimes creates an
ambiguity, which is called the dangling-else problem. If you write several if statements
nested one within another, some of which have else clauses and some of which don’t, it can
be difficult to tell which else goes with which if. When faced with this situation, the C
compiler follows the simple rule that each else clause is paired with the most recent if
statement that does not already have an else clause. While this rule is simple for the
compiler, it can still be hard for human readers to recognize quickly where each else clause
belongs. By adopting a more disciplined programming style than C requires, it is possible
to get rid of dangling-else ambiguities. The following rule governing how to use blocks

within if statements eliminates the problem.

IF / ELSE For any if statement that (1) requires more than a single

BLOCKING line or (2) requires an else clause, always use curly braces to

RULE enclose in a separate block the statements under the
control of the if statement.

Because this text uses the If/Else Blocking Rule, the if statement appears only in one of the

following four forms:

A single-line if statement used for extremely short conditions
2. A multilane if statement in which the statement in which the statements are
enclosed in a block
3. An ifelse statement that always uses blocks to enclose the statements controlled by
the if statement, even if they consist of a single statement
4. A cascading if statement, used for expressing a series of conditional tests
Each of these forms is discussed in more detail in the sections that follow.

Single-line if statements

for single-line i statements

The simple one-line format shown in the syntax
box on the left is used only for those if statements in

If (condition) statement, which there is no else clause and in which the body is a

Where:

condition is the Boole an value being tested
statement is a single of statement to be
executed if the condition is TRUE

single statement short enough to fit on the same line as
the if. In this type of situation, using braces and
extending the if statement form one to three lines
would make the program longer and more difficult to

read. The only example so far of this style is the

statement

if (value == Sentinel) break;

presented in the section on “Sentinel-based loops” in Chapter 3.

for multiline i statements

It (condition) {
statements,

}
Where:

Condfition is the Boolean value being tested
statements 1S a block of statements to be
executed if the condition is TRUE

for if else statements

If (condition) {

Statements y;
} else {

statements

}

Where:
condition is the Boole an value being tested
statements; is a block of statements to be
executed if the condition is TRUE
statementsy 18 block of statements to be

executed if condition is FALSE

for cascading if statements

If (condition,)

Statements ;,
Yelse if (condition) | any
Statements ; number
}else if (conditions;) { may
Statements ; appear
}else {
Statements,, .

}

Where:
Each condition; is a Boole an expression
Each szazemens; is a block of statements to
be evecuted if condition,is TRUE

statements, .18 the block of statements to

none

be executed if every condition;is FALSE

Multiline if statements

Whenever the body of an if statement consists of
multiple statements or a single statement that is too long
for a single line, the statements are enclose in a block, as
shown in the syntax box on the left. In this form, the
statements are executed if the condition is TRUE. If the
condition is FALSE, the program takes no action at all and

continues with the statement following the if.

The if-else statement

To avoid the dangling-else problem, the bodies of if
statements that have else-clauses are always enclosed
within blocks, as shown in the syntax box on the left.
Technically, the curly braces that surround the block are
necessary only if there is more than one statement
governed by that condition. By systematically using
those braces, however, you can minimize the possibility
of confusion and make your programs easier to maintain.

Cascading if statements

The syntax box on the right illustrates an important
special case of the if statement that is useful for
applications in which the number of possible cases is
larger than two. The characteristic form is that the else
part of a condition consists of yet another test to check
for an alternative condition. Such statements are called
cascading if statements and may involve any number of
else if lines. For example, the program signtestc in Figure
4-3 uses the cascading if statement to report whether a
number is positive, zero, or negative. Note that three is
no need to check explicitly for the n <0 condition. Ifthe
program reaches that last else clause, there is no other
possibility, since the earlier tests have eliminated the
positive and zero cases.

In many situations,

the process of choosing

between a set of independent cases can be handled more efficiently using the switch

statement, which is described in a separate section later in this chapter.

FIGURE 4-3%1 program from signtest.c

main()

{

int n;

printf{“Program to classify a number by its sign\n”);
printf(“n =2
n = Getinteger();
if (n>0>{
printf(“That number is positive.\n");
}else if (n ==0) {
printf(“That number is zero.\n")’;
}else {
printf(“That number is negative.\n’);
}

The ?: operator (optional)

The C programming language provides another, more compact mechanism for
expressing conditional execution that can be extremely useful in certain situations: the ?:
operator. (This operator is referred to as question-mark colon, even though the two
characters do not actually appear adjacent to one another.) Unlike any other operator in C. ?:

is written in two parts and requires three operands. The general form of the operation is
(condition) ? expression : expression ,

The parentheses around the condition are not technically required, but many C
programmers in clued them to emphasize the boundaries of the conditional test.

When a C program encounters the ?: operator, it first evaluates the condition. If the
condition turns out to be TRUE, expressionl is evaluated and used as the vale of the entire
expression; if the condition is FALSE, the value is the result of evaluating expression . The ?:
operator is therefore a shorthand form of the if statement

If (condi tion) {

Value = expression1;
} elsse {

value = expression2;
}

Where the value of the ? expression as a whole is whatever would have been stored in

value in the expanded, i-statement form.
For example, you can used the ?: operator to assign to max either the value of x or the

value of'y, whichever is greater, as follows:
max = (x>y) ?x:y;

One of the most common situations in which the ?: operator makes sense is in calls to printf
where the output you want differs slightly depending on some condition. For example,

suppose that you are writing a program that counts the number of some item and that, after

doing all the counting, stores the number of items in the variable nltems. How would you
report this value to the user? The obvious way is just to call printf using a statement like

printf (“% ditems found.\n", nltems);

But if you are a language purist, you might be a little chagrined to read the output

[1 items found.]

when nltems happens to have the value 1. You could, however, correct the English by

enclosing the printf line in the following if statement:

if (nltems > 1) {

printf(“% ditems found.\n", nltems);
}else {

printf{(“% ditem fond.\n", nltems);
}

The only problem is that this solution strategy requires a five-line statement to express a

relatively simple idea. As an alternative, you could use the ?: operator as follows:
printf ("% ditem% s found.\n”, nltems, (nltems> 1) ? “s™*");

The string “item” in the output would then be followed by the string “s” if nltems is greater
than one and an empty string otherwise.

As another example, you can use ? to print out the value of a Boolean variable in a
readable way. Remember that the type bool is not actually part of the C language, and there
is therefore no built-in mechanism for printing values of that type. Even so, you can easily

use printf and ?: to display the value of the Boolean variable errorFlag as follows :
printf(“errorFlag = %<\, (errorFlag) ? “TRUE”: “FALSE’);

In C, it is possible to overuse the ?: operator. If an essential part of the decision-making
structure with a program is hidden away in the ? operator, those decision-making
operations can easily get lost in the rest of the code. On the other hand, if using 7 makes it
possible to handle some small detail without writing a complicated if statement, this

operator can simplify the program structure considerably.

1-5The switch statement

The if statement is ideal for those applications in which the program logic calls or a
two-way decision point: some condition is either TRUE or FALSE, and the program acts
accordingly. Some applications, however, call for more complicated decision structures
involving more than two choices, where those choices can be divided into a set of mutually
exclusive cases: in one case, the program should do x; in another case, it should do y; in a
third, it should do z; and so forth. In many applications, the most appropriate statement to
use for such situations is the switch statement, which is outlined in the syntax box on the

right.

