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Learning C, or any programming language, is in many respects like learning to
communicate in a foreign language. You need to acquire a vocabulary to know what the
words mean. You need to study syntax so that you can assemble those words into
sentences. And you must come to recognize common idioms so that you can understand
what people actually say. Therefore, Part One introduces you to the vocabulary, syntax,
and idiomatic structure of C. But mastering these conventions is not enough. As in any
language, you must have something to say. The essence of programming is solving
problems. While knowing how to express them is important, learning how to find
solutions is the greater challenge. Thus, Part One focuses on strategies for problem
solving, to enable you not just to write but to think like a programmer.
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If you someday take a job in the software industry, you will find that you write
very few programs entirely on your own. In most companies, programmers work as
terms to build applications that are much larger than those any person could manage
individually. Making it possible for many programmers to work together is a
fundamental challenge of modern software engineering. The four chapters in Part
Two teach you how to break large programs down into independent modules and how
to design those modules so that they can be used as libraries for other applications.
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Although you know that programs manipulate data, the earlier parts of this text
have focused on the control structures that perform the manipulation, not the
underlying data. In Chapters 11 through 17, you will see that, like control structures,
data structures are central to programming. By learning to assemble data into larger
structures, you can extend your programming capabilities considerably and write
programs that are both more useful and more exciting.
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I first began teaching introductory computer science more than 20 years ago while I
was still a student at Harvard. Since receiving my Ph.D. in 1980, I have taught computer
science at Harvard, Wellesley, and Stanford, where I am Associate Chair of the Computer
Science Department. In that capacity, I am responsible for the undergraduate program in
computer science. Although I have taught advanced courses in computer science and have
also worked in the research industry, my greatest joy comes from opening up the enormous
power of computers to students who are just beginning to learn about them. In their
excitement, my own love for computer science is constantly renewed.

In addition to my teaching at Stanford, I have served since 1990 as the president of
Computer Professionals for Social Responsibility, a public-interest association of computer
professionals with 2000 members in 22 chapters throughout the United States. Computers
affect our society in many different ways. Just as it is important to learn about the
technology, it is critical that we also take the responsibility to ensure that computers are
used for the benefit of all. If you have suggestions as to how I might make the presentation
more clear, or you encounter errors in this text, please let me know. You can reach me by
electronic mail at ericr@aw.com.

Eric S.Roberts
Department of Computer Science
Stanford University
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Welcome! By picking up this book, you have taken a step into the world of computer
science—a field of study that has grown from almost nothing half a century ago to become
one of the most vibrant and active disciplines of our time.

Over that time, the computer has opened up extraordinary possibilities in almost every
area of human endeavor. Business leaders today are able to manage global enterprises on an
unprecedented scale because computers enable them to transfer information anywhere in a
fraction of a second. Scientists can now solve problems that were beyond their reach until
the computer made the necessary calculations possible. Filmmakers use computers to
generate dramatic visual effects accurately what is going on inside a patient because
computers have enabled a massive transformation in the practice of medicine.

mailto:ericr@aw.com


Computers are a profoundly empowering technology. The advances we have seen up
to now are small compared to what we will see in the next century. Computers will play a
major role in shaping that century, just as they have the last 50 years. Those of you who are
students today will soon inherit the responsibility of guiding that progress. As you do so,
knowing how to use computers can only help.

Like most skills that are worth knowing, learning how computers work and how to
control their enormous power takes time. You will not understand it all at once. But you
must start somewhere. Twenty-five centuries ago the Chinese philosopher Lao-tzu
observed that the longest journey begins with a single step. This book can be your
beginning.

For many of you, however, the first step can be the hardest to take. Many students find
computers overwhelming and imagine that computer science is beyond their reach.
Learning the basics of programming, however, does not require advanced mathematics or a
detailed understanding of electronics. What matters in programming is whether you can
progress from the statement of a problem to its solution. To do so, you must be able to think
logically. You must have the necessary discipline to express your logic in a form that the
computer can understand. Perhaps most importantly, you must be able to see the task
through to its completion without getting discouraged by difficulties and setbacks. If you
stick with the process, you will discover that reaching the solution is so exhilarating that it
more than makes up for any frustrations you encounter along the way.

This book is designed to teach you the fundamentals of programming and the basics of
C, which is the dominant programming language in the computing industry today. It treats
the whys of programming as well as the hows, to give you a feel for the programming
process as a whole. It also includes several features that will help you focus on the essential
points and avoid errors that slow you down. The next few pages summarize these features
and explain how to use this book effectively as you begin your journey into the exciting
world of computer science.
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To make the best possible use of this textbook for learning the C language, be sure to
take advantage of the tools it provides.
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Each chapter includes easily accessible material to guide your study and facilitate
review of the central topics.

The list of objectivesobjectivesobjectives

objectives

previews the key topics covered by the chapter. Because each
objective identif ies a concrete skill, the chapter objectives help you to assess your mastery
of the essential material.

The Summary describes, in more detail, what you should have learned in connection
with the Objectives.
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Programming is both a science and an art. Learning to program well requires much
more than memorizing a set of rules. You must learn through experience and by reading
other programs. This text includes several features to aid in this process.

The text includes a large number of ProgramProgramProgram

Program

examplesexamplesexamples

examples

that illustrate how individual
C complete are used to create complete programs. These examples also serve as models for
your own programs; in many cases, you can solve a new programming problem by making
simple modifications to a program from the text.

SyntaxSyntaxSyntax

Syntax

boxesboxesboxes

boxes

summarize key rules of C syntax, for an at-a-glance review of key
programming concepts.
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All programmers, even the best ones, make mistakes. Finding these mistakes, or bugs,
in your programs is a critically important skill. The following features will help you to
build this skill.

To help you learn to recognize and correct bugs, this text includes several buggy
programs that illustrate typical errors. To make sure you do not use thes3 programs as
models, such incorrect programs are marked with a superimposed image of a bug.

CommonCommonCommon

Common

PitfallsPitfallsPitfalls

Pitfalls

provide handy reminders about mistakes all beginning programmers
are likely to make, and how to avoid them. Faulty lines of code are highlighted with a bug
image and annotated in color.
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Learning to program requires considerable practice. To make sure that you get the
necessary experience, each chapter includes an extensive set of exercises and questions that
test your mastery of the material.

Each chapter concludes with a wealth of ReviewReviewReview

Review

QuestionsQuestionsQuestions

Questions

, which require brief
answers to chapter content questions, code adoptions, or debugging exercises.
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ExercisesExercisesExercises

Exercises

call for you to try your hand at more extensive programming
projects.
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In 1991-92, Stanford decided to restructure its introductory computer science
curriculum to use ANSI C instead of Pascal. We chose to adopt ANSI C in our introductory
courses for the following reasons:

 Students demanded a more practical language. Future employers want students to have
more direct experience with the tools industry uses, which today are principally C and
C++. With few employment opportunities listed for Pascal programmers in the



newspaper employment section, our students began to question the relevance of their
education.

 Our Pascal-based curriculum taught students to program in a language that they would
never again use. We discovered that many of those students, when they abandoned
Pascal for more modern languages, often forgot everything they had learned about
programming style and the discipline of software engineering. Having now taught
these skills in the context of a language that the students continue to use, we have
found that they end up writhing much better programs.

 Many of our advanced computer science courses, particularly in the systems area,
require students to program in C. Working with C from the beginning gives students
much more experience by the time they reach the advanced courses.

 Learning C early paves the way to learning C++ and the object-oriented paradigm.
Because our students have a strong background in C programming after their first year
of study, we have been able to offer our course on object-oriented system design much
earlier in the curriculum.

 C makes it possible to cover several important topics, such as modular development
and abstract data types, that are hard to teach in a Pascal environment.

 In the last five years, Chas make signif icant headway toward replacing Fortran as the
Lingua Franca of programming for the engineering sciences.
Given our experience over the last three years, I am convinced that the choice was a

good one and that our program is stronger because of the change.
At the same time, it is important to recognize that teaching C in the first programming

course is not always easy. C was designed for programmers, not introductory students.
Many of its features make sense only when understood in terms of a larger conceptual
framework that new students do not recognize. In many respects, C is a complex language.
To teach it at the introductory level, we must find a way to control its complexity.
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One of the central goals of this text is to enable teachers to manage C’s inherent
complexity. Managing complexity, however, is precisely what we do as programmers.
When we are faced with a problem that is too complex for immediate solution, we divide it
into smaller pieces and consider each one independently. Moreover, when the complexity
of one of those pieces crosses a certain threshold, it makes sense to isolate that complexity
by defining a separate abstraction that has a simple interface. The interface protects clients
from the underlying details of the abstraction, thereby simplifying the conceptual structure.

The same approach works for teaching programming. To make the material easier for
students to learn, this text adopts a library-based approach that emphasizes the principle of
abstraction. The essential character of that approach is reflected in the follo wing two
features that set this book apart from other introductory texts:

1. Libraries and modular development—essential concepts in modern programming
— are covered in considerable detail early in the presentation. Part II focuses
entirely on the topics of libraries, interfaces, abstractions, and modular



development. Students learn how to use these techniques effectively before they
learn about arrays.

2. The text demonstrates the power of libraries by using them. It is one thing to tell
students that libraries make it possible to hide complexity. It is quite another to
demonstrate that concept. This text introduces several new libraries that hide
details from the students until they are ready to assimilate them. The libraries give
students the power to write useful programs that they could not develop on their
own. Later chapters reveal the implementation of those libraries, thereby
allowing students to appreciate the power of abstraction.

In 1992, I attempted to teach the introductory course using only the ANSI libraries.
The results were not encouraging. Each new topic required that the student understand so
much about the rest of C that there was no effective way to present the material. For
example, students had to understand the mechanics of arrays, pointers, and allocation
before they could use string data in and\y interesting way, even though string manipulation
is simpler conceptually. My best students managed to understand what was gong on by the
end of the quarter. Most, however, did not. Since we introduced the library-based approach
in early 1993, students have assimilated the material more easily and learned much more
about computer science.

The library interfaces and associated implementations used in this text are reprinted in
Appendix B, which also gives instructions for obtaining the source code electronically
through anonymous FTP (File Transfer Protocol).
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This book presents topics in the same order as Stanford’s introductory course, except
for the material in Chapter 17, which we cover in the second course. Depending on your
audience and the goals of your course, you may want to vary the order of presentation. The
following notes provide an overview of the chapters and indicate some of the more
important dependencies.

Chapter 1 traces the history of computing and describes the programming process. The
chapter requires no programming per se but provides the contextual background for the rest
of the text.

I have designed Chapter 2 and 3 for students with little or no background in
programming. These chapters are conceptual in their approach and focus on problem
solving rather than on the details of the C language. When new students are faced with
detailed rules of syntax and structure, they concentrate on learning the rules instead of the
underlying concepts, which are vastly more important at this stage. If your students already
know some programming, you could move much more quickly through this material.

Chapters 2 and 3 are informal in their approach and concentrate on developing the
student’s problem-solving skills. Along the way, they introduce several basic statement
forms and control structures, but only as idioms to accomplish a specific task. Chapter 4
adds formal structure to this topic by describing each statement form in turn, detailing its
syntax and semantics. The chapter also includes an extensive discussion of Boolean data.



Chapter 5 introduces functions and procedures. It begins with simple examples of
functions and then continues with increasingly sophisticated examples. The mechanics of
parameter passing are discussed in a separate section that includes many diagrams to help
students follow the flow of data from one function to another. The chapter ends with a
signif icant programming example that illustrates the concept of stepwise refinement.

The algorithmic concepts presented in Chapter 6 are fundamental to computer science
but may not be required for all students. If your audience consists of engineers or potential
computer science majors the material will prove extremely valuable. For less technical
audiences, however, you can eliminate much of this material without disturbing the flow of
the presentation.

I have found that integrating graphics in the introductory course is a great way to
increase student interest in the material. Chapter 7 exists for that reason. At this stage,
students have learned the mechanics of functions but have no burning need to write them.
Letting students draw complex pictures on the screen gives them that incentive. The
graphics library is implemented for several of the major programming environments and
can therefore be used in most institutions.

Chapter8 has two themes, which are in some sense separable. The first part of the
chapter discusses design criteria for interfaces and is essential for anyone who needs to
understand how modern programming works. Then second part of the chapter applies those
principles to build a random number library. The random.h interface itself is less important
than the general principles, although use of the random number library is required for a few
of the exercises later in the text.

Chapter 9 introduces strings as an abstract type and represents, to a certain extent, the
cornerstone of the library-based approach. By using a dynamic string library, students can
easily write programs that perform sophisticated string manipulation, even though they do
not yet understand the underlying representation, which is covered in Chapter 14.
Introducing strings at this point in the presentation enables students to write much more
exciting programs than they could otherwise.

On a first reading, it is easy to miss the purpose of Chapter 10, which appears to be an
extension of the discussion of strings begun in Chapter 9. The fundamental value of
Chapter 10 does not lie in the Pig Latin program, which is more fun than it is practical. The
entire reason for the example is that it provides the motivation to build the scanner interface
used to separate words on the input line. The scanner module proves its usefulness over and
over again, not only in the first course but in subsequent courses as well. It is the most
practical tool students create in the course and therefore serves as a compelling example of
the value for modularity.

Chapter 11 through 16 introduce the fundamental compound structures — arrays,
pointers, files, and records—in an order that has worked well in practice. Because the base
language is C, it is important to resent pointers as soon as possible after introducing arrays
so that you can emphasize the connections between them. Moreover, having established
these concepts, it is then possible in Chapter 14 to consider string data more closely, thereby
revealing the underlying representation that was concealed by the abstract definition.
Chapter 16 integrates the fundamental data structures with the construction of a data-driven
teaching machine, which is the most sophisticated example of programming resented in the



test.
Chapter 17 includes three important topics that often appear in the first programming

course: recursion, abstract data types, and analysis of algorithms. At Stanford, which is on
the quarter system we teach all these topics in the second souse. If you decide to teach
recursion in the first course, I strongly recommend that you do so early enough to allow
students time to assimilate the material. One possibility is to discuss recursive functions
immediately after Chapter 5 and recursive algorithms after Chapter6. Another approach is
to cove recursion and analysis of algorithms together at the end of Chapter 12.
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The Instructor’s Manual Contains supplemental materials including a course syllabus,
suggestions for lecture design, sample assignments and examination, and solutions to all
programming exercises. In addition to the printed manual, instructors who adopt this text
can retrieve electronic copies of solution sets and related materials. For details on obtaining
solutions, please contract your local Addison-Wesley representative. All other supplemental
material is available on-line. For explicit instructions see Appendix B.

AcknowledgmentsAcknowledgmentsAcknowledgments

Acknowledgments

The text has come a long way from its initial stages as class notes, in large measure
because of suggestions from people who have worked with the text in one capacity of
another. I am particularly grateful to the Stanford lecturers— Jon Becker, Katie Capps,
Stephen Clausing, Todd Feldman, Allison Hansen, Margaret Johnson, Jim Kent, Andrew
Kosoresow, Mehran Sahami, and Julie Zelenski —who have taught this material in 14
different sections of the introductory course over the past three years. I am also indebted to
all the section leaders and teaching assistants as well as the coordinators of the student-
teaching program — Felix Baker, John Lilly, Sandy Nguyen, Bryan Rollins, and Scott
Wiltamuth—who provided much needed logistical support.

Many of the best ideas for the text came from a seminar on teaching introductory
computer science that I conducted beginning in 1992-93. It provided a forum for thrashing
out the hard issues and made a signif icant difference in the text. I want to thank everyone
who participated: Perry Arnold, Jon Becker, Tom Bogart, Karl Brown, Bryan Busse, Katie
Capps, Peter Chang, Scott Cohen, Stacey Doerr, Jeff Forbes, Stephen Freund, Jon Goldberg,
Tague Griffith, Matt Harad, Lindsay Lack, Christine Lee, Tricia Lee, John Lilly, Albert Lin,
Mara Mather, Hugh McGuire, Jeffrey Oldham, David O’Keefe, Bryan Rollins, Samir

Saxena, Nikhyl Singhal, Eric Tucker, Garner, Garner Weng, Howard Wong-Toi, and John
Youn.

I also want to thank all the students who have used and critiqued the draft version of
the text: Adjo Amekudzi, Eric Anderson, Andrew Arnold, Kevin Berk, Kevin Carbajal, Ajit
Chaudhari, Alida Cheung, Hye-won Choi, Elisabeth Christensen, Ralph Davis, Joel
Firehammer, Peter Frelinghuysen, Trevor Gattis, Teddy Harris, Heather Heal, Enoch Huang,
Ann Lee, Ted Lee, Daphne Lichtensztajn, Lisa Maddock, Allan Marcus, Brad McGoran,



Forrest Melton, Adrienne Osborn, Masatoshi Saito, Anne Stern, Ricardo Urena, and
Nichole Wilson.

In 1993-94, several faculty members at other universities tested this material in draft
form and made several valuable suggestions. I especially want to thank Margo Seltzer at
Harvard University, rob Langsner at the University of Nevada (Reno), Richard Chang at the
University of Maryland (Baltimore County), Jane Turk at La Salle University, and Kim
Kihlstrom at Westmont College for helping to refine the text from its early stages.

I am also indebted to my reviewers:
Stephen Allan Utah State University
James Schmolze Tufts University
Don Goelman Villanova University
Michael Skolnick Renseelaer Polytechnic
Stan Kolasa Rutgers University
Jeffery A. Slomka Southwest Texas State University
Harry R. Lewis Harvard University
Kevin Smith Emory University
Bill Muellner Elmhurst College
Phil Tromovitch SUNY-Stony Brook
Rayon Niemi Rochester Institute of Technology
John A. trono St. Michaels ’ College
Robert G. Plantz Sonoma State University
Robert Walker Rensselaer Polytechnic
David Rosenthal Seton Hall
Richard Weinand Wayne state University

In addition, I have received useful advice along the way from several friends and
colleagues, including Josh Barnes, Pavel Curtis, Kathleen Kells, James Finn, and Steve
Lewin-Berlin.

The final version of this text owes much to my editors at Addison-Wesley, who have
been helpful throughout the process. In particular, I thank Lynne Doran Cote, Sue Gleason,
Peter Gordon, Laura Michaels, Jim Rigney, Karen Stone, and Amy Willcutt for all their
work. And I am extremely fortunate to have Lauren Rusk as both my developmental editor
and my partner; without her, nothing would ever come out as well as it should.



ChapterChapterChapter

Chapter

111

1

IntroductionIntroductionIntroduction

Introduction

[The Analytical Engine] offers a new, a vast, and a powerful
language…for the purposes of mankind.
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 To understand the distinction between hardware and software.
 To recognize that problem solving is an essential component of computer

science.
 To understand the meaning of the term algorithm.
 To appreciate the role of the compiler as a translator between a higher-level

programming language and the lower-level machine language.
 To recognize the principal types of programming errors.
 To appreciate the importance of software maintenance and the use of good

software engineering practice.
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s we approach the end of the twentieth century, it is hard to believe that

computers did not even exist as recently as 1940. Computers are everywhere today,
and it is the popular wisdom, at least among headline writers, to say that we live in
the computer age.
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In a certain sense, however, computing has been around since ancient times.
Much of early mathematics was devoted to solving computational problems of
practical importance, such as monitoring the number of animals in a herd, calculating
the area of a plot of land, or recording a commercial transaction. These activities
required people to develop new computational techniques and in some cases, to
invent calculating machines to help in the process. For example, the abacus, a a
simple counting device consisting of beads that slide along rods, has been used in
Asia for thousands of years, possibly since 2000 B.C.

Throughout most of its history, computing has progressed relatively slowly. In
1623, a German scientist named Wilhelm Schickard invented the first known
mechanical calculator, capable of performing simple arithmetical computations
automatically. Although Schickard’s device was lost to history through the ravages of
the Thirty Years’ War (1618-1648), the French philosopher Blaise Pascal used similar
techniques to construct a mechanical adding machine in the 1640s, a copy of which



remains on display in the Conservatoire des Arts et Métiers in Paris. In 1673, the
German mathematician Gottfried Leibniz developed a considerably more
sophisticated device, capable of multiplication and division as well as addition and
subtraction. All these devices were purely mechanical and contained no engines or
other source of power. The operator would enter numbers by setting metal wheels to a
particular position; the act of turning those wheels set other parts of the machine in
motion and changed the output display.

During the Industrial Revolution, the rapid growth in technology made it
possible to consider new approaches to mechanical computation. The steam engine
already provided the power needed to run factories and railroads. In that context, it
was reasonable to ask whether one could use steam engines to drive more
sophisticated computing machines, machines that would be capable of carrying out
signif icant calculations under their own power. Before progress could be made,
however, someone had to ask that question and set out to find and answer. The
necessary spark of insight came from a British mathematician named Charles
Babbage, who is one of the most interesting figures in the history of computing.

During his lifetime, Babbage designed two different computing machines, which
he called the difference engine and the Analytical Engine; each represented a
considerable advance over the calculating machines available at the time. The tragedy
of his life is that he was unable to complete either of these projects. The Difference
Engine, which he designed to produce tables of mathematical functions, was
eventually built by a Swedish inventor in 1854—30 years after its original design. The
Analytical Engine was Babbage’s lifelong dream, but it remained incomplete when
Babbage died in 1871. Even so, its design contained many of the essential features
found in modern computers. Most importantly, Babbage conceived of the Analytical
Engines as a general-purpose machine, capable of performing many different
functions depending upon how it was programmed. In Babbage’s design, the
operation of the Analytical Engine was controlled by a pattern of holes punched on a
card that the machine could read. By changing the pattern of holes, one could change
the behavior of the machine so that it performed a different set of calculations.

Much of what we know of Babbage’s work comes from the writings of Augusta
Ada Byron, the only daughter of the poet Lord Byron and his wife Annabella. More
than most of her contemporaries, Ada appreciated the potential of the Analytical
Engine and became its champion. She designed several sophisticated programs for the
machine, thereby becoming the first programmer. In the 1970s, the U.S. Department
of Defense named its own programming language Ada in honor of her contribution.

Some aspects of Babbage’s design did influence the later history of computation
—an idea that had first been introduced by the French inventor Joseph Marie Jacquard
as part of a device to automate the process of weaving fabric on a loom. In 18990,
Herman Hollerith used punched cards to automate data tabulation for the U.S. Census.
To market this technology, Hollerith went on to found a company that later became
the International Business Machines (IBM) corporation, which had dominated the
computer industry for most of the twentieth century.

Babbage’s vision of a programmable computer did not become a reality until the



1940s, when the advent of electronics made it possible to move beyond the
mechanical devices that had dominated computing up to that time. A prototype of the
first electronic computer was assembled in late 1939 by John Atanasoff and his
student, Clifford Barr, at Iowa State College. They completed a full-scale
implementation containing 300 vacuum tubes in May 1942. The computer was
capable of solving small systems of linear equations. With some design modifications,
the Atanasoff-Barry computer could have performed more intricate calculations, but
work on the project was interrupted by World War II.

The first large-scale electronic computer was the ENIAC, an acronym for
electronic numerical integrator and computer.Completed in 1946 under the direction
of J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania, the ENIAC contained more than 18,000 vacuum tubes and occupied a
30-by-50 foot room. The ENIAC was programmed by plugging wires into a
pegboardlike device called a patchpatchpatch

patch

panelpanelpanel

panel

. By connecting different sockets on the
patch panel with wires, the operators could control ENIAC’s behavior. This type of
programming required an intimate knowledge of the internal workings of the machine
and proved to be much more difficult than the inventors of the
ENIAC had imagined.

Perhaps the greatest breakthrough in modern computing
occurred in 1946, when JohnJohnJohn

John

vonvonvon

von

NeumannNeumannNeumann

Neumann

at the Institute
for Advanced Study in Princeton proposed that programs and
data could be represented in a similar way and stored in the
same internal memory. This concept, which simplif ies the
programming process enormously, is the basis of almost all
modern computers. Because of this aspect of their design,
modern computers are said to use vonvonvon

von

NeumannNeumannNeumann

Neumann

architecturearchitecturearchitecture

architecture

...
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Since the completion of ENIAC and the development of von Neumann’s stored-
programming concept, computing has evolved at a furious pace. New systems and
new concepts have been introduced in such rapid succession that it would be pointless
to list them all. Most historians divide the development of modern computers into the
following four generations, based on the underlying technology.
 First generation. The first generation of electronic computers used vacuum tubes

as the basis for their internal circuitry. This period of computing begins with the
Atanasoff-Barry prototype in 1939.

 Second generation . The invention of the transistor in 1947 ushered in a new
generation of computers. Transistors perform the same functions as vacuum
tubes but are much smaller and require a fraction of the electrical power. The first
computer to use transistors was the IBM 7090, introduced in 1958.

 Third generation . Even though transistors are tiny in comparison to vacuum
tubes, a computer containing 100,000 or 1,000,000 individual transistors requires
a large amount of space. The third generation of computing was enabled by the
development in 1959 of the integratedintegratedintegrated

integrated

circuitcircuitcircuit

circuit

of chipchipchip

chip

, a small wafer of silicon
that has been photographically imprinted to contain a large number of transistors



connected together. The first computer to use integrated circuits in its
construction was the IBM 360, which appeared in 1964.

 Fourth generation. The fourth generation of computing began in 1975, when the
technology for building integrated circuits made it possible to put the entire
processing unit of a computer on a single chip of silicon. The fabrication
technology is called large-scalelarge-scalelarge-scale

large-scale

integrationintegrationintegration

integration

...

.

Computer processors that consist
of a single chip are called microprocessorsmicroprocessorsmicroprocessors

microprocessors

and are used in most computers
today.
The early machines of the first and second generations are historically important

as the antecedents of modern computers, but they would hardly seem interesting or
useful today. They were the dinosaurs of computer science: gigantic, lumbering beasts
with small mental capacities, soon to become extinct. The late Robert Noyce, one of
the inventors of the integrated circuit and founder of Intel Corporation, observed that,
compared to the ENIAC, the typical modern computer chip “is twenty times faster,
has a larger memory, is thousands of times more reliable, consumes the power of a
light bulb rather than that of a locomotive, occupies 1/30,000 the volume, and costs
1/10,000 as much.” Computers have certainly come of age.

By processing data
electronically, the ENIAC reduced
U.S. census tabulation time from
twelve years to three. The
complexity, cost, and physical
proportions of this machine limited
its accessibility and appeal.

A step ahead of the first
generation, computers like the IBM

7090 were programmed using punched cards.
The integrated circuit reduced the size of

computers and increased their power. With the
introduction of the IBM 360, the number of
computers purchased for business grew
substantially.

Like the telephone and television, the
computer is fast becoming an indispensable
tool giving users access, from their living
rooms, to databases and on-line information
centers around the world.
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Growing up in the modern world has probably given you some idea of what a
computer is. This text, however, is less concerned with computers as physical devices
than with computer science. At first glace, the words computer and science seem an
incongruous pair. In its classical usage, science refers to the study of natural



phenomena; when people talk about biological science or physical science, we
understand and feel comfortable with that usage. Computer science doesn’t seem the
same sort of thing. The fact that computers are human-made artifacts makes us
reticent to classify the study of computers as a science. After all, modern technology
has also produced cars, but we don’t talk about “car science.” Instead, we refer to
“automotive engineering” or “automobile technology.” Why should computers be any
different?

To answer this question, it is important to recognize that the computer itself is
only part of the story. The physical machine that you can buy today at your local
computer store is an example of computer hardwarehardwarehardware

hardware

. It is tangible. You can pick it up,
take it home, and put it on your desk. If need be, you could use it as a doorstop, albeit a
rather expensive one. But if there were nothing there besides the hardware, if a
machine came to you exactly as it rolled off the assemble line, serving as a doorstop
would be one of the few jobs it could do. A modern computer is a general-purpose
machine, with the potential to perform a wide variety of tasks. To achieve that
potential, however, the computer must be programmedprogrammedprogrammed

programmed

. The act of programming a
computer consists of providing it with a set of instructions—a program—that specifies
all the steps necessary to solve the problem to which it is assigned. These programs
are generically known as softwaresoftwaresoftware

software

, and it is the software, together with the hardware,
that makes computation possible.

In contrast to hardware, software is an abstract, intangible entity. It is a sequence
of simple steps and operations, stated in a precise language that the hardware can
interpret. When we talk about computer science, we are concerned primarily with the
domain of computer software and, more importantly, with the even more abstract
domain of problem solving. Problem solving turns out to be a highly challenging
activity that requires creativity, skill, and discipline. For the most part, computer
science is best thought of as the science of problem solving in which the solutions
happen to involve a computer.

This is not to say that the computer itself is unimportant. Before computers,
people could solve only relative ly simple computational problems. Over the last 50
years, the existence of computers has made it possible to solve increasingly difficult
and sophisticated problems in a timely and cost-effective w ay. As the problems we
attempt to solve become more complex, so does the task of finding effective solution
techniques. The science of problem solving has thus been forced to advance along
with the technology of computing.
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This text focuses almost exclusively on software and the activity of solving
problems by computer that is the essence of computer science. Even so, it is important
to spend some time in this chapter talking about the structure of computer hardware at
a very general level of detail. The reason is simple. Programming is a learn-by-doing
discipline. You will not become a programmer just by reading this book, even if you
solve all the exercises on paper. Learning to program is hands-on work and requires
you to use a computer.

In order to use a computer, you need to become acquainted with its hardware.
You have to know how to turn the computer on, how to use the keyboard to type in a
program, and how to execute that program once you’ve written it. Unfortunately, the
steps you must follow in order to perform these operations differ signif icantly from
one computer system to another. As someone who is writing a general textbook, I
cannot tell you how your own particular system works and must instead concentrate
on general principles that are common to any computer you might be using. As you
read this section, you should look at the computer you have and see how the general
discussion applies to that machine.

Most computer systems today consist of the components shown in Figure 1-1.
Each of the components in the diagram is connected by a communication channel
called a busbusbus

bus

, which allows data to flow between the separate units. The individual
components are described in the sections that follow.

TheTheThe

The

CPUCPUCPU

CPU

The centralcentralcentral

central

processingprocessingprocessing

processing

unitunitunit

unit

or CPUCPUCPU

CPU

is the “brain” of the computer. It performs
the actual computation and controls the activity of the entire computer. The actions of
the CPU are determined by a program consisting of a sequence of coded instructions
stored in the memory system. One instruction, for example, might direct the computer
to add a pair of numbers. Another might make a character appear on the computer
screen. By executing the appropriate sequence of simple instructions, the computer

 

CPU 

Secondary 
storage 

I/O devices 

memory 

Figure 1-1 



can be made to perform complex tasks.
In a modern computer, the CPU consists of an integratedintegratedintegrated

integrated

circuitcircuitcircuit

circuit

—a tine chip of
silicon that has been imprinted with millions of microscopic transistors connected to
form larger circuits capable of carrying out simple arithmetic and logical operations.

MemoryMemoryMemory

Memory

When a computer executes a program, it must have some way to store both the
program itself and the data involved in the computation. In general, any piece of
computer hardware capable of storing and retrieving information is a storage device.
The storage devices that are used while a program is actively running constitute its
primaryprimaryprimary

primary

storagestoragestorage

storage

, which is more often called its memorymemorymemory

memory

. Since John von Neumann
first suggested the idea in 1946, computers have used the dame memory to store both
the individual instructions that compose the program and the data used during
computation.

Memory systems are engineered to be very efficient so that they can provide the
CPU with extremely fast access to their contents. In today’s computers, memory is
usually built out of a special integrated-circuit chip called a RAMRAMRAM

RAM

, which stands for
random-access memory. Random-access memory allows the program to use the
contents of any memory cell at any time. Chapter 11 discusses the structure of the
memory system in more detail.

SecondarySecondarySecondary

Secondary

storagestoragestorage

storage

Although computers usually keep active data in memory whenever a program is
running, most primary storage devices have the disadvantage that they function only
when the computer is turned on. When you turn off your compute, any information
that was stored in primary memory is lost. To store permanent data, you need to use a
storage device that does not require electrical power to maintain its information. Such
devices constitute secondarysecondarysecondary

secondary

storagestoragestorage

storage

.
The most common secondary storage devices used in computers today are disksdisksdisks

disks

,
which consist of circular spinning platters coated with magnetic material used to
record data. In a modern personal computer, disks come in two forms: hardhardhard

hard

disksdisksdisks

disks

,
which are built into the computer system, and floppyfloppyfloppy

floppy

disksdisksdisks

disks

,,,

,

which are removable.
When you compose and edit your program, you will usually do so on a hard disk, if
one is available. When you want to move the program to another computer or make a
backup copy for safekeeping, you will typically transfer the program to a floppy disk.

I/OI/OI/O

I/O

devicesdevicesdevices

devices

For the computer to be useful, it must have some way to communicate with users



in the outside world. Computer input usually consists of characters typed on a
keyboard. Output from the computer typically appears on the computer screen or on
a printer. Collectively, hardware devices that perform input and output operations are
called I/OI/OI/O

I/O

devicesdevicesdevices

devices

, where I/O stands for input/output.
I/O devices vary signif icantly from machine to machine. Outside of the standard

Alphabetic keys, computer keyboards have different arrangements and even use
different names for some of the important keys. For example, the key used to indicate
the end of a line is labeled Return on some keyboards and Enter on others. On some
computer systems, you make changes to a program by using special functionfunctionfunction

function

keyskeyskeys

keys

on
the top or side of the keyboard that provide simple editing operations. On other
systems, you can accomplish the same task by using a hand-held pointing device
called a mousemousemouse

mouse

to select program text that you wish to change. In either case, the
computer keeps track of the current typing position, which is usually indicated on the
screen by flash line or rectangle called the cursorcursorcursor

cursor

.
In this text, computer input and output are illustrated using an inset box with

rounded corners. In most cases, the contents of the box indicate what appears on the
screen when you execute your program and is called a samplesamplesample

sample

runrunrun

run

. For example, the
following sample run illustrates what will appear on the screen after you execute the

add

Input from the user is shown in color to distinguish it from the out generated by
the program. To make the use actions more clear, the diagram also uses the symbol 



to indicate that the user has pressed the Return or Enter key, signifying the end of the
input line, although this symbol does not actually appear on the screen.
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Now that you have a sense of the basic structure of a computer system, let’s turn
to computer science. Because computer science is the discipline of solving problems
with the assistance of a computer, you need to understand a concept that is
fundamental to both computer science and the abstract discipline of problem solving
the concept of and algorithmalgorithmalgorithm

algorithm

1. Informally, you can think of an algorithm as a strategy
for solving a problem. To appreciate how computer scientists use the term, however, it
is necessary to formalize that intuitive understanding and tighten up the definition.