The header line of the switch statement is for the swiich statements
itch
swith () switch (&) {
Where e is an expression called the control expression. case CT:
o o Sstatement,
The body of the switch statement is divided into individual break:
groups of statements introduced with one of two key words: Case;ci: y
. . statements
case or default. A case line and all the statements that follow it break: 2
up to the next instance of either of these keywords are ... more case clauses...
. . . defaul t
called a case clause; the default line and its associated)
] Statemernts e
statements are called the default clause. For example, in break:
the paradigm shown in the syntax box, the range of }
statements where:
case cl: e is the control expression, which is used to
Stements/ choose what statements are executed
break ; .
each ¢ is a constant value
constitutes the first case clause. each szatements; is a sequence of statements
When the program executes a switch statement, the to be executed if ¢; is equal to e
control expression ¢ in evaluated and compared against the statement.ris a sequence of statements to be
value c1, ¢2, and so forth, each of which must be an integer executed if none of the ¢; values match the
constant (or, as you will see in Chapter9, any value that expression e

behaves like an integer, such as a character). If one of the

constants matches the value of the control expression, the statements in the associated case
clause are executed. When the program reaches the break statement at the end of the clause,
the operations specified by that clause are complete, and the program continues with the
statement following the entire switch statement. If none of the case constants match the
value of the control expression, the statements in the default clause are executed.

The paradigm shown in the syntax box deliberately suggests that the break statements
are a required part of the syntax. I encourage you to think of the switch syntax in precisely
that form. C is defined so that if the break statement is missing, the program statements
executing statements from the next clause after it finishes the selected one. While this
design can be useful in some cases, it tends to cause more problems than it solves. To
reinforce the importance of remembering to include the break statement, every case clause
in this text ends with an explicit break statement (or sometimes with a return statement, as
discussed in Chapter 5).

The one exception to this rule is that multiple case lines specifying different constants
can appear together, one after another, before the same statement group. For example, a
switch statement might include the following code:

case 1

case 2:
statements
break;

Which indicates that the specified statements should be executed if the select
expression is either 1 or 2. The C compiler treats this construction as two case clauses, the

first of which is empty. Because the empty clause contains no break statement, a program

COMMON

PITFALLS

It is good programming
practice to include a break
statement at the end of
every case clause witin a
switch statement Doing so
will help you to avoid
programming errors that
can be extremely difficul t
to find. Itis also good
practice to include a
default clause unless you
are sure you have covered
all the cases.

that selects that path simply continues on with the second clause. From a conceptual point
of view, however, you are probably better off to think of this construction as a single case
clause representing two possibilities.

The default clause is optional in the switch statement. If none of the cases match and
there is no default clause, the program simply continues on with the next statement after the
switch statement without taking any action at all. To avoid the possibility that the program
might ignore an unexpected case, it is good programming practice to include a default clause
in every switch statement unless you are certain you have enumerated all the possibilities.

Because the switch statement can be rather long, programs are easier to read if the case
clauses themselves are short. If there is room to do so, it also helps to put the case identifier,
the statements forming the body of the clause, and the break statement all together on the
same line. This style is illustrated in the cardrank.c program in Figure 4-4, which shows an
example of a switch statement that might prove useful in writing a program to play a card
game. In this game, the cards within each suit are represented by the numbers 1 to 13.
Displaying the number of the card is fine for the cards between 2 and 10, but this style of
output is not particularly satisfying for the values 1, 11, 12, and 13, which should properly
be represented using the names ace, Jack, Queen, and King. The cardrank.c program uses the

switch statement to display the correct symbol for each card

|3 (€18 24 I B Main program form cardrank.c

main()

{

int n;

printf{(*What is the rank of the card (1-13)? *);
n = Getinteger();
switch (n) {
case 1: printf(“Ace\n”); break;
case 11: printf(“Jack\n”); break;
case 12: printf(*Queen\n”); break;
case 13: printf(“King\n"); break;
}
}

The fact that the switch statement can only e used to choose between cases identified by
an integer (or integer-like) constant does place some restrictions on its use. You will
encounter situations in which you want to choose between several cases based on the value
of a string variable or in which the values you want to use as case indicator are not
constants. Since the switch statement cannot be used in such cases, you will instead need to
rely on cascading if statements. In situations that allow the use of the switch statement, using

it can make your program both more readable and more efficient.

1-6 The while statement

The simplest iterative construct is the whie statement, which repeatedly executes a
simple statement or block until the conditional expression becomes FALSE. The paradigm
for the while statement is shown in the syntax box. As with the if statement, the C compiler
allows you to eliminate the curly braces surrounding the body if the body consists of a

single statement. For the while loops used in this text, the body is always enclosed in braces

to improve readability.

while (condition) {
Statements program executes a while statement, it first evaluates

}

Where:

condition is the conditional test used to

The entire statement, including both the while
for while statements control line itself and the statements enclosed within

the body, constitutes a while loop. When the

the conditional expression to see if it is TRUE or
FALSE. If it is FALSE, the loop terminates and the

program continues with the next statement after the

determine whether the loop should| entire loop. If the condition is TRUE, the entire body

continues for another cycle

statements are the statements to be repeated

is executed, after which the program goes back to

the top to check the condition again. A single pass

through the statements in the body constitutes a
cycle of the loop.
There are two important principles to observe about the operation of a while loop:

1. The conditional test is performed before every cycle of the loop, including the
first. Ifthe test is FALSE initially, the body of the loop is not executed at all.

2. The conditional test is performed only at the beginning of a loop cycle. If that
condition happens to become FALSE at some point during the loop, the program
doesn’t notice that fact until a complete cycle has been executed. At that point,
that program evaluates that test condition again. If it is still FALSE, that loop

terminates.

Using the while loop

You have already seen examples of the while statement, beginning with the section on
“Sentinel-based loops” in Chapter 3. That particular style of using while was designed for
sentinel detection and represents a somew hat special case. To illustrate the use of the while
statement in its more traditional form, it is useful to pose a problem for which the
conditional test falls most naturally at the beginning of the loop.

Suppose that you have been asked to write a program that adds up the digits in a
positive integer. A sample run for this program might then be

This program sums the digits in an integer.
Enter a positive integer: 1729 <
The sum of the digits is 19

where the result of 19 comes form adding 1 + 7 + 2 + 9. How would you go about writing
such a program?

You have already seen several programs that keep a running total, and the same basic
strategy applies here. You need to declare a variable for the sum, initialize it to 0, go
through a loop adding in digits, and finally display the sum at the end. That much of the
structure, with the rest of the problem left written in English, is shown below:

main()
int n, dsum;

printf{(“This program sums the digits in an integer.\n");
pimtf{(“Enter a positive integer: “);
n = Getinteger();
dsum =0;
Foreach digit in the number, add that digit to dsum.
Printf(“The sum of the digits is % dn”, dsum);
}

The sentence
For each digit in the number, ad that digit fodsum.

clearly specifies a loop structure of some sort, since there is an operation that needs to be
repeated for each digit in the number. If it were easy to determine how many digits a
number contained, you might choose to use a for loop and count up to the number of digits.
Unfortunately, finding out how many digits there are in an integer is just as hard as adding
them up in the first place. The best way to write this program is just as to keep adding in
digits until you discover that you have added the last one. Loops that run until some
condition occurs are most often coded using the while statement.