To be an algorithm, a solution technique must fulfill three basic requirements.
First of all, an algorithm must be presented in a clear, unambiguous form so that it is

1 The word algorithm comes to use from the name of the ninth-century Arabic mathematician
Abu Ja’far Mohammed ibn Mûsâ al –Knowârizmî, who wrote a treatise on mathematics entitled
Kitab al jabr w’almuqabala (which itself gave rise to the English word algebra).

This program adds two numbers.
1st number ? 222

2





2nd number ? 222

2





The total is 4.



possible to understand what steps are involved. Second, the steps within an algorithm
must be effective, in the sense that it is possible to carry them out in practice. A
technique, for example, that includes the operation “multiply r by the exact value of
п” is not effective, since it is not possible to compute the exact value ofп.Third, an
algorithm must not run on forever but must deliver its answer in a finite amount of
time. In summary, an algorithm must be

1. Clearly and unambiguously defined
2. Effective, in the sense that its steps are executable.
3. Finite, in the sense that it terminates after a bounded number of steps.

These properties will turn out to be more important later on when you begin to
work with complex algorithms. For the moment, it is sufficient to think of algorithms
as abstract solution strategies—strategies that will eventually become the core of the
programs you write.

As you will soon discover, algorithms— like the problems they are intended to
solve — vary signif icantly in complexity. Some problems are so simple that an
appropriate algorithm springs immediately to mind, and you can write the programs to
solve such problems without too much trouble. As the problems become more
complex, however, the algorithms needed to solve them begin to require more thought.
In most cases, several different algorithms are available to solve a particular problem,

and you need to consider a variety of potential solution techniques before writing the
final program. You will have a chance to revisit this topic in Chapter 6, which
addresses how to decide which algorithm is best for a given problem.
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Solving a problem by computer consists of two conceptually distinct steps. First,
you need to develop an algorithm, or choose an existing one, that solves the problem.
This part of the process is called algorithmicalgorithmicalgorithmic

algorithmic

designdesigndesign

design

. The second step is to express
that algorithm as a computer program in a program in a programming language. This
process is called codingcodingcoding

coding

.
As you begin to learn about programming, the process of coding —translating

your algorithm into a functioning C program—will seem to be the more difficult
phase of the process. As a new programmer, you will, after all, be starting with simple
problems just as you would when learning any new skill. Simple problems tend to
have simple solutions, and the algorithmic design phase will not seem particularly
challenging. Because the language and its rules are entirely new and unfamiliar,
however, coding may at times seem difficult and arbitrary. I hope it is reassuring to
say that coding will rapidly become easier as you learn more about the programming
process. At the same time, however, algorithmic design will get harder as the problems
you are asked to solve increase in complexity.

When new algorithms are introduced in this text, they will usually be expressed
initially in English. Although it is offer less precise than one would like, English is a



reasonable language in which to express solution strategies as long as the
communication is entirely between people who speak English. Obviously, if you
wanted to resent your algorithm to someone who spoke only Russian, English would
no longer be an appropriate choice. English is likewise an inappropriate choice for
presenting an algorithm to a computer. Although computer scientists have been
working on this problem for decades, understanding English or Russian or any other
human language continues to lie beyond the boundaries of current technology. The
computer would be completely unable to interpret your algorithm if it were expressed
in human language. To make an algorithm accessible to the computer, you need to
translate it into a programming language. There are many programming languages in
the world, including Fortran, BASIC, Pascal, Lisp, and a host of others. In this text,
you will learn how to use the programming language C—the language that has
become the de facto standard in the computing industry over the last several years.

The programming languages listed above, including C, are examples of what
computer scientists call higher-levelhigher-levelhigher-level

higher-level

languageslanguageslanguages

languages

. Such languages are designed to be
independent of the particular characteristics that differentiate computers and to work
instead with general algorithmic concepts that can be implemented on any computer
system. Internally, each computer system understands a low-level language that is
specific to that type of hardware. For example, the Apple Macintosh computer and the
IBM PC use different underlying machine languages, even though both of them can
execute programs written in a higher-level language such as C.

To make it possible for a program written in a higher-level language to run on
different computer systems, the program must first be translated into the low-level
machine language appropriate to the computer on which the program will run. For
example, if you are writing C programs for a Macintosh, you will need to run a special
program that translates C into machine language for the Macintosh. If you are using
the IBM PC to run the same program, you need to use a different translator. Programs
that perform the translation between a higher-level language and machine language
are called compilerscompilerscompilers

compilers

.
Before you can run a program on most computer systems, it is necessary to enter

the text of the program and store it in a filefilefile

file

, which is the generic name for any
collection of information stored in the computer’s secondary storage. Every file must
have a name, which is usually divided into two parts separated by a period, as in
myprog.c. When you create a file, you choose the rootrootroot

root

namenamename

name

, which is the part of the
name preceding the period, and use it to tell yourself what the file contains. The
portion of the filename following the period indicates what the file is used for and is
called the extensionextensionextension

extension

. Certain extensions have preassigned meanings. For example, the
extension .c indicates a program fie written in the C language. A file containing
program text is called a sourcesourcesource

source

filefilefile

file

.
The general process of entering or changing the contents of a file is called editingeditingediting

editing

that file. The editing process differs signif icantly between individual computer
systems, so it is not possible to describe it in a way that works for every type of
hardware. When you work on a particular computer system, you will need to learn
how to create new files and to edit existing ones. You can find this information in the



computer manual or the documentation fro the C compiler you are using.
Once you have a source file, the next step in the process is to use the compiler to

translate the source file into a format the computer can understand directly. Once
again, this process varies somewhat from machine to machine. In most cases, however,
the compiler translates the source file into a second file, called an ObjectObjectObject

Object

filefilefile

file

, that
contains the actual instructions appropriate for that computer system. This object file
is then combined together with other object files to produce an executableexecutableexecutable

executable

filefilefile

file

that
can be run on the system. These other object files typically include predefined object
files, called librarieslibrarieslibraries

libraries

, that contain the machine-language instructions of various
operations commonly required by programs. The process of combining all the
individual object files into an executable file is called linkinglinkinglinking

linking

. The entire process is
illustrated by the diagram shown in Figure 1-2

In some computers, the individual steps shown in the diagram occur without any
action on your part. You indicate that you want to run the program, and all of the
necessary steps are carried out automatically. On other computers, you may have to
perform the compiling and linking steps individually.

In any case, the only file that contains something humans can read is the source
file. The other files contain information intended solely for the machine. As a
programmer, all your work takes lace in thee context of the source file. You edit it and
then give it to the compiler for translating.
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Besides translation, compilers perform another important function. Like human
languages, programming languages have their own vocabulary and their own set of
grammatical rules. These rules make it possible to determine that certain statements
are properly constructed and that others are not. For example, in English, it is not
appropriate to say “we goes” because the subject and verb do not agree in number.
Rules that determine whether a statement is legally constructed are called syntaxsyntaxsyntax

syntax

rulesrulesrules

rules

. Programming languages have their own syntax, which determines how the
elements of a program can be put together. When you compile a program, the compiler

0100010010001001
1100010001101010
1010101100100010
0010011100010001
1010101010101101

1011010101010100
0110010100100010
1001101101010101
0101010101101011
0101011010101010

0101010101011110
1010110001001001
0110101010110011
0111100010010010
1101010101010101
0101111000100100

l
inker

source files object files

other object
fileggs/ librarie

executable files

Figure 1-2
The compilation

process

#include <stdio.h>
main()
{

printf(“hello ”);
}



first checks to see whether your program is syntactically correct. If you have violated
the syntactic rules, the compiler displays an error message. Errors that result from
breaking these rules are called syntaxsyntaxsyntax

syntax

errorserrorserrors

errors

. Whenever you get a message from the
compiler indicating a syntax error, you must go back and edit the program to correct it.

Syntax errors can be frustrating, particularly for new programmers. They will not,
however, be your biggest source of frustration. More often than not, the programs you

write will fail to operate correctly not because you wrote a program that contained
syntactic errors but because your perfectly legal program somehow comes up with
incorrect answers or fails to produce answers at all. You look at the program and
discover that you have made a mistake in the logic of the program—the type of
mistake programmers call a bugbugbug

bug

. The process of finding and correcting such mistakes
is called debuggingdebuggingdebugging

debugging

and is an important part of the programming process.
Bugs can e extremely insidious and frustrating. You will be absolutely certain

that your algorithm is correct and then discover that it fails to handle some case you
had previously overlooked. Or perhaps you will think about a special condition at one
point in your program only to forget it later on. Or you might make a mistake that
seems so silly you cannot believe anyone could possibly have blundered so badly.

Relax. You’re in excellent company. Even the best programmers have shared this
experience. The truth is that programmers—all programmers—make logic errors. In
particular, you will make logic errors. Algorithms are tricky things, and you will often
discover that you haven’t really gotten it right.

In many respects, discovering your own fallibility is an important rite of passage
for you as a programmer. Describing his experiences as a programmer in the early
1996s, the pioneering computer scientist Maurice Wilkes wrote:

Somehow, at the Moore School and afterwards, one had always assumed there

would be no particu lar difficulty in getting programs right. I can remember the

exact instant in time at which it dawned on me that a great part of my future

life would be spent in finding mistakes in my own programs.

What differentiates good programmers form the rest of their colleagues is not that
they manage to avoid bugs altogether but that they take pains to minimize the number
of bugs that persist in the finished code. When you design an algorithm and translate ti
into a syntactically legal program, it is critical to understand that your job is not
finished. Almost certainly, your program has a bug in it somewhere. Your job as a
programmer is to find that bug and fix it. Once that is done, you should find the next
bug and fix that. Always be skeptical of your own programs and test them as
thoroughly as you can.
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One of the more surprising aspects of software development is that programs
require maintenance. In fact, studies of software development indicate that, for most
programs, paying programmers to maintain the software after it has been released



constitutes between 80 and 90 percent of the total cost. In the context of software,
however, it is a little hard to imagine precisely what maintenance means. At first
hearing, the idea sounds rather bizarre. If you think in terms of a car or a bridge,
maintenance occurs when something has broken—some of the metal has rusted away,
apiece of some mechanical linkage has worn out from overuse, or something has
gotten smashed up in an accident. None of these situations apply to software. The
code itself doesn’t rust. Using the same program over and over again does not in any
way diminish its functioning. Accidental misuse can certainly have dangerous
consequences but does not usually damage the program itself ; even if it does, the
program can often be restored from a backup copy. What does maintenance mean in
such an environment?

Software requires maintenance for two principal reasons. First, even after
considerable testing and, in some cases, years of field use, bugs can still survive in the
original code. Then, when some unusual situation arises or a previously unanticipated
load occurs, the bug, previously dormant, causes the program to fail. Thus, debugging
is an essential part of program maintenance. It is not, however, the most important part.
Far more consequential, especially in terms of how much it contributes to the overall

cost of program maintenance, is what might be called feature enhancement . Programs
are written to be use; they perform, usually faster and less expensively than other
methods, a task the customer needs done. At the same time, the programs probably
don’t do everything the customer wants. After working with a program for a while, the
customer decides it would be wonderful if the program also did something else, or did
something differently, or presented its data in a more useful w ay, or ran a little faster,
or had an expanded capacity, or just had a few more simple but attractive features
(often called bells and whistles in the trade). Since software is extremely flexible,
suppliers have the option of responding to such requests. In either case—whether one
wants to repair a bug or add a feature—someone has to go in, look at the program,
figure out what’s going on, make the necessary changes, verify that those changes
work, and then release a new version. This process is difficult, time-consuming,
expensive, and prone to error.
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Part of the reason program maintenance is so difficult is that most programmers
do not write their programs for the long haul. To them it seems sufficient to get the
program working and then move on to something else. 1 The discipline of writing
programs so that they can by understood and maintained by others is called softwaresoftwaresoftware

software

engineeringengineeringengineering

engineering

...

.

In this text, you are encouraged to write programs that demonstrate good
engineering style.

As you write your programs, try to imagine how someone else might feel if

1 In defense of these programmers, it is important to note that they are often pressed to do just
that since the company has tight cost and deadline constraints. Unfortunately,this kind of a rush to
market often constitutes a false economy because the company ends up paying much more down
the road in added maintenance costs.



called upon to look at them two years later. Would your program make sense? Would
the program itself indicate to the new reader what you were trying to do? Would it be
easy to change, particularly along some dimension where you could reasonable expect
change? Or would it seem obscure and convolute? If you put yourself in the place of
the future maintainer (and as a new programmer in most companies, you will probably
be given that role), it will help you to appreciate why good style is critical.

Many novice programmers are disturbed to learn that there is no precise set of
rules you can follow to ensure good programming style. Good software engineering is
not a cookbook sort of process. Instead it is a skill blended with more than a little bit of
artistry. Practice is critical. One learns to write good programs by writing them, and by
reading others, much as one learns to be a novelist. Good programming requires
discipline—the discipline not to cut corners or to forget about that future maintainer
in the rush to complete a project. And good programming style requires developing
and aesthetic sense—a sense of what it means for a program to be readable and well
presented.
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As noted in an earlier section, the language that will serve as the basis for this
text is the programming language C, in the form that has now been accepted by the
American National Standards Institute as ANSI C (ANSI is pronounced “an-see”). The
C language was originally developed by Dennis Richie in the early 1970s. In the two
decades since its invention, C has become one of the most widely used languages in
the world. At all levels of the software industry, more and more programs are written
in C—programs that are used by millions of people throughout the world. More than
many other languages, C was designed to unlock the power of the computer and offers
programmers considerable control over the programs thy write. It is precisely this
power that has contributed to the widespread use of the language.

But power has a down side. For one thing, C tends to be a bit more difficult to
learn than other languages, in part because the language makes visible many of the
low-level constructs one needs to take full advantage of the machine. For another,
programmers can misuse the power of C—and many do, perhaps because they are
careless, or because they think it is somehow a badge of honor to have accomplished a
task in the most intricate and obscure w ay, or because they have never learned good
programming methodology. It’s as if we can apply to programming the oft-repeated
aphorism that “power corrupts and absolute power corrupts absolutely.” Judging form
the C code that exists in the world, there are more than a few absolutely corrupted
programmers out there.

Fortunately, there is hope. First of all, C is not really so different from other
programming languages in this regard. In one of the most important observations ever
made about programming, Larry Flon of Carnegie Mellon University (later at UCLA)
said, “There does not now, nor will there ever exist, a programming language in which



it is the least bit hard to write bad programs.” The important factors are care and
discipline, not the structure of the language. Second, it may be reassuring to know that
the aphorism about power from the preceding paragraph is in fact a misquote. What
Lord Acton actually wrote in 1887 begins with “power tends to corrupt.” The
additional qualifying verb is critically important. If you learn to use the power of C
well, it is possible to avoid power’s corrupting influence and instead write extremely
good programs that stand as models of programming style and elegance.

SUMMARYSUMMARYSUMMARY

SUMMARY

The purpose of this chapter is to set the stage for learning about computer science
and programming, a process that you will begin in earnest in Chapter 2. In this chapter,
you have focused on what the programming process involves and how it relates to the
larger domain of computer science.

The important points introduced in this chapter include:
 The physical components of a computer system—the parts you can see and

touch—constitute hardware. Before computer hardware is useful, however, you
must specify a sequence of instructions, or program, that tells the hardware what
to do. Such programs are called software.

 Computer science is not so much the science of computers as it is the science of
solving problems using computers.

 Strategies for solving problems on a computer are known as algorithms. To be an
algorithm, the strategy must be clearly and unambiguously defined, effective,
and finite.

 Programs are typically written using higher-level language that is then translated
by a compiler into the lower-level machine language of a specific computer
system.

 To run a program, you must first create a source file containing the text of the
program. The compiler translates the source file into an object file, which is then
linked with other object files to create the executable program.

 Programming languages have a set of syntax rules that determine whether a
program is properly constructed. The compiler checks your program against
these syntax rules and reports a syntax error whenever the rules are violated.

 The most serious type of programming error is one that is syntactically correct
but that nonetheless causes the program to produce incorrect results or no results
at all. This type of error, in which your program does not correctly solve a
problem because of a mistake in your logic, is called a bug. The process of
finding and fixing bugs is called debugging.

 Most programs must be updated periodically to correct bugs or to respond to
changes in the demands of the application. This process is called software
maintenance. Designing a program so that it is easier to maintain is an essential
part of software engineering.