The essence of this problem lies in determining how to break up a number into its
component digits. The key insight is that the arithmetic operators/ and % are sufficient to
accomplish the task. The last digit of an integer n is simply the remainder left over when n
is divided by 10, which is the result of the expression n % 10. The rest of the number—the
integer that consists of all digits except for the last one—is given by n /10. For example, if n
has the value 1729, the / and % operators can be used to break that number into two parts,

172 and 9, as shown in the following diagram:

n

1729
172 9
n/10 n %10

Thus, in order to add up the digits in the number, all you need to do is add the value n % 10
to the variable dsum on each cycle of the loop and then divide the number n by 10. The next
cycle will add in the second-to-last digit form the original number, and so on, until the
entire number has been processed in this way.

But how do you know when to stop? Eventually, as you divide n by 10 in each cycle,
you will reach the point at which n becomes 0. At that point, you’ve processed all the digits
in the number and can exit from the loop. In other words, as along as the value of n is
greater than 0, you could keep going. Thus, the while loop needed for the problem is

while (n >0) {

dsum +=n % 10;

n/=10;
}

The entire digitsum.c program is shownin Figure 4-5.

|3 (€18) 23 - B Main program from digitsum.c

main()

{

int n, dsum;

pimtf(“This program sums the digits in an integer.\n");
printf(“Enter a positive integer: “);
n = Getlnteger();
dsum =0;
while (n >0) {
dsum+=n % f10;
n/=10;
}
printf(*The sum of the digits is % dn”, dsum);

Infinite loops

When you use a while loop in a program, it is important to make sure that the
condition used to control the loop will eventually become FALSE, so that the loop can exit. If
the condition in the while control line always evaluates to TRUE, the computer will keep
executing cycle after cycle without stopping. This situation is called an infinite loop.

As an example, suppose that you had carelessly written the while loop I the digitsum.c

program with a >= operator in the control line instead of the correct > operator, as shown

below:
while (n >=0) {
dsum +=n % 10; This loop will never stop running.
n/=10;

}

The loop no longer stops when n is reduced to 0, as it does in the correctly coded example.
Instead, the computer keeps executing the body over and over and over again, with n equal
to 0 every time.

To stop an infinite loop, you must type a special command sequence on the keyboard
to interrupt the program and forcibly cause it to quit. This command sequence differs from
machine to machine, and you should be sure to learn what command to use on your own

computer.

Solving the loop-and-a-half problem

The while loop is designed for situations in which there is some test condition that can
be applied at the beginning of a repeated operation, before any of the statements in the body
of the loop are executed. If the problem you are trying to solve fits this structure, the while
loop is the perfect tool. Unfortunately, many programming problems do not fit easily into
the standard while loop paradigm. Instead of allowing a convenient test at the beginning of

the operation, some problems are structured in such a way that the test you would like to

COMMON

PITFALLS

Think carefully about the
conditional expression you
use in a while loop so that
you can be sure the loop
will eventually exit A loop
that never finishes is called
an /mfinite loop..

write to determine if the loop is complete falls most naturally somewhere in the middle of
the loop.

Consider for example, the problem of reading input data until a sentinel value appears,
which was discussed in the section on “Sentinel-based loops” in Chapter 3. When
expressed in English, the structure of the sentinel-based loop consists of repeating the
following steps:

1. Read in a value.
2. Ifthe value is equal to the sentinel, exit form the loop.
3. Perform whatever processing is required for that value.

Unfortunately, there is no test you can perform at the very beginning of the loop to
determine whether the loop is finished. The termination condition for the loop is reached
when the input value is equal to the sentinel; in order to check this condition, the program
must have first read in some value. If the program has not yet read in a value, the
termination condition doesn’t make sense. Before the program can make any meaningful
test, it must have executed the part of the loop that reads in the input value. When a loop
contains some operations that must be performed before testing for completion, it
represents an instance of what programmers call the loop-and-half problem.

One way to solve the loop-and-a-half problem in C is to use the break statement,
which, in addition to its use in the switch statement, has the effect of immediately
terminating the innermost enclosing loop. By using break, it is possible to code the loop

structure for the sentinel problem in a form that follows the natural structure of the problem:

while (TRUE)) {
prompt user and read in a value
If (va/ue == sentinel) break;
process the data value

}
The initial line
while (TRUE)

needs some explanation. The while loop is defined so that it continues until the condition in
parentheses becomes FALSE. The symbol TRUE is a constant, so it can never become FALSE.
Thus, as far as the while statement itself is concerned, the loop will never terminate. The only
way this program can exit from the loop is by executing the break statement inside it.

It is possible to code this sort of loop without using the while (TRUE) control line or the
break statement. To do so, however, you must change the order of operations within the loop
and request input data in two places: one before the loop begins and then again inside the
loop body. When structured in this way, the paradigm for the sentinel-based loop is

prompt user and read in the first value
while (valuel= sentinel) {
process the data value

prompt user and read in a new value

Figure 4-6 shows how this paradigm can be used to implement the addistc program

presented in Chapter 3 without using a break statement.

Fi 11y X: & Revised main program from addlist.c

main()

{

int value, tofal;

printf(“This program adds a list of numbers.\n");
pimtf(*Signal end of list with a 0.\n");
total = 0;
printf(“ 7 “);
value = Getinteger();
while (value !=0) {
total +=value;
pirntf(“ 7);
value = Getinteger();

}
printf{(“The total is % din”, total);

Unfortunately, there are two drawbacks to using this strategy. First, the order of
operations in the loop is not what most people would expect. In any English explanation of
the solution strategy, the first step is to get a number and the second is to add it to the total.
The while loop paradigm used in Figure 4-6 reverses the order of the statements within the
loop and makes the program more difficult to follow. The second problem is that this
paradigm requires two copies of the statements that read in a number. Duplication of code
presents a serious maintenance problem because subsequent edits to one set of statements
might not be made to the other. Empirical studies have shown that students who learn to
solve the loop-and-a-half problem using the break statement form are more likely to write
correct programs than those who don’t.!

Despite the disadvantages, some instructors disklike using break to solve the loop-and-
a-half problem. The principal reason for doing so is that it is easy to overuse the break
statement in C. One way to guard against the overuse of the break statement is disallow its
use entirely. To me, such an approach seems overly draconian. In this text, I use the break
statement within a while loop only to solve the loop-and-a-half problem and not in other,

more complex situations whereits use is likely to obscure the program’s structure.

1-7 The for statement

One of the most important control statements in C is the for statement, which is most
often used in situation s in which you want to repeat an operation a particular number of
times. The general form of the for statement is shown in the syntax box to the right.

The operation of the for loop is determined by the three italicize expressions on the for
control line: zziz fest, and szep. The niz expression indicates how the for loop should be

initialized and usually sets the initial value of the index variable. For example, if you write

! The best known study corroborating this finding is “Cognitive strategies and a looping constructs:
and empirical study” by Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich (Communications of the ACM,
November 1983).

for (i=0;...

the loop will begin by setting the index variable i to 0. If the loop begins

for (I =-7; ...

the variable i will start as —7, and so on.

The zesr expression is a conditional test written
exactly like the test in a while statement. As long as the
test expression is TRUE, the loop continues. Thus, in the

loop that has served as our canonical example up to now
for (i=0;i<n;|++)

the loop begins with i equal to 0 and continues as long as i
is less than n , which turns out to represent a total of n

cycles, with i taking on the values 0, 1, 2, and so for the

up to the final value n-1. The loop

for (i=1;i<=n;itt)

for the for statements

for (zm27, test, step) {
Statements

}
Where:

/nitis an expression evaluated to initialize the loop

Zest 1s a conditional test used to determine whether
the loop should continue, just as in the whie
statement cycle

statements are the statements to be repeated

begins with i equal to 1 and continues as long as iis less than or equal to n. This loop also

runs for n cycles, with i taking on the values 1, 2, and so forth, up ton.

The szep expression indicates how the value of the index variable changes from cycle

to cycle. The most common form of step specification is to increment the index variable

using the ++ operator used in the for loops throughout Chapter 3, but its is not the only

possibility. For example, one can count backward by using the - operator or count by twos

by using +=2 instead of ++.

As an illustration of counting in the reverse direction, the program lifoffc in Figure 4-7

counts down form 10 to 0.

|3 (@18) 23 I By liftoff.c

/*
* File: liftoff.c

*

* simulates a countdown for a rocket launch.
*/

#include <stdio.h>
#include “genlib.h”

/*
* Coustant: StaringCount

*

* Change this constant to use a different starting value
*for the countdown.
)

#define StaringCount 10
[* Main program */
main()
{

intt

for (t = StartingCount, t >=0;) {
printf(“% 2d\n", 1);

}
printf(“Liftoffl\n”);
}

When liftoff.c is run, it generates the following sample run:

4)
1

0
9
8
7
6
5
4
3
2
1
0
Li

Y iftoffl)

The liftoff.c program demonstrates that any variable can be used as an index variable. In
this case, the variable is called t, presumably because that is the traditional variable for a
rocket countdown, as in “T minus 10 seconds and counting.” In any case, the index variable
must be declared at the beginning of the program just like any other variable.

The expressions /zzz, fest, and szep are each optional, but the semicolons must appear.
If init is missing, no initialization is performed. If Zes7 is missing, it is assumed to be TRUE.

If s7¢p is missing, no action occurs between loop cycles. Thus the control line
for ;5
is identical in operation to

while (TRUE)

Nested for loops

As your programs become more complicated, you will often need to nest one for
statement inside another. In this case, the inner for loop is then executed through its entire
set of cycles for each iteration of the outer for loop. Each for loop must have its own index
variable so that the variable so that the variables do not interfere with one another.

As an example of nested for loops, consider the timestab.c program in Figure 4-8.

| (@10) 23 - B timestab.c

/*
*File: imestab.c

*

* Generates a multiplication table where each axis
*runs form LowerLimitto UpperLimit.
*/

#include <stdio.h>
#include “genlib.h”

/i(
*Constants

*

* LowerLimit — Starting value for the table
* UpperLimit - Final value for the table
*/

#define LowerLimit 1
#define UpperLimit 10

[*Main Program */

mainn()

{

int i, j;

for (i = LowerLimit; I<= UpperLimit; i++) {
fro (j = LowerLimit, j <= UpperLimit; j++) {
printf(* %4d", i * j);

1
printf{(\n”);

}
}

The timestab.c program displays the following 10x10 multiplication table:

(N\
12 3 4 5 6 7 8 9 10
2 4 6 8§ 10 12 14 16 18 20
3 6 9 12 15 21 24 32 36 N
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 20 35 40 45 50
6 12 18 24 30 36 42 48 5 60
714 21 28 3% 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 100

(N J

The outer for loop, which uses i as its index variable, runs through each row of the table. For
each row, the inner for loop runs through each column in that row, displaying the individual
entry, which is the value of i *j (the row number times the column number). Note that the
printf{"\n") call that advances the cursor to the next line appears in the outer loop, because this
statement should only be executed once at the end of each row, and not after every value in
the row.

The relationship between for and while

As it happens, the for statement

for (7217, test, step) {
Statements,

}

is identical in operation to the while statement

init

while (Zesz?) {
Stlatements;
slep;

}

Even though the for statement can easily be rewritten using while, there are considerable

advantages to using the for statement when it makes sense to do so. With a for statement, all
the information you need to understand exactly which cycles will be executed is contained
in the control line of the statement. For example, whenever you see the statement

for (i=0; i<10; i++) {

... body ...
}

in a program, you know that the statements in the body of the loop will be executed 10

times, once for each of the values of i between 0 and 9. In the equivalent while loop form

i=0;

while (i< 10) {
... boay ...
i++;

}

the increment operation at the bottom of the loop can easily get lost if the body is large.

Using for with floating-point data

Because the 77z test, and step components of the for loop can be arbitrary expressions,
there is no obvious reason why the loop index in a for loop has to be an integer. The fact that

it is possible to count from 0 to 10 by twos using the for loop
for (i=0;i<=10;i+=2)...

suggests that it might also be possible to count from 1.0 to 2.9 in increments of 0.1 by
declaring xas a double and then using

or (x=1,; x<=2.0; x +=0.1) .. S

This test may fail.

On some machines, this statement has the desired effect. On others, it might fail to include
the last value. For example, when the for loop

for (x = 1.0; x<=2.0; x +=0.1) {
printf(“% 1f\n, x);

This loop might not include the value 2.0
}

p

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

\

is run on the computer system I used t oproduce this text, it generates the following output:

Notice that the value 2.0, which you would expect to see form looking at the loop control
line, is missing.

The problem here is that floating-point numbers are not exact. The value 0.1 is very

COMMON

PITFALLS

Be very careful when
testing floa ing-poin t
numbers for equality.
Because floa ting-poin t
numbers are only
approximations, they might
not behave in the same
way as real numbers in
mathema tics. In general, it
is best to avoid using a
floating point variable as a
for loop index.

close to the mathematical fraction 1/10 but is almost certainly not precisely equal to it. As
0.1 is added to the index variable X, the inaccuracy can accumulate to the point that, when x
is tested against 2.0 to determine whether the loop is finished, its value may be
2.000000001 or something similar, which is not less than or equal 2.0. The condition in the
for loop is therefore not satisfied, and the loop terminates after running for what seems to be
one too few cycles. The best way to fix this problem is to restrict yourself to using integers
as index variables in for loops. Because integers are exact, the problem never arises.

If you really want to count from 1.0 to 2.0 by increments of 0.1, you could count form
10 to 20 and then divide the index by 10:

for (1= 10 ;i <= 20; i++){

x =i/10.0;

printf(“% .1fn", x);
}

This for loop correctly produces the 11 values in the sequence 1.0, 1.1, 1.2, ..., 2.0.

The same warning about comparing floating-point numbers for equality applies in
many other circumstances besides the for loop. Numbers that seem as if they should be
exactly equal might not be, given the limitations on the accuracy of floating-point numbers

stored in a particular machine.

SUMMARY

In Chapter 3, you looked at the process of programming form a holistic perspective
that emphasized problem solving. Along the way, you learned about several control
statements in an informal way. In this chapter, you were able to investigate how those
statements work in more detail. You were also introduced to a new type of data called
Boolean data. Although this data type contains only two values—TRUE and FALSE—being
able to use Boolean data effectively is extremely important to successful programming and
is sell worth a little extra practice.