 This text uses the programming language C to illustrate the programming



process. Although C programs are often written with too little regard for software
engineering principles, it is possible to write programs in C that are models of
good programming style.
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QUESTIONS

1. What new concept in computing was introduced in the design of Babbage’s
Analytical Engine?

2. Who is generally regarded as the first programmer?
3. What concept lies at the heart of von Neumann architecture?
4. What is the difference between hardware and software?
5. Traditional science is concerned with abstract theories or the nature of the

universe—not human-made artifacts. What abstract concept forms the core of
computer science?

6. What are the three criteria an algorithm must satisfy?
7. What is the distinction between algorithmic design and coding? Which of these

activities is usually harder?
8. What is meant by the term higher-level language? What higher-level language is

used as the basis of this text?
9. Why is it necessary to use different compilers when you run your programs on

computers made by different manufactures?
10. What is the relationship between a source file and an object file? As a

programmer, which of these files do you work with directly?
11. What is the difference between a syntax error and a bug?
12. True of false: Good programmers never introduce bugs into their programs.
13. True or false: The major expense of writing a program comes form the

development of that program: once the program is put into practice,
programming costs are negligible.

14. What is meant by the term software maintenance?
15. Why is it important to apply good software engineering principles when you

write your programs?
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Tigers are easy to find, but I needed adult wisdom to know dragons. “You
have to infer the whole dragon from the parts you can see and touch,” the old
people would say. Unlike tigers, dragons are so immense, I would never see
one in its entirety. But I could explore the mountains, which are the top of its
head. “These mountains are also like the tops of other dragons’ heads,” the old
people would tell me.
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To get a feel for the structure of C programs by reading through simple examples in
their entirety.

 To appreciate the importance of libraries as toolboxes that simplify the programming
process and to be able to use library functions for simple input and output.

 To recognize that many simple programs are composed of three phases: input,
computation, and output.

 To understand the role of variables in a program as placeholders for data values.
 To recognize the existence of different data types, including int, double , and string .
 To be able to specify simple computation through the use of arithmetic expressions.
 To understand the process of numeric conversion.
 To be able to write new programs by making simple modifications to existing

programs.

TTT

T

he purpose of this book is to teach you the fundamentals of programming. Along

the way, you will become quite familiar with a particular programming language called C,
but the details of that language are not the main point. Programming is the science for
solving problems by computer, and most of what you learn from this text will be
independent of the specific details of C. Even so, you will have to master many of those
details eventually so that your programs can take maximum advantage of the tools that C
provides.

From your position as a new student of programming, the need to understand both the
abstract concepts of programming and the concrete details of a specific programming
language leads to a dilemma: there is no obvious place to start. To learn about
programming, you need to write some fairly complex programs. To write those programs
in C, you must know enough about the language to use the appropriate tools. But if you
spend all your energy learning about C, you will probably not learn as much as you should
about more general programming issues. Moreover, C was not designed for beginning



programmers. There are many details that just get in the way if you try to master C without
first understanding something about programming, and you end up being unable to see the
forest because you’re distracted by all the trees.

Because it’s important for you to get a feel for what programming is before you
master its intricacies, this chapter begins by presenting a few simple programs in their
entirety. Try to understand what is happening in them generally without being concerned
about details just yet. You will learn about those details in chapter 4. The main purpose of
this chapter and the one that follows is to help build your intuition about programming and
problem solving, which is far more important in the long run.
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In honor of the designers of C, our first programming example comes from the book
that has served as C’s defining document, The C Programming Language, by Brian
Kernighan and Denis Ritchie. That example is called the “Hello world” program and has
become part of the heritage shared by all c programmers—a community that you are
poised to enter. The text of the program is shown in Figure 2-1.
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hello.c

/*
* file: hello.c
* --------------
* This program prints the message “Hello, World. ”
* on the screen. The program is taken from the
* classic C reference text “The C programming
* Language ” by Brian Kernighan and Dennis Ritchie.
*/

#include <stdio.h>
#include “genlib.h ”

main()
{

printf(“Hello, World.\n”);
}

The program itself is stored as a file in the permanent storage of the computer system
you are using. The name of the file is hello.c , where the .c identifies the file as a C program.

As Figure 2-1 indicates, the hello.c program is divided into three sections: a program
comment , a list of library inclusions, and the main program . Although its structure is
extremely simple, the hello.c program is typical of the programs you will see in the next few
chapters, and you should use it as a model of how C programs should be organized.

CommentsCommentsComments

Comments

The first section of hello.c is simply an English-language comment describing what the
program does. In C, a commentcommentcomment

comment

is any text that is enclosed between the markers /* and */.
Comments may continue for several lines. In the hello.c program, the comment begins with
the /* on the first line and ends with the */ eight lines later.

program
comment

library
inclusions

main
program



Comments are written for human beings, not for the computer. They are intended to
convey information about the program to other programmers. When the C compiler
translates a program into a form that can be executed by the machine, it ignores the
comments entirely.

In this text, every program begins with a special comment called the programprogramprogram

program

commentcommentcomment

comment

that describes the operation of the program as a whole. It includes the name of
the program file and a message that describes the operation of the program. Comments
might also describe any particularly intricate parts of the program, indicate who might use
it, offer suggestions on how to change the program behavior, and the like. For a program
this simple, extensive comments are usually not necessary. As your programs become more
complicated, however, you will discover that good comments are one of the best ways for
you to make them understandable to someone else.

LibraryLibraryLibrary

Library

inclusionsinclusionsinclusions

inclusions

The second section of the program consists of the lines

#include <stdio.h>
#include “genlib.h ”

These lines indicate that the program uses two libraries. A librarylibrarylibrary

library

is a collection of
tools written by other programmers that perform specific operations. The libraries used by
the hello.c program are a standard input/output library (stdio ) that is supplied along with ANSI
C and a general library (genlib ) designed specifically for use with this book. Every program
in this book will include both of these libraries, which means that these lines will appear in
every program immediately after the program comment. Some programs may need to use
additional libraries as well. Those programs must contain an #include line for each library
that is used.

When your write your programs, you can use the tools provided by these libraries,
which saves you the trouble of writing them yourself. Libraries are critical to programming,
and you will quickly come to depend on several important libraries as you begin to write
more sophisticated programs.

To use a library, however, your program must specify enough information for the C
compiler to k now what facilities are available as part of that library. In most cases, that
information is provided in the form of a headerheaderheader

header

filefilefile

file

, a file that contains a description for
the compiler of the tools provided by that library. For example stdio.h is the name of a
header file that defines the contents of the standard input/output library. Similarly, genlib.h is
the name of a header file that defines the contents of the general library. The .h in each of
these file names indicates a header file, just as the .c in hello.c indicates a C program. The
contents of header files are discussed more thoroughly in Chapters 7 and 8.

Notice that the punctuation differs in the two #include lines:

#include <stdio.h>
#include “genlib.h ”

The library stdio is part of the standard set of libraries that are always available when you



use ANSI C. Standard libraries are marked with angle brackets so that you can include stdio

by writing.

#include <stdio.h>

Personal libraries that you write yourself and the extended libraries that accompany this
book are specified using quotation marks. Because the genlib library is one of these extended
libraries, the #include line is written as

#include “genlib.h ”

As this text introduces each new library, the corresponding #include line will be shown
with the appropriate punctuation so you’ll know how to gain access to that library.
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program

The last section of the hello.c file shown in Figure 2-1 is the program itself, which
consists of the lines

main()
{

Printf(“Hello, world.\n”);
}

These four lines represent the first example of a function in C. A function is a sequence of
individual program steps that have been collected together and given a name. The name of
this function, as given on the first line, is main . The steps the function performs are listed
between the curly braces and are called statementstatementstatement

statement

. Collectively, the statements constitute
the bodybodybody

body

of the function. The function main shown in the hello.c example contains only one
statement, but it is common for functions to contain several statements that are performed
sequentially.

Whenever you run a C program, the computer executes the statements enclosed in the
body off the function named main, which must exist in every complete C program. In the
hello.c example, the body of main consists of the single statement

Printf(“Hello, world.\n”);

This statement uses the library function printf, which is one of the facilities in the standard
input/output library that became available when the programmer included the line

#include <stdio.h>

earlier in the program.
But what does printf do? Like main, printf is a function, which means that the name printf

corresponds to a sequence of operations. When you want to invoke those operations, you
can simply refer to them collectively by using the function name. In programming, the act
of invoking a function by using its name is referred to as callingcallingcalling

calling

that function. Thus the
statement

printf(“Hello, world.\n”);

in the hello.c program represents a callcallcall

call

to the printf function.



When you call a function, you often need to provide additional information. In C, for
example, printf is a function that displays data on the screen. But what data should it display ?
This additional information is indicated using a list of arguments enclosed in parentheses
after the function name. An argumentargumentargument

argument

is information that the caller of a particular function
makes available to the function itself. Here, printf has been given one argument, the
sequence of characters, or stringstringstring

string

, enclosed in quotation marks, as follows:

“Hello, world.\n”

This string is your first example of data in a programming language. There are many
different types of data in C, and you will devote a great deal of your attention to the
question of how to use data. For the moment, however, you can consider datadatadata

data

to be thee
information manipulated by the program: any messages displayed, input requested from
the user, values delivered as the result of computation, or intermediate results generated
along the way.

In this program, the single statement in main tells the printf library function to display all
the characters that make up the string passed to printf as an argument. The printf function
dutifully responds by displaying the H, the e the l, and so on, until the entire message
appears on the screen as shown:

The final character in the string is a special character called newline, indicated by the
sequence \n. When the printf function reaches the period at the end of the sentence, the
cursor is sitting at the end of the text, just after the period. If you wanted to extend this
program so that it wrote out more messages, you would probably want to start each new
message on a new screen line. The newlinenewlinenewline

newline

character, defined for all modern computer
systems, makes this possible. When the printf function processes the newline character, the
cursor on the screen moves to the beginning of the next line, just as if you hit the Return
key on the keyboard (this key is labeled Enter on some computers). In C, programs must
include the newline character to mark the end of each screen line, or all the output will run
together without any line breaks.
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To get a better picture of how a C program works, you need to consider a slightly
more sophisticated example. The program add2.c shown in Figure 2-2 asks the user to
enter two numbers, adds those numbers together, and then displays the sum.

Hello, word.



The add2.c program incorporates several new programming concepts that were not
part of hello.c. First, add2.c uses a new library called simpio, simplif ied input/output. This
library is an extension used in this text, so the #include line uses quotation marks, just as it
did in the case of genlib :

#include “simpio.h”

Another new programming feature that deserves special attention appears as the first line of
the function main

int n1, n2, total;

This line is the first example of a variable of a variable declaration. Within a program, a
variablevariablevariable

variable

is a placeholder for some piece of data whose value is unknown when the
program is written. For example, when you write a program to add two numbers, you don’t
yet know what numbers the user will want to add. The user will enter those numbers when
the program runs. So that you can refer to these as-yet-unspecified values in your program,
you create a variable to hold each value you need to remember, give it a name, and then use
its name whenever you want to refer to the value it contains. Variable names are usually
chosen so that programmers who read the program in the future can easily tell how each
variable is used. In the add2.c program, the variables n1 and n2 represent the numbers to be
added, and the variable total represents the sum.

Before you use a variable in C, you must declare that variable. DeclaringDeclaringDeclaring

Declaring

a variable
tells the C compiler that you are introducing a new variable name and specifies the type of
data that variable can hold. For example, in add2.c the line

int n1, n2, total;

declares all three of the variable names—n1, n2, and total—and indicates to the compiler
that each holds a value of type int. The type name int stands for integerintegerinteger

integer

, a number without
fractional parts. Variables and declarations are discussed in more detail in the section on
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add2.c

/*
* File: add2.c
* --------------
* This program reads in two numbers, adds them toge ther,
* and prints their sum.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{

int n1, n2 total;

printf(“This program adds two numbers.\n”);
printf(“1st number ? “);
n1 = GetInteger();
printf(“2nd number ? “);
n2 = GetInteger():
total = n1 + n2;
pprin tf( “The total is %d.\n”, total);

}



“Variables” later in this chapter.
As with any program, the computer runs the add2.c program by executing each of the

statements in the body of main. The first statements in add2.c is similar to the statement that
formed the entire body of the earlier hello.c example:

Printf (“This program adds two numbers.\n”);

When this statement is executed, the computer simply displays the message on the screen
and returns the cursor, represented by the vertical line, to the beginning of the following
line. The purpose of the message is to tell the user what the program does.

After displaying the introductory, the strategy for the rest of the program can be
divided into three phases:

1. The inputinputinput

input

phase, in which the program asks the user to enter the two numbers to
be added

2. The computationcomputationcomputation

computation

phase, in which the program computes the sum
3. The outputoutputoutput

output

phase, in which the program displays the results of the computation
on the computer screen
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inputinputinput

input

phasephasephase

phase

In the input phase, the program must ask the user to enter each of the two numbers and
the store those numbers in the variables n1 and n2, respectively. For each number, the input
process consists of two steps. First, the program needs to display a message on the screen
so that the user knows what in expected; this type of message is generally called a promptpromptprompt

prompt

.
As with other messages to the user, you can use printf to display the prompt, as follows:

printf(“1st number ? “);

Note that this time there is no newline character at the end of the argument string given to
printf. Leaving out the newline character means that the cursor will remain at the end of the
displayed text, right after the space following the questions mark, as the following sample
run shows:

the cursor at the end of the line tells the user that an input value is required, and the prompt
message indicates what value is required. In most cases, you will include the newline
character in printf calls that are used to display output data but not in those that are used to
display prompts for input data.

To read the number itself, the program uses the statement

n1 = GetInteger();

This program adds two numbers.

This program adds two numbers.
1st number ? |



This statement is the first example of an extremely important programming construct called
an assignment statement. In C, an assignmentassignmentassignment

assignment

statementstatementstatement

statement

stares a value written to the right
of an equal sign in a variable written to the left of that equal sign. In this case, the right-
hand side of the assignment statement is a call to the function GetInteger ; the left-hand side
for the assignment statement is the variable n1.

The function GetInteger is part of the simpio library and is used to read integer values
from the user. When GetInteger is called, the program waits for the user to enter a whole
number using the keyboard. When the user has finished typing the number and has pressed
the Return key, that value is then passed back to the main program as the result of the
GetInteger function. In programming terminology, we say that GetInteger returns the value the
user typed. The effect of the assignment statement as a whole is to call the GetInteger

function, let the user enter a value, and finally store the value returned by GetInteger in the
variable n1.

It is useful to review in more detail the execution of the statements

printf(“1st number ? “);
n1 = GetInteger();

The first statement simply displays the specified prompt on the screen, leaving the cursor at
the end of the line. The computer ten goes on to execute the statement

n1 = GetInteger();

As part of the call to GetInteger , the program waits for the user to enter a numeric value,
which is interpreted as an integer. For example, the user might enter the number 2. The
screen now looks like the following sample run. (To make the user actions more clear, the
diagram uses the  symbol to indicate that the user has pressed the Return or Enter key
signifying the end of the input line. That symbol does not actually appear on the screen. In
this book, the user’s input is shown in color to distinguish it form the text generated by the
program.)

The value 2 is then stored in the variable n1.
When tracing through the operation of a program on paper, programmers often use a

simple box diagram to indicate that a variable has been given a particular value. Each
variable corresponds to a box in the diagram. Each box has a name, which is fixed
throughout the time the function runs, and a value, which changes as new values are stored
in that variable. Thus, to illustrate that the assignment statement has stored the value 2 in
the variable n1, you draw a box, name the box n1, and then indicate its value by writing a 2

inside the box, as follows:

After reading in the first number, the program reads in the second by repeating the

This program adds two numbers.
1st number ? 222

2





2

n1



same basic steps:

printf(“2nd number ? “) ’
n2 = GetInteger();

For example, if the user’s second number were 3, the screen would look like

You can now diagram the values for the two variables this way:
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The computation phase of the program consists of calculating the sum of these two
numbers. In programming, computation is specified by writing an expression that indicates
the necessary operations. The result of the expression is then stored in a variable using an
assignment statement so that the result can be used in subsequent parts of the program. The
structure of expressions is defined more formally later in this chapter. Even without a
complete definition, however, it is usually easy to understand how C expressions work
because they look very much like expressions in traditional mathematics.

In the add2.c program, you want to add the values stored in the variables n1 and n2. To
do so, you use the + operator, which is familiar from basic arithmetic. To keep track of the
result, you store it in the variable total, which you declared for precisely that purpose. The
assignment statement that performs these operations is

total = n1 + n2;

As is the case with any assignment statement in C, the computer calculates the value
represented by the expression on the right-hand side of the equal sign and then stores it in
the variable written on the left-hand side. Here, the effect of the assignment statement is to
add the values stored in the variables n1 and n2 and then to assign that result to the variable
total .
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The output phase of the program consists of displaying the computed result. As with
other output operations, displaying the result is accomplished using the printf function. This
time, however, there’s a new twist. The last statement in the add2.c program is

printf(“The total is %d.\n, total);

As before, printf displays each of the characters in the argument string on the screen. When it

This program adds two numbers.
1st number ? 222

2





2nd number ? 333

3
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

2

n1

3

n2



gets to the percent sign (%), however, print does something special. The % and the letter that
follows it are called a formatformatformat

format

codecodecode

code

...