This chapter also introduced several new operators, and at this point it is helpful to
review the precedence relationships for all the operators you have seen so far. That
information is summarized in Table 4-1 the operators are listed from highest to lowest

precedence.

Operator Associativety

unary - - (type cast) right-to-left

o % left-to-righ t

. left-to-right

left-to-righ t

< <= > o= left-to-right

== = left-to-righ t

&& left-to-righ't

| left-to-righ t

? right-to-left

= op= right-to-left

The important points introduced in this chapter include:

TABLE 4-1

Precedence table
for operators
used through
Chapter 4

o =2

Simple statements consist of an expression followed by a semicolon.

The = used to specify assignment is an operator in C. Assignments are therefore legal
expressions, which makes it possible to write embedded and multiple assignments.
Individual statements can be collected into compound statements, more commonly
called blocks.

Control statements fall into two classes: conditional/ and iterative.

The genlib library defines a data type called bool that is used to represent Boolean data.
The type bool has only two values: TRUE and FALSE.

You can generate Boolean values using the re/ational operator (<, <=, >, >=, ==, and !=)
and combine them using the /logrcal operators (&8, ||, and !).

The logical operators && and || are evaluated in left-to-right order in such a way that the
evaluation stops as soon as the program can determine the result. This behavior is
called short-circuit evaluation.

The if statement is used to express conditional execution when a section of code
should be executed only in certain cases or when the program needs to choose
between two alternate paths.

The switch statement is used to express conditional execution when a problem has the
following structure: in case 1, do this; in case 2; do that; and so forth.

The while statement specifies repetition thatoccurs as long as some condition is met.
The for statement specifies repetition in which some action is needed on each cycle in
order to update the value of an index variable.

REVIEW QUESTIONS

Is the construction
17,

a legal statement in C? Is it useful?
Describe the effect of the following statement, assuming that i, j, and k are declared as
integer variables:

i=(+4)*(k=16),

What single statement would you write to set both x and y (which you may assume are
declared to be type double) to 1.0?

What is meant by the term associativity? What is unusual about the associativity of
assignment with respect to that of the other operators you have seen?

What is a block? What important fact about blocks is conveyed by the term compound
statement, which is another name for the same concept?

What are the two classes of control statements?

What does it mean to say that two control statements are nested?

What are the two values of the data type bool?

What happens when a programmer tries to use the mathematical symbol for equality in
a conditional expression?

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

What restriction does C place on the types of values that can be compared using the
relational operators?

How would you write a Boolean expression to test whether the value of the integer
variable n was in the range 0 to 9, inclusive?

Describe in English what the following conditional expression means:
(x!=4)|| (x!=17)

for what values of x is this condition TRUE?

What does the term s/orz-circuit evaluation mean?

Assuming that myFlag is declared as a Boolean variable, what is the problem with
writing the following if statement?

if (myFlag == TURE) ...

What are the four different formats of the if statement used in this text?

Describe in English the general operation of the switch statement.
Suppose the body of a while loop contains a statement that, when executed, causes the
condition for that while loop to become FALSE. Does the loop terminate immediately at
that point or does it complete the currentcycle?
Why is it important for the digitsum.c program in Figure 4-5 to specify that the integer is
positive?
What is the loop-and-a-half problem? What two strategies are presented in the text for
solving it?
What is the purpose of each of the three expressions that appear in the control line of a
for statement?

What for loop control line would you use in each of the following situations:

a) Counting form 1 to 100.

b) Counting by sevens starting at 0 until the number has more than two digits.

¢) Counting backward by twos form 100 to 0.

Why is it best to avoid using a floating-point variable as the index variable in a for loop?

PROGRAMMING EXERCISES

As a way to pass the time on long bus trips, young people growing up in the United

States have been known to sing the following rather repetitive song:

99 bottles of beer on the wall.

99 bottles of beer.

You take one down, pass it around.
98 bottles of beer on the wall.

98 bottole of beer on the wall....

Any way, you get the idea. Write a C program to generate the lyrics to this song.
(Since you probably never actually finished singing this song, you should decide how
you want it to end.) In testing your program, it would make sense to use some constant

other than 99 as the initial number of bottles.

While we’re on the subject of silly songs, another old standby is “This old Man,” for
which the first verse is

This old man, he played 1.

He played knick-knack on my thumb.

With a knick-knack, paddy-whack,

Give your dog a bone.

This old man came rolling home.
Each subsequent verse is the same, except for the number and the rhyming word at the
end of the second line, which gets replaced as follows:

2—shoe S5—hive 8—pate

3—knee 6—sticks 9—spine

4—door 7—heaven 10—shin

Write a program to display all 10 verses of this song.

Write a program that reads in a positive integer N and then calculates and displays the
sum of the first N odd integers. For example, if N is 4, your program should display
the value 16, which is 1 +3 +7.

Why is evervthing either at sixes or at sevens?

— Gilbert and Sullivan, H.M.S. Pinafore, 1878
Write a program that displays the integers between 1 and 100 that are divisible by
either 6 or 7.

Repeat exercise 4, but this time have your program display only those numbers that are
divisible by 6 or 7 but not both.

Rewrite the liftoffc program given in Figure 4-7 so that it uses a while loop instead of a

for loop.

Rewrite the digitsum.c program given in Figure 4-5 so that instead of adding the digits in
the number, it generates the number that has the same digits in the reverse order, as

This program reverses the digits in an inteer.
Enter a positive integer: 1729+
The reversed number is 9271

illustrated by this sample run:

In mathematics, there is a famous sequence of numbers called the Fibonacci sequence
after the thirteenth-century Italian mathematician Leonardo Fibonacci. The first two
terms in this sequence are 0 and 1, and every subsequent term is the sum of the
preceding two. Thus the first several numbers in the Fibonacci sequence are as
follows:

Fopb = 0

F, = 1
F, = 1 (0+1)
F, = 2 (1+1)
F, = 3 (1+2)
Fs = 5 (2+3)
F, = 8 (3+5)

Write a program to display the values in this sequence from F,, through F,;. Make sure

the value line up as shown in the following sample run:

(N\
This program lists the Fibonacci sequence.
F(1) = 0
F(2) = 1
F(2) = 1
F(3) = 2
F(4) = 3
F(5) = 5
F(6) = 8
F(7) = 13
F(8) = 2
F(9) = A4
F(10) = 5
F(11) = 89
F(12) = 14
F(13) = 233
F(14) = 377
F(15) = 610
(& J

9. Modify the program in the preceding exercise so that instead of specifying the index of
the final term, the program displays those terms in the Fibonacci sequence that are les
than 10,000.

10. Write a program to display the following diagram on the screen. The number of rows
in the figure should be a #define constant, which has the value 8 for this sample run:

Fkkkk

Kk k ko

Fkdkkkkkk

dekdokkkkk ok

Sk dkkkkdkkkk

Fekdok ko ok ko k.

11. Modify the program you wrote n exercise 10 so thatit generates a different triangle. In
this triangle, each line contains two more points than the previous line does, and the
point of the triangle faces upward, as follows:

Chapter 1 Functions

70 live is to function. That is all there is in living.
— Oliver Wendell Holmes, Jr., radio address, 1931
OBJECTIVES

» To appreciate the importance of functions as a tool for simplifying program structure.