.

Here, for example, the format code is %d. A format
code in a printf string acts as a placeholder for a value, which is inserted at that point in the
output. The letter that appears in the format code is used to specify the output format. In
this case, the %d format code means that the output should be displayed as a decimal
integer. Thus, the program at this point is point to display a message that looks like

Where the underlined area is replaced with a decimal integer value.
To know what integer to display, printf takes the value from the next argument in the

call, which in this case is the variable total. That value is displayed on the screen, and the
newline character causes the cursor to move to the next line. Combining this last line with
the messages already on the screen shows the complete sample run for the add2.c program:

The printf function can display any number of data values as part of the output. For each
integer value you want to appear as part of the output, you need to include the code %d in
the string that is used as the first argument in the printf call. The actual values to be displayed
are given as additional arguments to printf, listed in the order in which they should appear.
For example, if you changed the last line of the add2.c program to

printf(“%d+%d= %d\n”, n1, n2, total);

the value of n1 would be substituted in place of the first %d, the value of n2 would appear in
place of the second %d, and the value of total would appear in place of the third %d. The
final image on the computer screen would be

The printf function is discussed in more detail in Chapter 3.
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Section 2.2 analyzed the add2.c program in detail, taking each statement in the program
and describing its specific function. To become a successful programmer, you need to learn
what the different statements available in C do and how to use them. At times, you will
certainly find yourself going through your own programs statement by statement,
particularly when you are searching for a bug that keeps your programs. Sometimes it helps

The total is ____.

This program adds two numbers.
1st number ? 222

2





2nd number ? 333
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



The total is 5.

This program adds two numbers.
1st number ? 222

2
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

2nd number ? 333

3





2 + 3 = 5



to stand back and look at the program as a whole.
Look at the main program for the add2.c program again and try to express in one

sentence what it does:

main()
{

int n1, n2, total;

Printf(“This program adds two numbers.\n ”);
printf(“1st number ? “);
n1 = GetInteger();
printf(“2nd number ? “);
n2 = GetInteger();
total = n1 + n2;
printf(“The total is %d.\n” , total);

}

Even if the first call to printf were not a dead giveaway, the odds are good that you could
figure out what this program does without having read the explanations from the previous
section and without understanding how any of the different kinds of statements works in
detail. The program adds two numbers and displays the result.

What perhaps more important is that you can also modify the add2.c program to do
something a little different. For example, changing the program so that it adds three
numbers would not be difficult at all. Recognizing large-scale patterns and building new
programs form existing models are essential strategies for programming.

When you look at a program like add2.c , you can choose to perceive it in either of two
ways. If you go through the program line by line, as in Section 2.2, you develop an
understanding of the program from the perspective of its individual parts—a reductionistic
approach. But you can also look at program from a more global perspective—as a complete
entity whose operation as a whole is of primary concern. This holistic perspective allows
you to see the program in a different light—one that is critical to successful programming.

ReductionismReductionismReductionism

Reductionism

is the philosophical principle that the whole of an object can best be
understood by understanding the parts that make it up. Its antithesis is holismholismholism

holism

, which
recognizes that the whole is often more than the sum of its parts. As you learn how to write
programs, you must learn to see the process from each of these perspectives. If you
concentrate only on the big picture, you will end up not understanding the tools you need
for solving problems. However, if you focus exclusively on details, you will miss the forest
for the trees.

In learning about programming, the best approach is usually to alternate between these
two perspectives. Taking the holistic view helps sharpen your intuition about the
programming process and enables you to stand back from a program and say, “I understand
what this program does.” On the other hand, to practice writing programs, you have to
adopt enough of the reductionistic perspective to know how those programs are put
together.

For the rest of this chapter, we will take the reductionistic approach and delve more
deeply into two concepts that were introduced in the context of the add2.c program: data
types and expressions. You will learn enough about those concepts to begin writing some
interesting programs. In Chapter 3, however, we return to the holistic approach and focus
on the abstract process of solving problems.
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DataDataData

Data

typestypestypes

types

To be useful in a wide variety of applications, programs must be able to store many
different types of data. The add2.c program works with integers, but they are only one of
many kinds of data available in C. In many applications, you need to work with numbers
that are not integers but instead have fractional parts, such as 1.5 or 3.1415926. When you
use a word-processing program, the individual data values are characters, which are then
assembled into larger units, such as words, sentences, and paragraphs. As your programs
get more complicated, you will begin to work with large collections of information
structured in a variety of ways. All these different classes of information constitute datadatadata

data

.
Whenever you work with some piece of data—an integer or a number with a fractional

part or a character—the C compiler needs to know its data type. Holistically speaking, a
datadatadata

data

typetypetype

type

is defined by two properties: a set of values, or domaindomaindomain

domain

, and a set of operations.
For data types, the domain is simply the set of values that are elements of that type. For
example, the domain of the type int includes all integers (…-2, -1, 0, 1, 2…) up to the limits
established by the hardware of the machine. For character data, the domain is the set of
symbols that appear on the keyboard or that can be displayed on the terminal screen. The
set of operations comprises the tools you have to manipulate values of that type. For
example, given two integers, you might add them together or divide one by another. Given
text data, on the other hand, it is hard to imagine what and operation like multiplication
might mean. You would instead expect to use operations such as comparing two words to
see if they are in alphabetic order or displaying a message on the screen. Thus, the
operations must be appropriate to the elements of the domain, and the two components
together—the domain and the operations—define the data type. The next two sections
introduce two new types—double and string—so that you get used to the idea that data comes
in different forms.

Floating-pointFloating-pointFloating-point

Floating-point

datadatadata

data

Many applications require the use of numbers that can include fractional parts. For
example, if you wanted to write a program that dealt with distances, it would certainly be
limiting if you were forced to deal only with whole numbers. A measurement might come
out to be exactly 1 inch or exactly 3 inches, but it could just as well be 2.5 inches or 0.73
inches. Programs that work with such measurements must be able to represent these
nonintegral values as well.

In most programming languages, numbers that include a decimal fraction are called
floating-pointfloating-pointfloating-point

floating-point

numbersnumbersnumbers

numbers

, which are used to approximate real numbers in mathematics. The
most common type of floating-point number in C is the type double , which is short for
double-precision floating-point1. If you need to store floating-point values in a program,
you must declare variables of type double, just as you had to declare variables of type int in

1 This particular type is called double-precision because it offers twice as much accuracy as the
floating-point type float, which was much more commonly used when C was first developed. Today, most
programmers tend to use the type double for all floating-point values.



add2.c .
To write a complete program that works with floating-point values, you also must be

able to read in and display numbers of type double. As with integers, reading in floating-
point numbers is accomplished using a function from the simpio library. To read in a
floating-point number, you call the function GetReal , which is identical in operation to the
GetInteger function described in the section on “The input phase” earlier in this chapter,
except that it returns a value of type double. To display a floating-point value on the screen,
you again use the function printf. This time however, instead of using %d to indicate a
decimal integer, you use a different format code. There are several format codes that apply
to floating-point numbers, but the easiest one to use is %g, which stands for the general
floating-point format.

The programming example in Figure 2-3 shows how easy it is to change the entire
add2.c program into one that adds two floating-point numbers. The only differences are the
change in the types of the variables, the use of GetReal in the place of GetInteger , and the use
of %g in place of %d in the printf line.
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add2f.cadd2f.cadd2f.c

add2f.c

/*
* File: add2 f.c
* -----------------
* This program reads in two floa ting-point numbers, adds them
* toge ther, and prints their sum.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h ”

main()
{

double n1, n2, total;

printf(“This program adds two floa ting-point numbers.\n ”);
printf(“1st number ? “);
n1 = GetReal( );
Printf(“2nd number ? “);
n2 = GetReal( );
total = n1 + n2;
printf(“The total is %g\n”, total):

}

StringStringString

String

datadatadata

data

Although the first computers were designed primarily to solve numeric problems (and
computers are still sometimes called “number crunchers” as a result), modern computers
spend less of their time working with numbers than they do with text. Because the
operations on numbers are so simple, the programming examples in the first few chapters of
this book concentrate on numeric data. In practice, however, it is very important to be able
to manipulate text data as well.

The most primitive elements of text data are individual characters. Characters,
however, are most useful when they are collected together into sequential units. In
programming, a sequence of characters is called a string. Strings make it possible to display



informational messages on the screen. You have already seen several examples of strings in
the example programs, beginning with hello.c . It is important, however, to recognize that
strings are data and that they can be manipulated and stored in much the same way that
numbers can.

When considered in detail, strings turn out to be a complicated data type for which a
full treatment lies well beyond the scope of this chapter. Even so, it is useful to know a little
about strings at this point for two reasons. First, strings provide an example of a data type
that is quite different from either int or double. Because they both refer to numbers and use
the same basic set of arithmetic operations, the types int and double are in fact quite similar.
Strings are sued in very different ways. Second, strings make it possible to write more
interesting programs, even if you do not yet know how to manipulate them in a very
sophisticated way.

To use string data at all, you need a way to name the data type. Although the designers
of C provided several operations that work with strings in the libraries associated with the
language, they did not define and explicit string type. This omission poses a problem for
the student programmer. To make up for this deficiency, however, the type string is defined
in the header file genlib.h .

The details of the definition for string are not important at this point, provided you
know how objects of type string behave. Moreover, it doesn’t matter whether string is
defined as part of the language or as part of a library. Types defined in libraries simply
become part of the repertoire of data types and are used just as built-in types are. In your
programming, you should think of the type string as if it were an integral part of C, even
though you know it is actually defined by the genlib library.

You can declare variables of type string in the same way that you declared variables of
type int or double in earlier programs. For example, if you want to keep track of someone’s
name, which consists of a sequence of characters and is therefore a string, you could write
the declaration

string name;

at the beginning of your program.
For the moment, we will not define any operations on strings other than the ones

necessary to read them from the keyboard and display them on the screen. Reading in a
string is handled in much the same way as reading in a number. The simpio library contains
a function GetLine that reads in an entire line and returns it as a string. Given a value of
type string, you can use printf to display it on the screen, just as you do with number data.
The only difference is that you need to use the format code %s instead of the %d or %g you
use for numeric types. These two string operations, by themselves, provide you with a great
deal of additional power. For example, you can make a small extension to the “Hello
world” program so that it offers a more personal welcome than the generic greeting
provided by hello.c . The new version is shown in Figure 2-4.
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greeting.cgreeting.cgreeting.c

greeting.c

/*
* File: greeting.c
* -----------------
* This program prints a more personal greeting than did



* the original “Hello, world.” program by reading in the
* name of the user.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h ”

main()
{
string user;

printf(“What is your name? “);
user = GetLine();
printf(“Hello, %s.\n”, user):

}

If you run this program using my first name, you would get the following sample run:

Strings are so important to programming that this book devotes several chapters to them.
You will have a chance to learn more about strings beginning in Chapter 9.
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ExpressionsExpressionsExpressions

Expressions

Whenever you want a program to perform calculations, you write an expression that
specifies the necessary operations in a form similar to that used for expressions in
mathematics. For example, to add the values in the variables n1 and n2 in the add2.c program,
the appropriate expression is

n1 + n2;

In C, an expression is composed of terms and operators. A termtermterm

term

, such as n1 and n2 in the
previous expression, represents a single data value. An operatoroperatoroperator

operator

, such as the + sign, is a
character (or sometimes a short sequence of characters) that indicates a computational
operation. In an expression, a term must be one of the following:

 A constant. Any explicit data value that appears as part of the text of the program
is called a constantconstantconstant

constant

. Numbers such as 0 or 3.14159 are examples of constants.
 A variable. Variable serve as placeholders for data that can change during the

execution of a program.
 A function call. Values are often generated by calling other functions, possibly in

libraries, that return data values to the original expression. In the add2.c program,
the function GetInteger is used to read in each of the input values; the function call
GetInteger() is therefore an example of a term. Function calls are discussed further
in Chapter 5.

 An expression in parentheses. Parentheses may be use in an expression to
indicate the order of operations, in the same way they are used in mathematics.
From the compiler’s point of view, the expression in parentheses becomes a term

What is your name? EricEricEric

Eric





Hello, Eric.



that must be handled as a unit before computation can proceed.

When a program is run, the process of performing each of the specified operations in an
expression is called evaluationevaluationevaluation

evaluation

...

.

When an expression is evaluated, each operator is applied
to the data values represented by the surrounding terms. After all the operators have been
evaluated, what remains is a single data value that indicates the result of the computation.
For example, given the expression

n1 + n2

the evaluation process consists of taking the values in the variables n1 and n2 and adding
them together, and the result of the result of the evaluation is whatever that sum happens to
be.

CCC

C

onstantsonstantsonstants

onstants

When you write a formula in mathematics, some symbols in the formula typically
represent unknown values while other symbols represent constants whose values are known.
Consider, for example, the mathematical formula for computing the circumference (C) of a

circle given its radius (r):

C = 2πr

To translate this formula into a program statement, you would use variables to record the
radius and circumference. These variables change depending on the data. The values 2 and
π, however, are constants—explicit values that never change. The value 2 is an integer
constant, and the value π is a real number constant, which would be represented in a
program by a floating-point approximation, such as 3.14159. Because constants are an
important building block for constructing expressions, it is important to be able to write
constant values for each of the basic data types.

1. Integer constants. To write an integer constant as part of a program or as input data,
you simply write the digits that make up the number. If the integer is negative, you
write a minus sign before the number, just as in mathematics. Commas are never used.
Thus, the value one million must be written as 1000000 and not as 1,000,000.

2. Floating-point constants. Floating-point constants in C are written with a decimal
point. Thus, if 2.0 appears in a program, the number is represented internally as a
floating-point value; if the programmer had written 2, this value would be an integer.
Floating-point values can also be written in a special programmer’s style of scientif ic
notation, in which the value is represented a floating-point number multiplied by an
integral power of 10. To write a number using this style, you write a floating-point
number in standard notation, followed immediately by the letter E and an integer
exponent, optionally preceded by a + or – sign. For example, the speed of light in
meters per second is approximately

2.9979 × 108

which can be written in C as



2.9979E+8

where the E stands for the words times 10 to the power.
3. String constants. You write a string constant in C by enclosing the characters that

comprise the string in double quotation marks. For example, the very first example of
data used in this text was the string

“Hello, world.\n”

in the hello.c program. This string consists of the characters shown between the
quotation marks, including the letters, the space, the punctuation symbols, and the
special newline character. The quotation marks are not part of the string but sever only
to mark its beginning and end.

VVV

V

ariablesariablesariables

ariables

A variablevariablevariable

variable

is a placeholder for a value and has three important attributes: a name, a
value, and a type. To understand the relationship of these attributes, think of a variable as a
box with a label attached to the outside. The name of the variable appears on the label and
is used tell the different boxes apart. If you have three boxes (or variables), you can refer to
a particular one using its name. The value of the variable corresponds to the contents of the
box and put new values in as often as you like. The type of the variable indicates what kind
of data values can be stored in the box. For example, if you have a box designed to hold
values of type int, you cannot put values of type string into that box.

Variable names in C are constructed according to the following rules:

1. The name must start with a letter or the underscore character (_). In C,
uppercase and lowercase letters appearing in a variable name are considered to
be different, so the name ABC, Abc, and abc refer to three separate variables.

2. All other characters in the name must be letters, digits, or the underscore. No
spaces or other special characters are permitted in names.

3. The name must not be one of the following keywordskeywordskeywords

keywords

, which are names that C
defines for a specific purpose:

Atuo double int struct
break else long switch
case enum regis ter typedef
char extern return union
const floa t short unsigned
continue for signed void
defaul t goto sizeof volatile
do if static while

4. Variable names can be of any length, but C compilers are required to consider
only the first 31 characters as signif icant1. Thus, if two variable names have the
same first 31 characters, subsequent differences may not be recognized by
some compilers. For example, the variable name

1 Variable names that are shared between separate program files often consider even fewer
characters to be significant. To be safe, it is best to make sure that any names that are shared between files
can be distinguished by considering their first six characters.



anExtremelyLonVariableNameWith43Characters

may be treated as identical to

anExtremelyLongVariableNameWithAdifferen tEnding

Because the two names are exactly the same through the first 31 characters. As
a general rule to guard against such mix-ups, it is usually best to avoid using
names with more than 31 characters.

5. The variable name should make it obvious to the reader what value is being
stored. Although names of friends, expletives, and the like may be legal
according to the other rules, they do absolutely nothing to improve the
readability of your programs.

As noted in the discussion of the add2.c program, you must explicitly specify the data
type of every variable before you use it in a program. This process is known as declaring
the variable. Variables are usually declared at the beginning of a function. (So far in this
text, the only function in which variables have been declared is the function main, but it is
legal to declare variables in any function.) The declaration itself consists of a type name,
followed by a list of variables to be declared as instances of that type. For example, the
add2.c program declares three variables with the line

int n1, n2, total;

The names of these variables are n1, n2, and total, all of which are of type int. Thus, using the
box analogy for variables, the effect of this declaration is to create the following three
boxes, with the names n1, n2, and total:

The initial value of each variable is undefined, and you should not make any assumptions
about what values these boxes hold when the program begins. The variable n1 might
contain 73 or any other random value; you won’t know what value is there until you put
one there yourself.