» To understand the concept of calling a function and the reason for supplying
argument as part of the call.

» Tounderstand function prototypes and how to write them.

» To be able to implement simple functions containing statements used in the
previous chapters.

» To be able to use the return statement to specify the result of a function.

» Tounderstand the concept of predicate functions and how to use them effectively. To
understand the relationship between formal parameters in a function and arguments in
its caller.

» To appreciate how the computer used stack frames to keep track of local variables and
return addresses for each function call.

» To understand the meaning of the term procedure.

» To be able to apply stepwise refinement as a problem-solving strategy.

This chapter examines in more detail the concept of a function, which was first
introduced in Chapter 2. A functionis a set of statement s that have been collected together
and given a name. By allowing the programmer to signify the entire set of operation with a
single name, programs become much shorter and much simpler. Without functions, simple
programs would become unmanageable as they increased in size and sophistication.

In order to appreciate how functions reduce the conceptual complexity of programs,
you need to understand the concept in two ways. From the reductionistic perspective, you
need to understand how functions work in an operational sense so you can predict their
behavior. At the same time, you must be able to take a step backward and look at functions
holistically, so that you can also understand why they are important and how to use them
effectively.

1-1Using library functions

You have been working with functions in this text ever since the very first
program—the “Hello world” program from Chapter 2. That program contained just one
statement, which was a call to the printf function:

printf(“Hello, world.\n");

A function, such as printf, represents a set of programming steps used to perform a useful
operation. In this respect, a function is similar to a complete program. Indeed, the
programs you have seen up to now have been written as a function, which happens to have
the name main.

The difference in concept between a function and a program lies primarily in who or
what makes use of it. When, as a user, you sit down in front of your computer and start up
an application, you are running a program that performs some action on your behalf. Thus,
programs are invoked by and serve the needs of an external user. Functions, on the other
hand, provide a mechanism by which a program can invoke a set of previously defined
operations on its behalf. The operation of a function is thus entirely internal to the program

domain.

As a user of the “Hello world” program, you have no idea that the program calls the
printf function as part of its operation; you know only that the words “Hello world” appear
on the screen. The programmer who wrote the hello.c program, however, recognized that
printf provides a useful service that makes it possible to display messages on the screen with
very little difficulty. Most of the hard work was done by the system programmer who wrote
the program steps necessary to implement the printf function itself. Since that work has
already been done, other programmers like yourself can use the printf function without
having to write all the steps that make it work. You don’t even have to know what those
steps are.

In order to consider functions more concretely, it helps to review some of the basic
terminology for functions that was introduced in Chapter 2. First of all, a function consists
of a set of statements that have been collected together and given a name. The act of
executing the set of statements associated with a function is knownas calling that function.
To indicate a function call in C, you write the name of the function, followed by a list of
expressions enclosed in parentheses. These expressions are called arguments and allow
the calling program to pass information to the function. In hello.c, the printf function knows
what to display because the main program provided the necessary data as part of the
function call. If a function requires no information form its caller, it need not have nay
arguments, but an empty set of parentheses must still appear in the function call.

Once called, the function takes the data supplied as arguments, does its work, and then
returns to the program step from which the call was make. Remembering what the calling
program was doing and being able to get back precisely to that point is one of the defining
characteristics of the function-calling mechanism. The operation of going back to the
calling program is called returning from the function. As part of the return operation,
functions can also send results back to the calling program, as illustrated by the function
Getinteger in the statement

n1 = Getinteger(();

After the Getinteger function per forms it s task of reading in an integer form the user, it
passes that integer back to the calling program as the value of the Getinteger() call. This
operation is called returning a value.

In a sense, arguments provide input to functions and the return values provide output
back to their callers. Despite the conceptual similarity, it is critically important to make a
sharp distinction between input operations, such as Getinteger, and the use of arguments in
the function domain. A function like Getinteger provides a mechanism for getting input from
the user; when Getinteger needs an input value, whoever is sitting in from of the terminal
must physically enter that value on the keyboard. Arguments to a function, on the other
hand, provide a means for a function to receive input form its caller, which is another part
of the program and not the human user. Data passed in the form of arguments may have
been calculated as part of the program operation. You should also be careful to differentiate
the use of output operations, such as printf, form the technique of returning a result. When
you use printf, the output appears on the terminal screen. When a function returns a result,
that information goes back to the calling program, which is free to use it in whatever way
makes sense for the program. New programmers have a tendency to use input/output
operations within functions when the logic of the situation calls for using arguments and
results.

To understand how functions fit into the framework of C, you need to recognize that a
function call is imply an expression and can be used in any context in which an expression
can appear. Moreover, the arguments to a function are also expressions, which can
themselves contain function calls or any other operations that would be legal in an
expression.

To illustrate that functions and their arguments are expressions, it is useful to introduce
several standard functions form the math system library. This library includes many of the
standard mathematical functions you learned in high-school algebra and trigonometry. For
example, the math library contains the function sqt for taking the square root of its
argument, ass well as sin and cos for trigonometric sines and cosines. Each of these
functions takes a double as an argument and returns a result, also of type double. You can use

COMMON

PITFALLS

Be careful to differentiate
in yourmind the ideas of
input and oufput in the
program domain and the
related concepts of
arguments and resulfs in
the function domain. Input
and oufput allow
communica ion between a
program and its user.
Arguments and results
allow communica tion
between a functon and its
caller.

these functions in simple statements, such as
root3 = sqrt (3.0);

or in more complicated ones. For example, you can compute the distance form the origin to
the point (x,y) using the standard distance formula for points in a plane:

distance = \/12 +)/2

In C, this formula corresponds to the statement
distance = sqrt (x *x+y *y);
Similarly, you can compute a tangent using the trigonometric identity

sin O
tan 0 =

cosf

which can be written in C as
tangent = sin(theta) / cos(theta);

A list of the important functions available in the math library is included in Appendix A.

1-2 Function declarations

In ANSI C, all functions must be declared before they are used. Function declarations
are analogous to variable declarations, which you have already seen in the section on
“Variables” in Chapter 2. A variable declaration tells the compiler the name of a variable
and the type of value it contains. A function declaration works similarly, but specifies more
details. In C, a function declaration defines

® the name of the function

® the type of each argument to the function and , in most cases , a descriptive name

for the argument

® the type of value the function returns
A function declaration in C is called a function prototype and has the following form:

result-type name (argument-specifiers),

result-type nameé argument-specifiers),

The result-ppe field indicates the type of the

for function prototypes function result, the zame field indicates the

field indicates the function name, and the
argument-specifiers field indicates the names

Where: and types of the arguments to be passed to this
result-ppe is the type of value the function returns. function. The format for this field is simply a
name is the function name. list, separated by commas, of the type of each

argument-specifiers is a list, separated by commas, | argument. As discussed later in this section,
of individual specifications for the argument | each type name in the argument specific ations
types. An argument specification consists of a | may be followed by a variable name that
type, optionally followed by a descriptive | provides additional information to human
variable name. readers.

For example, the math library contains the
following prototype for the sqrt function:

double sqrt(double);

The prototype tells you that the function sqit takes one argument, which is a double, and
returns a double as well.