If you need to declare values of a different type, you can use additional declaration
statements at the beginning of the function. For example, you could declare the variable msg

to be of type string by writing the declaration

string msg;

Once again, the effect of this declaration in terms of the box analogy is to create a new
box with the name msg:

In this diagram, I have chosen a different shape for the box to emphasize that the type of
the variable msg is different from that of the variables n1, n2, and total . The variable n1, for
example, is of type int and can hold only integer data; the variable msg is of type string and

msg

n2 totaln1



can hold only string data. Trying to put the wrong type of data into one of these variables is
the computational equivalent of attempting to put a square peg into a round hole and will be
caught by the compiler as an error.

AssignmentAssignmentAssignment

Assignment

statementsstatementsstatements

statements

As illustrated in the add2.c program earlier in this chapter, variables are given values
through the use of assignment statements. In C, an assignment statement has the following
form:

variable = expression;

As you will learn in Chapter 3, the line above is an example of a programming paradigm.
The words in italics represent items you fill in with anything that fits the indicated class. In
writing an assignment statement, you can use any variable name on the left-hand side of the
equal sign and any expression on the right-hand side. The remainder of the paradigm—in
this case the semicolon—is fixed. Thus, in order to write an assignment statement, you start
with a variable name, followed by an equal sign, an expression, and a semicolon, in that
order.

When new statements are introduced in this text,
they will be accompanied by a syntax box like the one
to the right. Syntax boxes contain a capsule summary
of the grammatical structure for a particular statement
type and sever as a handy reference.

As noted in the preceding section, jotting down box diagrams can help you visualize
the roles of variables in a program. Whenever a variable is declared as part of a function
definition, you can draw a new box to hold its value and label the box with the variable
name. For example, if a function begins with the declarations

int n1, n2;
string mst;

you can represent the variables in that function graphically by drawing a box for each
variable, as follows.

In this text, the double-line border surrounding all the variables is used to indicate that
those variables are all defined within the same function.

In box diagrams of this sort, the boxes are initially empty, which indicates that you
have not yet assigned values to the variables. If the program executes the statement

n1= 42;

you can represent this assignment in the diagram by writing 42 inside the box name n1

SYNTAX forforfor

for

assignment statementsstatementsstatements

statements

variable = expression;
where:

variable is the variable you wise to set
expression specifies the value

n1 n2 msg

42

n1 n2 msg



similarly, you can indicate the effect of the statement

msg = “Welcome! ”;

as follows:

Again, a variable can only hold a value of the appropriate type. If, for instance you were to
write the statement

msg = 173;

in your program, the C compiler would mark this statement as an error because the variable
msg has been declared as a string .

The most important property illustrated by the diagram is that each variable holds
precisely on value. Once you have assigned a value to a variable, the variable maintains
that value until you assign it a new one. The value of one variable does not disappear if you
assign its value to another variable. Thus the assignment

n2 = n1;

changes n2 but leaves n1 undisturbed:

Assigning a new value to a variable erases its previous contents. Thus, the statement

msg = “Aloha! ”;

Changes the picture to

The previous value of the variable msg is lost.

OperatorsOperatorsOperators

Operators

andandand

and

operandsoperandsoperands

operands

In an expression, the actual computational steps are indicated by symbolic operators
that connect the individual terms. The simplest operators to define are those used for
arithmetic expressions, which use the standard operators from arithmetic. The arithmetic

42

n1 n2 msg

Welcome!

42

n1

42

n2 msg

Aloha!

42

n1

42

n2 msg

Welcome!



operators that apply to all numeric data types are:
+ Addition
- Subtraction (or negation, if written with no value to its lef t)
* Multiplication
/ Division

Each of these operators forms a new expression by connecting two smaller expressions, one
to the left and one to right of the operator. These subsidiary expressions (or subexpressionssubexpressionssubexpressions

subexpressions

)
to which the operator is applied are called the operandsoperandsoperands

operands

for that operator. For example, in
the expression

x + 3

the operands for the + operator are the subexpressions x and 3. Operands are often
individual terms, but they can also be more complicated expressions. For example, in the
expression

(2 * x) + (3 * y)

the operands to + are the subexpressions (2 * x) and (3 * y).
As in conventional mathematics, the operator – can be used in two forms. When it is

positioned between two operands, it indicates subtraction, as in x – y. When used with no
operand to its left, it indicates negation, so –x denotes the negative of whatever value x has.
When used in this way, the – operator is called a unaryunaryunary

unary

operatoroperatoroperator

operator

because it applies to a
single operand. The other operators (including – when it denotes subtraction) are called
binarybinarybinary

binary

operatorsoperatorsoperators

operators

because they apply to pair of operands.
These new operators make it possible to write programs that compute much more

interesting and useful results than the sum of two numbers. For example, suppose you want
to write a program to convert a length given in inches to its metric counterpart in
centimeters. All you really need to know is that 1 inch equals 2.54 centimeters you can
construct the rest of the program just by adapting lines from the add2f.c example and
putting them back together in the appropriate way the final result is shown in Figure 2-5.
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inchtocm.cinchtocm.cinchtocm.c

inchtocm.c

/*
* File: inchtocm.c
* -----------------
* This program reads in a length given in inches and converts it
* to its metric equivalen t in centimeters.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h ”

main()
{
double inch, cm;

printf(“This program converts inches to centimeters.\n”);
printf(“Leng th in inches? “);
inch = GetReal( );
cm = inch * 2.54;
printf(“%g in = %gcm\n”, inch, cm):

}



CombiningCombiningCombining

Combining

integersintegersintegers

integers

andandand

and

floating-pointfloating-pointfloating-point

floating-point

numbersnumbersnumbers

numbers

In C, values of type int and double can be freely combined. If you use a binary
operator with two values of type in, the result is of type int. If either or both operands are
of type double, however, the result is always of type double. Thus, the value of the
expression

n + 1

is of type int, if the variable n is declared as type int. On the other hand, the expression

n + 1.5

is always of type double . This convention ensures that the result of the computation is as
accurate as possible. In the case of the expression n + 1.5, for example, there would be no
way to represent the .5 if the result were computed using integer arithmetic.

IntegerIntegerInteger

Integer

divisiondivisiondivision

division

andandand

and

thethethe

the

remainderremainderremainder

remainder

operatoroperatoroperator

operator

The fact that applying a binary operator to two integer operands always results in an
integer leads to an interesting situation with respect to the division operator. If you write
an expression like

9 / 4

C's rules specify that the result of this operation must be an integer because both operands
are of type int. When the program evaluates this expression, it divides 9 by 4 and throws
away any remainder. Thus, the value of the expression is 2, not 2.25. If you want to
compute the mathematically correct result, at least one of the operands must be a floating-
point number. For example, the three expressions

9.0 / 4
9 / 4.0
9.0 / 4.0

each produce the floating-point value 2.25. The remainder is thrown away only if both
operands are of type int.

There is an additional arithmetic operator that computes a remainder, which is
indicated in C by the percent sign (%). The % operator requires that both operands be of
type int. It returns the remainder when the first operand is divided by the second. For
example, the value of

9 % 4

is 1, since 4 goes into 9 twice, with 1 left over. The following are some other examples of
the % operator:

0 % 4 = 0 19 % = 3
1 % 4 = 1 20 % 4 = 0
4 % 4 = 0 2001 % 4 = 1

The / and % operators turn out to be extremely useful in a wide variety of programming



applications. The % operator, for example, is often used to test whether one number is
divisible by another. For example, to determine whether an integer n is divisible by 3, you
just check whether the result of the expression n %3 is 0.

C behaves in a confusing way when one or both of the operands to % are negative. In
fact, different implementations of C can behave differently in such cases. If you rely on
one particular behavior, you might be surprised if you move your program to another
computer. To ensure that your programs will work the same way on all machines, you
should avoid using % with negative operands.

PrecedencePrecedencePrecedence

Precedence

If an expression has more than one operator, the order in which those operators are
applied becomes an important issue. In C, you can always specify the order by putting
parentheses around individual subexpressions. For example, the parentheses in the
expression

(2 * x) + (3 * y)

indicate that C should perform each of the multiplication operations before the addition.
But what happens if the parentheses are missing? Suppose that the expression is simply

2 * x + 3 * y

How does the C compiler decide the order in which to apply the individual operations?
In C, as in most programming languages, that decision is dictated by a set of ordering

rules chosen to conform to standard mathematical usage. They are called rulesrulesrules

rules

ofofof

of

precedenceprecedenceprecedence

precedence

. For arithmetic expressions, the rules are:

1. The C compiler first applies any unary minus operators (a minus sign with no
operand to its lef t).

2. The compiler then applies the multiplicative operators (*, /, and %). If two of these
operators apply to the same operand, the leftmost one is performed first.

3. It then applies the additive operators (+ and -). Once again, if two operators at this
level of precedence apply to the same operand, C starts with the leftmost one.

Thus, in the expression

2 * x + 3 * y

the multiplication operations are performed first, even when the parentheses are missing.
Using parentheses may make the order clearer, but in this case their use is not required
because the intended order of operations matches the precedence assumptions of
traditional mathematics. If you instead want the addition to be formed first, you must
indicate that fact explicitly by using parentheses, as in

2 * (x + 3) * y

The rules of precedence apply only when two operators compete for a single operand. For
instance, in the expression



2 * x + 3 * y

the operators * and + compete for the operand x. The rules of precedence dictate that the * is
performed first because multiplication has higher precedence than addition. Similarly,
looking at the two operator next to the value 3, you can again determine that the * is
performed first, for precisely the same reason. Note, however, that the rules of precedence
do not specify which of the two multiplications is performed first. These subexpressions are
entirely independent, and the C compiler is free to evaluate them in either order. The left-
to-right rule applies only when two operators at the same precedence level compete for the
same operand. For example, precedence rules make a big difference in the evaluation of the
expression

10 - 5 - 2

Because the precedence rules dictate that the leftmost - be performed first, the computation
is carried out as if the expression had been written

(10 - 5) - 2

which yields the value 3. If you want the subtractions performed in the other order, you
must use explicit parentheses:

10 - (5 - 2)

In this case, the result would by 7.
There are many situations in which parentheses are required to achieve the desired

result. For example, suppose that, instead of adding two floating-point numbers the way
add2 f.c does, you wanted them averaged instead. The program is almost the same, as shown
in Figure 2-6.
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ave2fave2fave2f

ave2f

.c.c.c

.c

/*
* file: ave2f.c
* ---------------
* This program reads in two floa ting-point numbers and
* computes their average.
*/

#include <stdio.h>
#include " gelib.h"
#include "simpio.h"

main()
{
double n1, n2, average;

printf("This program averages two floa ting-point numbers.\n");
printf("1st number ? ");
n1 = GetReal( );
printf("2nd number ? ");
n2 = GetReal( );
average = (n1 + n2) / 2;
printf("The average is %g\n", average);

}

Note that the parentheses are necessary in the statement

average = (n1 + n2) /2;



to ensure that the addition is performed before the division. If the parentheses were missing,
C's precedence rules would dictate that the division be performed first, and the result

would be the mathematical expression

n1+
2
2n

instead of the intended

2
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precedence

rulesrulesrules

rules

To illustrate precedence rules in action, let's consider the expression

8 * (7 - 6 + 5) % (4 + 3 / 2) -1

Put yourself in the place of the computer. How would you go about evaluating this
expression?

Your first step is to evaluate the parenthesized subexpressions, and you might as well
star with the first on: (7 - 6 + 5)1. To compute the value of this expression, you subtract 6
form 7 to get 1 and the add 5 to get 6. Thus, after evaluating the first subexpression, you
are left with

8 * 6 % (4 + 3 / 2) - 1

where the box indicates that the value is the result of a previously evaluated subexpression.
In the second parenthesized subexpression, you must do the division first, since

division and multiplication take precedence over addition. Thus, your first step is to divide
3 by 2, which results in the value 1 (remember that integer division throws away the
remainder). You then add the 4 and 1 to get 5. At this point, you are left with the following
expression:

8 * 6 % 5 -1

From here, C's precedence rules dictate that you perform the multiplication and remainder
operations, in that order, before the subtraction: 6 times 8 is 48, and the remainder of 48
divided by 5 is 3. Your last step is to subtract 1, leaving 2 as the value of the complete
expression.

TypeTypeType

Type

conversionconversionconversion

conversion

You have already learned that it is possible to combine values of different numeric
types within a C program. When you do so, C handles the situation by suing automaticautomaticautomatic

automatic

1 The C compiler is actually free to evaluate the parenthesized subexpressions in either order
depending on what is most convenient for the machine, but the final answer is the same in either case. In
writing your programs, it is important to avoid situations in which the evaluation order might make a
difference.



typetypetype

type

conversionconversionconversion

conversion

, a process by which values of one type are converted into another
compatible type as an implicit part of the computation process. For example, whenever an
integer and a floating-point value are combined using an arithmetic operator, the integer is
automatically converted into the mathematically equivalent double before the operation is
applied. Thus, if you write the expression

1+ 2.3

the integer 1 is converted internally into the floating-point number 1.0 before the addition
is performed.

In C, automatic type conversions are also performed whenever and assignment is
made. Thus, if the variable total is declared to be of type double, and you write the
assignment statement

total = 0;

the integer 0 is converted into a double as part of making the assignment. Some
programming languages (and some programmers) insist on writing this statement as

total = 0.0;

which has the same effect. On the other hand, the values 0 and 0.0 mean different things
mathematically, so it is logical to use the form that is most appropriate to the sense of the
application. Writing the value 0 indicates that the value is precisely 0, because integers are
exact. When 0.0 appears in a statistical or mathematical context, however, the usual
interpretation is that it represents a number close to zero, but one whose accuracy is known
only to one signif icant digit after the decimal point. To avoid ambiguity, this text uses
integers to indicate exactness, even in floating--point contexts.

Assigning a value of type double to a variable of type int also triggers an automatic
conversion, which consists of dropping any fraction. Thus, if n is declared to be of type,
the assignment

n = 1.9999;

has the somewhat surprising effect of setting n to 1. The operation of throwing away the
decimal fraction (which happens both here and in integer division) is called truncationtruncationtruncation

truncation

.
Suppose that you have been asked to write a program that translates a metric distance

in centimeters back into English units—the inverse of the inchtocm.c program in Figure 2-5.
If all you need is the number of inches, the body of the program looks pretty much the
same as before:

main()
{

double inch, cm;

printf("This program converts centimeters to inches.\n");
printf("Length in centimeters? ");
cm = GetReal( );
inch = cm / 2.54;
printf("%g cm= %g in\n, cm, inch);

}
The only real difference is that you divide by the conversion factor 2.54 instead of
multiplying.



Suppose, however, that your employer wants you to display the answer not simply as
the total number of inches, but as an integral number of feet plus the number of leftover
inches. To compute the whole number of feet, you can divide the total number of inches
by 12 and throw away any remainder. To calculate the number of inches left over, you can
multiply the number of feet by 12 and subtract that quantity from the total number of
inches. The entire program is shown in Figure 2-7.
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cmtofeet.ccmtofeet.ccmtofeet.c

cmtofeet.c

/*
* file: cmtofeet.c
*---------------------
* This program reads in a length given in centimeters and converts
* it to its English equivalen t in feet and inches.
*/

#include <stdio.h>
#include "genlib.h"
#include "simpio.h"

main()
{
double totalInches, cm, inch;

printf("This program converts centimeters to feet and inches.\n");
printf("Length in centimeters? ");
cm = GetReal( );
totalInches = cm / 2.54;
feet = totalInches - feet * 12;
printf("%g cm= %d ft %g in\n", cm, feet, inch);

}

The assignment statement

feet = totalInches / 12;

throw away the remainder because feet is declared to be an integer variable.
There are also cases in which you need to specify a type conversion even though the

rules for automatic conversion do not apply. Suppose, for example, you have declared two
integer variables, num and den, and you want to compute their mathematical quotient
(including the fraction) and assign it to the double variable quotien t. You can't simply write

quotien t = num / den;

because both num and den are integers. When the division operator is applied to two
integers, it throws away the fraction. To avoid this problem, you have to convert at least
one of the values to double before the division is performed.

In C, you can specify explicit conversion by using what is called a typetypetype

type

castcastcast

cast

,,,

,

a unary
operator that consists of the desired type in parentheses followed by the value you wish to
convert. For example, you can convert the denominator of the fraction by writing

quotien t = num / (double) den;

Since the denominator is now of type double, the division is carried out using floating-point
arithmetic and the fraction is retained. Equivalently, you can convert the numerator by
writing



quotien t = (double) num / denl

This statement has the same effect, but only because the precedence of a type cast is
higher than that of division, which means that the expression is evaluated as if it had been
written

quotien t = ((double) num) / den;

If the precedence of the type cast were lower than division, C would divide one integer by
the other, throw away the fraction, and then convert the integer result back to a double,
which would not give the mathematically correct answer.