Note that the prototype specifies only the types of the values that pass back and forth
between the caller and the function itself. The prototype says nothing about the actual
statements that define the function or even about what the function does. To use the sqrit
function, you need to understand that the result is the square root of its argument. The c
compiler, however, does not need this information. All it needs to know is that sqrt takes a

double and returns a double. The precise effect of the function is communicated to
programmers by the function name and the associated documentation.

Another way to provide useful information to programmers is to include, along with
each of the argument specifications, a descriptive name that identifies the nature of that
particular argument. This name does not affect the program in any substantive way,
although it provides important information to the programmer who wants to use that
function. For example, sin is declared in math.h as

double sin(double);

which specifies only the type of the argument. Programmers who need to use this function
might prefer to see the prototype written as

double sin(double anglelnR adians);

A prototype written in this form provides useful new information: that sin takes one
argument of type double, representing an angle measured in radians. In your own functions,
you should always include descriptive names for the expected arguments and use these
names when you talk about the operation of that function in the associated comments.

If a function does not take arguments, C uses the special keyword void as the argument
specification. For example, the function Getinteger from the simpio library takes no arguments
from its caller and returns a value of type int. The prototype for this function is therefore

int Getinteger(void);

1-3 Writing your own functions

The functions introduced so far in this chapter have all been part of some
programming library. Library functions are interesting in their own right, but they do not
tell the whole story of functions. As a programmer, you will often be content to use library
functions without knowing any of the internal details. But you will also want to use
functions that are not part of any library. In those cases, you have no choice but to define
the functions yourself.

For example, suppose that you have been assigned the task of writing a program that
converts temperatures form the Celsius scale used in most countries to the Fahrenheit scale
used in the United States. You will probably want to define a simple conversion function
that you can then use in other parts of the program. The computation is relatively easy,
because the process of converting one temperature scale to another is simple a matter of
applying the formula

r= 20
5

Adding a new function to a C program consists of two distinct steps:

1. You need to specify the function prototype, which is usually done near the top of the
entire program, after the#include lines.

2. At some later point in the program, you need to provide the implementation of that
function, which specifies the actual steps involved.

The prototype is short and indicates only the argument and result types. The
implementation is longer and provides the details.

In writing a function, it is usually best to start with the prototype. In this example, you
are writing a function that converts from Celsius to Fahrenheit. You may choose any name
for that function, using the same rules as those given for naming variables in Chapter 2. The
name should make it easy for anyone reading the program to determine what the function
does. For example, the following name is not easily open to misinterpretation:

double CelsiusToFahrenheit (double c);

The implementation for a function is written by starting with its prototype, taking away the

semicolon at the end to the line, and then adding the body of the function. A function body
is always a block and therefore consists of statements enclosed in curly braces. The
statement in the block may be preceded with variable declarations such as the ones used in
the function main for most of the programs presented so far.

The return statement

If a function returns a result, the statements in the function body must include at least
one return statement, which specifies the value to be returned. The paradigmatic form for
the return statement is shown in the syntax box to the left.

In most cases, the return statement includes a parenthesized expression that indicates

the value of the result!. However, it can also be sued for

Where:

expression is the value to be returned.
If the function has no result, the syntax is:

for the return statements

return;

functions that have no results. Such functions are
discussed in the section on “Procedures” later in this

return (expression); chapter. When it is used in the

return (expression),

form, the return statement causes the function to return
the indicated value immediately. As such, the return
statement encompasses both of the following English

ideas: “I’'m done now” and “Here is the answer.” In
some programming languages, such as Pascal and Fortran, indicating that the execution of
a function is complete and specifying its result are separate operations. If you have had
experience with such languages, it may take some time to get used to the return statement in
C.

The return statement completes the list of tools you need to write the implementation of
CelsiusToFahrenheit:

double celsiusToFahrenheit (double c)

{
}

return (9.0 / 5.0 * ¢ + 32);

The function calculates the value of the appropriate expression and returns the result as the
value of the function.

Putting functions together with main programs

By itself, the function CelsisusToFahrenheit does not constitute a complete program.
Every complete program also has a function named main, which is called when the
program starts up. To test your CelsiusToFahrenheit function, you might want to implement a
version of main that used CelsiusToFahrenheit to generate a temperature conversion table. The
complete programto do so is shown in Figure 5-1.

The main program cons8istes of the for loop that you used in Chapter 4 to generate
tables. Each line in the temperature conversion table is generated by the statement

printf(*% 3d % dg\n”, ¢, CelsiusToFahrenhei t(c));

This statement calls the CelsiusToFahrenheit function to compute the Fahrenheit equivalent of
the Celsius temperature c2. That value is then passed as an argument to printf, which goes on
to display the value.

! The parentheses in the paradigm for the return statement are optional, but C programmers often use
them to improve readability.

2 In the for loop, the index variable ¢ is declared to be an int, even though CelsiusToFahrenheitis
defined to take a double. As noted in the section on “Using for with floating-point data” in Chapter 4,
integers are exact, and the program is therefore certain to run the correct number of times. When
CelsiusToFahrenheit is called with the argument c, and automatic conversion is performed to change the
value to type double.

Note that the program in Figure 5-1 has many more comments than most of the
program presented so far. Each function should have its own descriptive comment so that
readers of the program can understand each function as a unit. In my experience, one of the
most helpful comments you can write for a function is one that gives an example of how the
function is used. Hereafter in this text, the comments for a function include a “Usage” line
that provides such a example.

| 3 (€3 8) 24 DI | cortable.c

/*
* file: c2ftable.c

*

* This program illustrates the use of functions by gener ating
* a table of Celsius to Fahrenheit conversions.
¥/

#include <stdio.h>
#include “genlib.n”

/*
* Constants

*

* LowerLimit - Starting value for temperature table
* UpperLimi t - Final value for temperature table

* StepSize - Step size between table enfries
¥/

#define LowerLimit0
#define UpperLimit 100
#define StepSize 5

/* Function prototypes */
double CelsiusToFahrenheit (double c);
[*Main program */

main()

{

int;

printf(“Celsius to Fahrenheit table .\n");
printf* C F\n);
for (c = LowerLimit, ¢ <= UpperLimit; ¢ += Stepsize) {
printf(“%3d % 3g\n, ¢, CelsiusToFahrenhei t(c));
}

}

/*

* Function: CelsiusToFahrenheit

* Usage: f = CelsiusToFahrenheit(c);

* This function returns the Fahrenheit equivalent of the Celsius
* temperature c.