SUMMARYSUMMARYSUMMARY

SUMMARY

In this chapter, you have had the opportunity to look at several complete C programs
to get an idea of their general structure and how they work. Your principal objective has
been to focus on the programming process itself by adopting a holistic view. By building on
the programming examples provided here, you should be ready at this point to write simple
programs that involve only the following operations:

 Reading in numeric values supplied by the user.
 Displaying text and data on the screen.
 Computing new results by applying arithmetic operations to existing data.

Important points about programming introduced in this chapter are:

 Well-written programs contain comments that explain in English what the program
is doing.

 Most programs use libraries that provide tools the programmer need not recreate
from scratch. Every program in this textbook uses two libraries—stdio and
genlib—and may use additional libraries as well.

 You gain access to libraries by adding at the top of the program a #include line that
specifies a header file. As shown in the sample programs, header files for system
libraries (such as stdio.h ) are enclosed in angle brackets; header files for personal
libraries and those designed for use with this text (such as genlib.h and simpio.h) are
enclosed in quotation marks.

 Every complete C program contains a function main. When the program is run, the
statements in the body of main are executed in order.

 Many programs are composed of the following three phases: input, computation,
and output.

 To accept input typed by the user, you use the functions GetInteger , GetReal , and GetLine

form the simpio library, depending on the type of data.
 To display messages and data values on the computer screen, you use the function

printf from the stdio library.
 Data values come in many different types, each of which is defined by a domain

and a set of operations.
 Constants are used to specify values that do not change within a program.



 Variables have three attributes: a name, a value, and a type. All variables used in a
C program must be declared, which establishes the name and type of the variable.

 Variables are given values through the use of assignment statements. Each variable
can hold only one value at a time; when a variable is assigned a new value any,
previous value is lost.

 Expressions are composed of individual terms connected by operators. The
subexpressions to which an operator applies are called its operands.

 When an operator is applied to two operands of type int, the result is also of type int.
If either or both operands are of type double, so is the result.

 If the / operator is applied to two integers, the result is the integer obtained by
dividing the first operand by the second and then throwing the remainder away. The
remainder can be obtained by using the % operator.

 The order of operations in an expression is determined by rules of precedence. The
operators introduced so far fall into three precedence classes:

For the binary operators introduced so far, whenever two operators from the same
precedence class compete for the same operand, those operators are applied in left-
to-right order.

 Automatic conversion between numeric types occurs when values of different types
are combined in an expression or when an assignment is performed.

 Explicit conversion between numeric types can be indicated by using a type cast.
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QUESTIONS

1. What is the purpose of the comments shown at the beginning of each program in this
chapter?

2. What is the purpose of a programming library?
3. ANSI C defines a library called math, which provides several trigonometric and

algebraic functions. Even though you do not yet know what these functions are, what
line would you need to add to your program to gain access to them?

4. In Chapter 7, you will learn about a specialized library called graphics that provides
some simple functions for drawing pictures on the screen and was designed
specifically for use with this text. What line would you need to add to your program to
gain access to the facilities provided by that library? Why is the punctuation for this
line different from that used in the answer to the preceding question?

5. What is the name of the function that must be defined in every C program?
6. What is the purpose of the special character \n that appears at the end of most strings

passed to printf? Why is this special character not ordinarily used when displaying a
prompt for user input?

unary - (type cast) (highest)
* / %

+ - (lowest)



7. What does the word argument refer to in programming? What purpose do arguments
serve?

8. What declarations would you need to write to introduce two integer variables named
voteCount1 and voteCount2? What declarations would you write to introduce three
floating-point variables named x, y and z?

9. What are the three phases that comprise the simple programs presented in this chapter?
10. What is the purpose of the GetInteger function? How would you use it in a program?
11. What is the signif icance of %d and %g when they appear in a printf string? What is the

difference between the two?
12. Describe the difference between the philosophical terms holism and reductionism.

Why are these concepts important to programming?
13. What are the two attributes that define a data type?
14. What are the #include line for the genlib library used in conjunction with all programs

throughout the remainder of this text?
15. Identify which of the following are legal constants in C. For the ones that are legal,

indicate whether they are integers or floating-point constants.
a.a.a.

a.

42 g.g.g.

g.

1,000,000
b.b.b.

b.

-17 h.h.h.

h.

3.1415926
c.c.c.

c.

2+3 i.i.i.

i.

123456789
d.d.d.

d.

–2.3 j.j.j.

j.

0.000001
e.e.e.

e.

20 k.k.k.

k.

1.1E+11
f.f.f.

f.

2.0 l.l.l.

l.

1.1X+11
16. Rewrite the following floating-point constants in C’s form for scientific notation:

a.a.a.

a.

6.02252 x 1023

b.b.b.

b.

299799250000.0
c.c.c.

c.

0.00000000529167
d.d.d.

d.

3.1415926535
(Each of these constants represents an approximation of an important value from
chemistry, physics, or mathematics: (a) Avogadro’s number, (b) the speed of light in
centimeters per second, (c) the Bohr radius in centimeter, and (d) the mathematical
constant π , there is no advantage in using the scientific notation form, but it is
nonetheless possible and you should know how to do so.)

17. Indicate which of the following are legal variable names in C:
a.a.a.

a.

x g.g.g.

g.

total output
b.b.b.

b.

formula1 h.h.h.

h.

aReasonablyLongVariableName
c.c.c.

c.

average_rainfall i.i.i.

i.

12MonthTotal
d.d.d.

d.

%correct j.j.j.

j.

marginal-cost
e.e.e.

e.

short k.k.k.

k.

b4hand
f.f.f.

f.

tiny l.l.l.

l.

_stk_depth
18. What can you assume about the value of a variable before it is assigned a value in a

program?
19. Indicate the values and types of the following expressions:

a. 2 + 3 g. 3 * 6.0
b. 19 / 5 h. 19 % 5



c. 19.0 / 5 i. 2 % 7
20. If the variable k is declared to be of type int , what value does k contain after the

program executes the assignment statement

k = 3.14159;

what value would k contain after the assignment statement

k = 2.71828;

21. What is the difference between the unary minus operator and the binary subtraction
operator?

22. By applying the appropriate precedence rules, calculate the result of each of the
following expressions:

a.a.a.

a.

6 + 5 / 4 –3
b.b.b.

b.

2 + 2 * (2 *2 –2) % 2 /2
c.c.c.

c.

10 + 9 * ((8 + 7) % 6) + 5 * 4 %3 * 2 +1
d.d.d.

d.

1 + 2 + (3 + 4) * ((5 * 6 % & * 8) – 9) - 10
23. In C, how do you specify conversion between numeric types?
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EXERCISES

1. Type in the hello.c program exactly as it appears in this chapter and get it working.

2. The following program was written without comments or instructions to the user,
except for a few input prompts:

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{
double b, h, a;
printf(“Enter b: “);

b = GetReal( );
printf(“Enter h: “);
h = GetReal( );
a = (b * h) / 2;
printf(“a = %g\n” , a);

}

Read through the program and figure out what it is doing. What result is it
calculating? Rewrite this program so it is easier to understand, both for the user
and for the programmer who must modify the program in the future.

3. Extend the inchtocm.c program given in Figure 2-5 so that it reads in two input
values: the number of feet, followed on a separate line by the number of inches.
Here is a sample run of the program:

This program converts from feet and inches to centimeters.
Number of feet? 555

5





Number of inches? 111111

11





The corresponding length is 180.34 cm.



4. Write a program that reads in two numbers: an account balance and an annual
interest rate expressed as percentage. Your program should then display the new
balance after. There are no deposits or withdrawals—just the interest payment.
Your program should be able to reproduce the following sample run:

5. Extend the program you wrote in exercise 4 so that it also displays the balance
after two years have elapsed, as shown in the following sample run:

Note that the interest used in this example is compounded annually, which means
the interest from the first year is added back to the bank balance and is therefore

itself subject to interest in the second year. In the first year, the $6,000 earns 4.25
percent interest, or $255. In the second year, the account earns 4.25 percent
interest on the entire $6.255.

6. Write a program that asks the user for the radius of a circle and then computers
the area of that circle (A) using the formula

A = r2

Where  is approximately 3.14159. Note that there is no “raise to a power”
operator in C. Given the arithmetic operators you know C has, how can you write
an expression that achieves the desired result?

7. Write a program that reads in a temperature in degrees Fahrenheit and returns the
corresponding temperature in degrees Celsius. The conversion formula is

C = (F – 32)
9
5

The following is a sample run of the program:

If you write this program carelessly, the answer always comes out 0. What bug
causes this behavior?

8. In Norton Juster’s children’s story The Phantom Tollbooth, the Mathemagician
gives Milo the following problem to solve:

4 + 9 – 2 * 16 + 1 / 3 * 6 –67 + 8 * 2 –3 + 26 – 1 / 34 + 3 / 7 + 2 – 5

According to Milo’s calculations, which are corroborated by the Mathemagican,
this expression “all works out to zero.” If you do the calculation, however, the

Interest calculation program.
Starting balance? 600060006000

6000





Annual interest rate percen tage? 4.254.254.25

4.25





Balance after one year: 6255Interest calculation program.
Starting balance? 600060006000

6000





Annual interest rate percen tage? 4.254.254.25

4.25





Balance after one year: 6255
Balance after two year: 6520.84

Program to convert Fahrenhei t to celsius.
Fahrenhei t temperature? 212212212

212





Celsius equivalen t: 100



expression comes out to zero only if you start at the beginning and apply all the
operators in strict left-to-right order. What would the answer be if the
Mathemagician’s expression were evaluated using C’s precedence rules? Write a
program to verify your calculation.

9. Write a program that converts a metric weight in kilograms to the corresponding
English weight in pounds and ounces. The conversion factors you need are

1 kilogram = 2.2 pounds
1 pound = 16 ounces

10. Write a program that computes the average of four integers.

11. There’s an old nursery rhyme that goes like this:

As I was going to St.Ives,
I met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:
Kits, cats, sacks, and wives,
Howmany were going to St.Ives?

The last line turns out to be a trick question: only the speaker is going to St.Ives;
everyone else is presumably heading in the opposite direction. Suppose, however,
that you want to find out how many representatives of the assembled
multitude—kits, cats, sacks, and wives—were coming form St.Ives. Write a C
program to calculate and display this result. Try to make your program follow the
structure of the problem so that anyone reading your program would understand
what value it is calculating.
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate that problem solving is an important conceptual skill that requires more
than learning the mechanics of a programming language.

 To discover that many interesting problems can be solved by applying a few simple
tools called programming idioms.

 To be able to recognize and use C's shorthand assignment forms.
 To be able to use the for statement, the while statement, and the if statement in simple

idiomatic forms.
 To recognize how easy it is to introduce errors into a program and therefore to

appreciate the need for thorough testing and a disciplined approach to program
development.

 To understand how to use the formatting features of printf.
 To appreciate the importance of designing programs so that they can be understood

by other programmers.

CCC

C

hapter 2 introduced several simple C programs to give you a general sense of their

structure and how they work. This chapter focuses on what makes programming
interesting: the process of solving problems. Once you come up with a solution strategy,
the process of coding the program—transforming the strategy into a working program—is
relatively straightforward, usually much easier than designing the strategy itself.

This chapter shows you how to write several new programs that build on the add2.c
example in Chapter 2. Here, however, the main focus is not on the C programs themselves
but rather on the general process of designing solutions. As you read, you should try to
maintain a holistic perspective and concentrate on understanding the big picture. Don’t
worry if the syntactic rules seem a bit confusing or if you’re not sure how a particular
statement works, as long as you have a sense of what the program is ding as a whole. You
will have the opportunity to lean the syntactic rules and various other details of the coding
process in Chapter 4.
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paradigmsparadigmsparadigms

paradigms

Before the invention of writing, history and religion passed from generation to
generation as part of an oral tradition. The Iliad and The Odyssey of Homer, the Vedic



literature of India, the Old Norse mythologies, the sermons and songs that kept African
tradition alive through centuries of slavery—all are examples of an oral tradition. These
works are characterized by the patterned repetition of phrases, which make it easier for
singers, preachers, and storytellers to remember them. These repeated patterns, called
formulasformulasformulas

formulas

, provide the memory cues that make it possible to remember and make
variations on a long and detailed story.

In its entirety, C is itself a long and detailed story with many rules and techniques to
remember. Even so, as you write your programs, you will notice many patterns that come
up repeatedly, like formulas from oral tradition. If you learn to recognize these patterns and
think of them as conceptual units, you will soon discover that there is less to remember
about programming in C than you might have thought. Programmers call these common
patterns programmingprogrammingprogramming

programming

idiomsidiomsidioms

idioms

, which refers to a statement or group of statements in C for
which much of the structure is fixed but which nonetheless allow you to change individual
aspects of the pattern to fit a particular situation. To write effective programs, you must
learn how to apply these programming idioms to the task at hand. Eventually, you should
be able to do so without devoting any conscious attention to the process. A general idea
will come into your mind as part of a solution strategy, and you will automatically translate
that idea into the appropriate idiom as you compose the program.

As an example of a programming idiom, consider the add2.c program in Chapter 2. As
part of the input phase of the program, the user was asked to supply an integer value. On
each occasion, the add2.c program accomplished this task using the following statements:

1. A call to printf to display a prompt
2. A call to GetInteger to read in the integer

These statements represent a programming idiom—the read-an-integerread-an-integerread-an-integer

read-an-integer

idiomidiomidiom

idiom

—that has
the form

printf(“prompt string ”);
variable = GetInteger();

These two lines are an example of a programming paradigmparadigmparadigm

paradigm

, a fragment of C code that
shows the syntactic structure of a particular statement or idiom. Within a paradigm, italics
indicate the parts you need to replace with something of the indicated category. In this
paradigm, for example, you can fill I any prompt string or variable name in the spaces
provided. By substituting “1st number ? ” in place of prompt string and n1 in place of variable,
you get the statements form add2.c that request the first input value.

printf(“1st number ? “);
n1 = GetInteger();

by using “2nd number ? ” and n2 instead, you get the statements that request the second input
value.

printf(“2nd number ? “);
n2 = GetInteger();

You can substitute any string for prompt string and any variable name for variable. By
doings so, you can use the same basic idiom to request any integer value.
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idioms

Some idioms in C exist principally to provide convenient shorthand forms for
common operations. Of these, the most important are shorthand assignment operations,
which are extremely common in C.

Before shorthand assignment operations are defined formally, it is useful to
understand the situations in which they occur. Suppose that the variable balance contains
your bank balance and that you want to deposit an amount whose value is stored in the
variable deposi t. The new balance is given by the expression balance + deposi t. You might
therefore write an assignment statement like

newblance = balance + deposi t;

In most cases, however, you don’t want to use a new variable to store this result. The point
of making a deposit is that it changes the bank balance, and it therefore makes sense to
change the value stored in the variable balance to account for the additional funds. Instead of
storing the result of the expression in a new variable such as newbalance , it would be more
useful to add balance and deposi t together and then store the result back in the variable
balance, using the following assignment statement:

balance = balance + deposi t;

To understand what this assignment is doing, you cannot think of the equal sign in the
assignment as a mathematical expression of equality. As a mathematical equation, the
formula

x = x + y

is solvable only if y is equal to 0. Otherwise, there is no way that x can equal x + y. An
assignment statement is an active operation that explicitly stores the value of the expression
on the right in the variable on the left. Thus, the assignment statement

balance = balance = deposi t;

is not an assertion that balance is equal to balance + deposi t. It is a command to change the
value of balance so that it is equal to the sum of its previous value and the value of deposi t.

Although the statement

balance = balance + deposi t:

has the desired effect—adding deposi t to balance and leaving the result in balance—it is not the
statement that a C programmer would usually write. Statement that perform some
operation on a variable and then store the result back in that same variable occur so
frequently in programming that the designers of C included an idiomatic shorthand for it.
For any binary operator op, the statement

variable = variable op expression;

can be replaced by

variable op= expression;

The combination of an operator with the = used for assignment form is called a shorthandshorthandshorthand

shorthand



assignmentassignmentassignment

assignment

operatoroperatoroperator

operator

...

.

Using the shorthand assignment operator for addition, the more common form of the
statement

balance = balance + deposi t;

is therefore

balance += deposi t;

which means, in English, “add deposi t to balance .”
Because this same shorthand applies to any binary operator in C, you can tract the

value of surcharge from balance by writing

Balance -= surcharge;

divide the value of x by 10 using

x /= 10;

or double the value of salary by using

salary *= 2;

IncrementIncrementIncrement

Increment

andandand

and

decrementdecrementdecrement

decrement

operatorsoperatorsoperators

operators

Beyond the shorthand assignment operators, C offers a further level of abbreviation
for two particularly common programming operations—adding or subtracting 1 from a
variable. Adding 1 to a variable is called incrementingincrementingincrementing

incrementing

that variable; subtracting 1 is called
decrementingdecrementingdecrementing

decrementing

that variable. To indicate these operations in an extremely compact form, C
uses the operators ++ and --. For example, the statement

x++;

in C has the same ultimate effect as

x += 1;

which is itself short for

x = x + 1;

Similarly,

y--;

has the same effect as

y -= 1;

or

y = y – 1;

The ++ and -- operators occur all the time in C programs1. As you will discover in Chapter

1 The ++ and --- operators are in many ways the most readily identifiable features of C. Nothing else
so clearly jumps out at you and declares that a particular program is a C program and not one written in
another language. As an indication of how pervasive these operators have become, the successor language
to C, which was developed to take advantage of a set of techniques known as object-oriented



13, however, these operators are both more complicated and more useful than this section
suggests.
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Programming idioms and paradigmatic forms act as building blocks from which you
can construct programs. When faced with a problem, your job as a programmer is to
assemble these building blocks into a coherent program that solves it. The rest of this
chapter introduces several new programming idioms in the context of specific
enhancements to the add2.c program from Chapter2.