*/

double CelsiusToFahrenheit(double c)

return (9.0/5.0 * ¢ + 32);
}

Functions involving internal control structures

Functions are not usually as simple as CelsiusToFahrenheit is. In my cases, calculating a
function requires making some tests or writing a loop. Such details add to the complexity of

the implementation but do not change its basic form. For example, the library function abs
computes the absolute value of its integer argument and has the prototype

int abs(intn)

The abs function is defined in the ANSI standard library stdib. Suppose, however, that you
had to write it yourself. How would you write its implementation? The definition of
absolute value indicates that if the argument is negative, the function should return its
negation, which is a positive number. If the argument is positive or zero, the function
should simply return the argument value unchanged. Thus, you can implement the abs
function as follows:

int abs(intn)

if (n<0){

return (-n);
}else {

return (n);
}

}

As this implementation shown, a return statement can occur anywhere in the function body.
Similarly, you can define a function MinF to return the smaller of two floating-point
arguments as follows:

double MinF(double x, double y)

{
if (x <y){
return (x);
}else {
return (y);
}

}

The control structure used within a function can be much more complex than the simple
examples above. Suppose you wantto define a function called Factorial that takes an integer n
and returns the product of the integers between 1 and n. The first several factorials are
shown in the following list:

Factorial (0) = 1 (by definition)
Factorial (1) = 1 = 1

Factorial (2) = 2 = 1%x2

Factorial (3) = 6 = 1x2x3

Factorial (4) = 24 = 1x2x3 x4
Factorial (5) = 120 = 1x2x3x4x5
Factorial (6) = 720 = 1x2x3x4x5x6

Factorials are usually designated in mathematics using an exclamation point, as in n!, and
have extensive applications in statistics, combinatorial mathematics, and computer science.
A function to compute factorials is a useful tool for solving problems in those domains.

The Factorial function takes an integer and returns an integer, so its prototype looks like
this:

int Factorial (intn);

Implementing Factorial, however, requires some work. As a programming problem, the task
of computing a factorial is similar in many respects to adding a list of numbers, which you
learned about in chapter 3. In the addistc program, a variable called total is declared to keep
track of the running total. At the beginning of the program, total is initialized to 0. As each
new value comes in, it is added to total so that total continues to reflect the sum of the
numbers entered so far. In the current problem, the situation is much the same, except that
you have to keep track of a product rather then a sum. To do so, you can:

Declare a variable called product.

Initialize it to 1.

Multiply it by each of the integers between 1 and n.
Return the final value of as the result of the function.

b

To cycle through each of the integers required in step 3, you need a for loop, which begins
at 1 and continues until it reaches n. The for loop will require an index variable, for which
the traditional choice of i seems quite appropriate. Thus you need to declare two variables
at the beginning of Factorial by writing

int product, i:

The variable product holds the running product, and i holds the index.
The implementation of Factorial, shown in Figure 5-2, is short enough to present all at
once without explaining the details step by step.

FIGURE 5-2 Factorial function

int Factorial (intn)
int product, i

product = 1;
for (i=1;i<=n;it+){
produc t *=i;

return (product);

}
Functions that return nonnumeric values

The examples of functions presented so far in this section all return numeric results,
and the historical association of the word fzzction with mathematics often makes numeric
functions seem the most natural. However, functions in C can return values of any data
type. For example, if you were writing a program to work return values of any data type.
For example, if you were writing a program to work with dates, it might be useful to have a
function to convert a numeric month between 1 and 12 into the sting that indicates the
corresponding month name between January and December. While the numeric values are
easier to work with internally (if, for example, you needed to compare two dates to see
which came earlier), the output display may be more readable with the traditional English
names. To solve this problem, you could define the function Mont\Name as shown in Figure
5-3.

| (@18 A MR MonthName function

string MonthName (int month)

switch (month) {
case 1: return
case 2: return
case 3: return
case 4: return
case 5: return
case 6: return
case 7: return (“July”);
case 8: return (“August’);
case 9: return (“September”);
case 10: return (“October”);
case 11: return (“November”);
case 12: return (“December”);
default: return (“lllegal month”);

“January”);
‘February”);
‘March”);
“‘April”);
"May);
“‘June”);

To use this function, you would call MontiName from some other part of the program
and then use printf to display the result. For example, if the integer variables month, day, and
year contain the values 7,20, and 1969 (the date of the Apollo 11 landing on the moon), the
statement

printf{(“%s % d % dn”, MonthName(mon th), day, year);

would generate the output

Jul 20, 1969

In the switch statement within the MonthName function, the return statements in each case clause
automatically exit from the entire function and make an explicit break statement
unnecessary. As indicate in the section on the switch statement in Chapter 4, you can avoid a
lot of pain in the debugging process if you design your programs so that every case clause
ends with either a break or areturn statement.

Predicate functions

The examples in the preceding section illustrate that functions can return values of
different data types. The function Factorial, for example, returns a value of type int, and the
function MontWame returns a value of type sting. Although functions in C can return values
of any type, there is one result type that deserves special attention. That type is the data type
bool, which was introduced in Chapter 4 and is defined by including the genlib library.
Functions that return value of type bool are called predicate functions and play an
important role in modern programming.

Recall that there are only two values of type bool: TRUE and FALSE. Thus a predicate
function—no matter how may arguments it takes or how complicated its internal processing
may be—must eventually return one of these two values. The process of calling a predicate
function is therefore analogous to asking a yes/no question and getting an answer.

Consider the following function definition, which, given an integer n, answers the
question “is n an even number?”:

boal IsEven (int n)

{
}

return(n % 2 ==0);

A number is even if there is no remainder when that number is divided by two. Ifn is even,
the expression

n%2==

therefore has the value TURE, which is returned as the result of the IsEven function,. If n is
odd, the function returns FALSE. Because IsEven returns a Boolean result, you can use it
directly in a conditional context. For example, the following main program uses IsEven to
list all the even numbers between 1 and 10:

main()

{

int i;

for (i = 1; i<=10; i++){
if (IsEven(i)) printf (“%2d\n”, i);
}

}

When new programmers use predicate functions, they often make the errors described
in the section on “Avoiding redundancy in Boolean expressions” in Chapter 4. Until you

get more experience with Boolean data and predicate functions, you may find yourself
tempted to put an if statement inside the implementation of IsEven or to make unnecessary
comparisons against TRUE, such as

if (IsEven () == TRUE) ... %@ The == TRUE is redundant.

If you find yourself making such errors, you may want to review the discussion of Boolean
data in Chapter 4.

As another example of a predicate function, you could write one that tests whether a
given year is a leap year, as follows:

bool IsLeapY ear (intYear)

{
}

return (((year % 4 ==0) && (year % 100 !=0)) || (year % 400 == 0));

You encountered the Boolean expression to determine whether year is a leap year in Chapter
4. By taking this expression and putting it into a function, you no longer have to include the
entire calculation explicitly to make this test. Once the function is defined, the rest of the
program can simply use statements of the form:

if (IsLeapYear(year)) *-*

A predicate function to test for string equality

Until now, your ability to work with string data has been limited to a few extremely
simple operations: you know how to use GetLine to read in a string and how to use printf to
display one on the screen. In Chapter 9, you will learn about an entire library of string
functions that enable you to manipulate string data in a variety of ways. Meanwhile, it
makes sense to introduce you to one o fits functions. That function is StingEqual, which you
can use to tell whether two strings contain exactly the same characters.

There are two principal reasons for introducing the StingEqual function at this point in
the text. First, having StingEqual in your repertoire of programming idioms will allow you to
use strings in much more creative ways, which will in turn make it possible for you to write
more interesting programs. Second, StingEqual is a predicate function and helps to illustrate
the importance of these functions in programming applications.

The prototype for the StingEqual function is

bool StingEqual (string s1, string s2);

which indicates that StingEqual takes two strings as arguments and returns a Boolean value.
That value is TRUE if the twostrings, sl and s2, are precisely equal, character for character.
If there are any differences between the strings, StingEqual returns False.