The add2.c program presented in Figure 2-2 reads in two numbers, adds them together,
and prints their sum. Adding two numbers, however, is not a very challenging task. If all

problems were that simple, we wouldn’t need computers. One of the main advantages of
computers is their ability to process considerable amounts of data very quickly. The
interesting problem from a practical perspective is not how to add two numbers, but how to
perform addition on a much larger scale.

Suppose you want to modify add2.c to add 10 or 100 or even 1000 numbers. Would
you choose the same strategy? Probably not. For 10 numbers, the same strategy would
certainly work, but the idea of declaring 100 variables and then reading them in using
separate statements is more than a little daunting. If there were 1000 input values, the
strategy used in add2.c would result in an extremely repetitive program over 50 pages long.

Let’s consider the problem of finding the sum of 10 numbers. How can you get around
having to declare 10 variables? Solving problems like this one is what makes computer
programming hard; it is also what makes it interesting and fun. Think about the problem
for a minute. Imagine that you are adding up 10 numbers—without a computer—and that I
start calling those numbers out to you: 7, 4, 6, and so on. What would you do? You could
write down the numbers and then add them at the end. This strategy is analogous to the one
used in the add2.c program. It’s effective, but it won’t win any prizes for speed or cleverness.
Alternative ly, you could try adding the numbers as you go: 7 plus 4 is 11, 11 plus is 17, and
so on. You don’t have to keep track of each individual number, just the current total. When
you hear the last number, you’re all set to announce the answer.

The fact that you don’t have to remember each individual number should help answer
the question of how to add 10 numbers without declaring 10 variables. With this new
strategy, you should be able to write a new add10.c program using only two variables: one
for each number as it comes in and on for the current total. Each time you read in a new
number, you simple add it to the variable that holds the total of all the numbers so far. At
that point, you can use the same variable to hold the next number, which is treated in
precisely the same way.

This insight should enable you to begin the task of coding a program that uses the new
strategy. Knowing that you need to declare two variables —a current value and a running
total—you could begin the program with the following declaration:

programming, is called C++, because that name means “the successor to C” in the iconography of the C
programming language.



Int value, total;

You also know that you must execute the following steps for each input value:
1. Request an integer value from the user and store it in the variable value .
2. Add value to the running sum stored in the variable total.

You already know how to code the first step; it is a perfect example of the request-an-
integer idiom introduced in the preceding section and therefore looks like this:

Printf(“ ? “ );
Value = GetInteger();

You also know how to code the second step. Adding value to total is an instance of the
shorthand assignment idioms introduced earlier in this chapter. To add value to total, the
idiom is

Total += value;

The two idioms—one for reading in an integer and one for adding that integer to a
running total—give you everything you need to code the operations that must occur for
each input value in the add10.c program. For each of the 10 input values, the program must
execute the following statements:

printf(“ ? ” );
value = GetInteger();
total += value;

At this point, all you need to do is find some way to make the program execute this set of
statements 10 times. As it happens, there is a simple idiom for achieving this goal. Before
introducing that idiom, however, it is useful to consider how such an idiom differs form
those you have encountered so far.
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In every program in Chapter 2, all the statements have some direct effect: they read in
numbers, compute results, or display data on the screen. Moreover, the statements in these
programs are always executed sequentially, beginning with the first statement in the
function main and ending with the last. As you begin to solve more sophisticated problems,
however, you will discover that strictly sequential execution is not enough. To complete the
add10.c program, for example, you must be able to execute a set of statements over and over
again—10 times, to be exact. To specify that repetition, you need to use a controlcontrolcontrol

control

statementstatementstatement

statement

, which is a statement that affects how other statement are executed.
In this chapter, control statements are introduced only in the context of particular

idioms used to accomplish common tasks. Chapter 4 covers the same control statements
form a more general perspective, which will enable you to apply them to a wider class of
programming problems.

TheTheThe

The

repeat-N-timesrepeat-N-timesrepeat-N-times

repeat-N-times

idiomidiomidiom

idiom



Before discussing control statements as a general class, it is useful to consider a
specific example. In the evolving add10.c program, you already have a set of statements that
read in a value and add it to a running total. To complete the process, you need to repeat
that set of statements 10 times.

To repeat an operation a specified number of times, the standard approach in C is to
use the for statement, which is an example of a control statement. The details of the for

statement are explained in Chapter 4. For now, you will use it in the following form, which
represents the repeat-N-timesrepeat-N-timesrepeat-N-times

repeat-N-times

idiomidiomidiom

idiom

:

for (i = 0; i < N; i++) {
statements to be repeated

}

In the repeat-N-times idiom, the value N indicates the number of repetitions you want1. For
example, if you replace N with 5, the statements enclosed with the braces will be executed
five times. To use this idiom in the add110.c program, you need to replace N by 10. The
statements enclosed in the braces are the three statements that (1) print a prompt, (2) read
an integer into value, and (3) add that value to total . If you make these substitutions in the
paradigm, you get the following code:

for (i = 0; i < 10; i++) {
printf(“ ? “ );
value = GetInteger();
total += value;

}

The for statement idiom provides a concrete example of how control statements are written
in C. Control statements in C consist of two distinct parts:

1. The control line. The first line of a control statement is called the controlcontrolcontrol

control

linelineline

line

. It
begins with a keyword that identifies the statement type and typically contains
additional information that defines the control operation as a whole. In the case of the
for statement idiom, the control is

for ( i = 0; i < N; i++)

the control line in the for statement is used to control the number of times the
statements enclosed within the curly braces should be executed.

2. The body. The statements enclosed within the curly braces constitute the bodybodybody

body

of the
control statement. In the case of the for statement, these statements are repeated the
number of times indicated by the control line. By convention, each statement within
the body is written on a separate line. Moreover, each statement within the body is
indented four spaces with respect to the control line so that the range of statements
affected by the control statement is easy to see.

The control line and the body are conceptually independent. Once you have written the
control line for a control statement, you can put any statements you want inside the body.

1 The variable i used in this idiomatic pattern is called an index variable and can actually be any
integer variable.



Thus the for statement can be used to repeat any operation. For example, if you execute the
statements

for (i = 0; i < 2; i++) {
printf(“a rose is “);

}
printf(“a rose.\n);

you get one of Gertrude Stein’s most familiar lines:

The fact that the for statement can be applied to any set of statements makes it an
enormously powerful tool.

IterationIterationIteration

Iteration

andandand

and

loopsloopsloops

loops

In programming, the process of repeating an operation is called iteration. Iteration is
essential to the solution strategy for many problems, particularly those that involve large
amounts of data. Typically, programs to solve such problems need to execute the same
operations for each data value. For example, the add10.c program repeats the process of
reading a value and adding it to the running total for each of the 10 input values.

Programmers generally use the term looplooploop

loop

to refer to any portion of the program that is
repeated through the action of a control statement such as the for statement. The origin of
the word loop lies in the early days of computing, when programs were fed into computing
machines in the form of punched paper tape. To repeat the same set of operations over and
over, programmers connected the ends of a short segment of tape, so that the tape formed a
physical loop. Instructions on the tape passed through the tape reader and then came back
around to be executed again and again as needed.

When a for loop runs, the computer executes each instruction in the body in sequential
order. When the last statement has been executed, the program returns to the beginning of
the loop and checks to see if the desired number of repetitions have been completed. If so,
the program exits form the entire loop and continues with the statements that follow the
closing brace at the end of the for statement. If more repetitions are required, the computer
starts again with the first statement in the loop body and then goes on to each subsequent
statement in turn. A complete execution of the statements within the loop is called a cyclecyclecycle

cycle

IndexIndexIndex

Index

variablesvariablesvariables

variables

In the control line of the for statement

for (i = 0; i < N; i++)

the variable i is called the indexindexindex

index

variablevariablevariable

variable

. Although you can use any integer variable,
using i follows a strong historical tradition. When programmers see the variable i in a for
loop, they assume that it is keeping track of the number of cycles and don't pay much

a rose is a rose is a rose.



attention to it.
Regardless of whether you use i or some other variable, that variable name must be

declared at the beginning of the function just like any other variable. Thus, the program to
add 10 numbers must include a declaration of i. Since the program already declares two
other integer variables—value and total—you can add the declaration of i to the same line:

int value, total, i;

Inside the for loop, the variable i keeps track of how many cycles have been executed. On
the first cycle, the value of i is 0. On the next cycle, i has the value 1. On each subsequent
cycle, the value of i increases by one, until, on the last cycle, it has the value N-1, whereN is
the limit specified in the for control line. Thus, over the entire execution of the loop, the
variable i counts form 0 to N-1. For this reason, for loops are sometimes called countingcountingcounting

counting

loopsloopsloops

loops

.
Although most for loops you will encounter in C programs start counting at 0, it is

possible to modify the for loop idiom so that the counting begins with any other number.
The new idiom is

for (i = firs t; i <= last; i+=) {
statemen ts to be repea ted

}

When using this idiom, the value of the index variable i begins with the value firs t and
counts upward until it reaches the value last. Note that this new idiom uses the <= operator
(less than or equal to) instead of the operator < (less than) used in the original idiom.

The major advantage of the revised for loop idiom is that it allows you to begin
counting with 1, which is more customary in the real world than starting with 0. For
example, the program count10.c shown in Figure 3-1 counts form 1 to 10, displaying each
number as it goes. As you will see in Chapter 11, however, C programmers often have
good reasons for starting counts from 0. If all you need to do is repeat an operation N
times, it is usually best to conform to traditional C practice and use the for control line

for (i = 0; i< N; i++);

even though the following line would also work:

for (i = 1; i<= N; i++)

The second version should be used only when you need the value of i, as in the count10.c

program in Figure 3-1.
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/*
* File: count10.c
* -------------------
* This program counts from 1 to 10, display ing each number
* on the screen.
*/

#include <stdio.h>
#include “genlib.h ”

main()
{



int i;

for (i = 1; i <= 10; i++) {
printf(“”%d\n”, i);

}
}
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The for loop provides you with almost everything you need to write the add10.c program,
but there is still one important detail to consider. The heart of the add10.c program is the for

loop

for(i = 0; i < 10; i++) {
printf(“ ? “ );
value = GetInteger();
total += value;

}

which repeats the operations required for each individual number for each of the input
values. As each new input value is read in, the program adds it to the variable total , which
serves to keep track of the total so far.

This strategy works perfectly once the program is underway. For example, if total is
123 and the user enters the value 17, the program simply adds 17 to the contents of total to
give it a new value of 140. But what about the first time through? The very first number is
read into the variable value and added into total using the line

total += value;

You know that this idiom instructs the computer to take value and add it to the
previous contents of total, leaving the result in total . But what are the previous contents of total?
On the first cycle of the loop, you don’t know the answer to this question. Until you assign

a value to a variable within a function, its value is undefined.
Even so, you know what its value ought to be. For the program to work correctly, the

value of total must be 0 before the first cycle of the for loop so that its value will be correct
after the first value is added in. To ensure that total has the correct initial value, you need to
set it to 0 explicitly before the loop begins. Thus, you need to write the following statement
at the beginning of the program:

total = 0;

Using an assignment statement to ensure that a variable has its proper initial value is called
initializationinitializationinitialization

initialization

. Failure to initialize variables is a common source of error.
You now have all the pieces you need to complete the add10.c program. The complete

program is shown in Figure 3-2.
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/*
* File: add10 .c
* --------------- -
* This program adds a list of the number, printing
* the total at the end. Instead of reading the numbers



* into separate variables, this program reads in each
* number and adds it to a running total.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{

int i, value, total;

printf(“This program adds a list of ten numbers.\n”);
total = 0;
for (i = 0; i < 10; i++) {

printf(“ ? “ );
value = GetInteger();
total += value;

}
printf(“The total is %d\n”, total);

}

TheTheThe

The
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The add10.c program is a useful illustration of how to use the for statement, but in its
present form it is unlikely to meet the needs of any signif icant number of users. The
program always adds precisely 10 values; to use the program with a different number of
values would require an explicit, albeit minor, change in the program. What you really need
is a more general program that can add any number of input values.

If you wanted to convert the add10.c program into one that solves this more general
problem, there is one approach that requires only a minor programming change. Instead of
using a constant value like 10 tin the for statement control line, you could ask the user to
enter the number of data values at the beginning and store that number in a variable.
Assuming that n has been declared as an integer, the first few lines of the program would
then change to

printf(“This program adds a list of numbers.\n);
printf(“How many number in the list?”);
n = GetInteger();
total = 0;
for (i = 0; i < n; i++) {
…

The only problem with this strategy is that the user will almost certainly hate it. If you want
your computer to add a column of figures, you probably won’t be happy about having to
count those numbers first. You need to take a different approach.

For the user’s point of view, the best approach is to define a special input value and let
the user enter that value to signal the end of the input list. A special value used to terminate
a loop is called a sentinelsentinelsentinel

sentinel

. The choice of an appropriate value to use as a sentinel depends
on the nature of the input data. The value chosen as a sentinel should not be a legitimate
data value; that is, it should not be a value that the user would ever need to enter as normal
data. For example, when adding a list of integer, the value 0 is an appropriate sentinel.
There might be some 0s in a column of figures, but the user can always ignore them



because they don’t affect the final total. Note that the situation would be different if you
were writing a program to average exam scores. Averaging in a 0 score does change the
result, and some students have been known to get 0 scores form time to time. In this
situation, 0 is a legitimate data value. To allow the user of the program to enter 0 as a score,
it is necessary to choose a different sentinel value that does not represent an actual score.

On most exams, it is impossible to have a negative score, so it would make sense to choose
some value like -1 as the sentinel for that application.

To extend add10.c into the new addlis t.c program, the only change you need to make is
in the loop structure. The for loop, which is most commonly used to execute a set of
operations a predetermined number of times, is no longer appropriate. You need a new
idiom that reads data until the special input sentinel is found. That idiom is the read-until-read-until-read-until-

read-until-

sentinelsentinelsentinel

sentinel

idiomidiomidiom

idiom

and has the following form:

while (TRUE) {
prompt user and read in a value
if (value == sentinel ) break;
rest of body

}

This new idiom for a sentinel-based loop enables you to complete the addlis t.c program,
which is shown in Figure 3-3.
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/*
* File: addlis t.c
* ------------ -----
* This program adds a list of number. The end of the
* input is indicated by entering 0 as a sentinel value.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{

int i, value, total;

printf(“This program adds a list of numbers.\n”);
printf(“Signal end of list with a 0.\n”);
total = 0;
while (TURE) {

printf(“ ? “ );
value = GetInteger();
if (value == 0) break;
total += value;

}
printf(“The total is %d\n”, total);

}

In Chapter 4, you will learn much more about the control statements out of which the
read-until-sentine l idiom is formed. You will find the idiom very useful, even before you
understand the details. I realize that setting aside your curiosity and relying on an idiom you
don’t really understand can be difficult. As you learn more about programming, however,



you will discover that this situation happens frequently, even for expert programmers. In
fact, one of the marks of an expert programmer is being able to use a library or a piece of
code without understanding all its details. As programs become more complex, the ability
to use tools that you understand only at the holistic level is an increasingly important skill.
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A program to add a column of figures is not likely to sell a million copies or turn you
into the next software billionaire. Who needs a program to add lists of numbers anyway?

The answer, of course, is that most people need to add lists of numbers once in a while,
but they rarely think about the problem in this abstract form. Most people think in terms of

more specific day-to-day activities, for which adding a list of numbers may be essential.
For example, most of us spend some time each month balancing out checkbooks—an
activity that consists of little more than adding and subtracting numbers. If you wanted to
solve this more practical problem, it might make sense to repackage the addlis t.c program as
a checkbook balancer.

How would the program change if you were to rewrite it as a checkbook balancer?
The answer depends largely on how fancy you want it to be. For an initial version, you
might simply make the following alterations:

1. Change the comments at the beginning of the program so that future readers
understand the program’s purpose.

2. Change the variable names to make them more appropriate to the problem.
3. Provide more explicit instructions to the user.
4. Change the program to use floating-point numbers so that the user can enter

both dollars and cents.
5. Allow the user to enter and initial balance.
6. Enable the program to display the current balance on each cycle of the loop, so

that the user can track the account through every transaction.

A program that incorporates this first set of changes is the balance.c program shown in
Figure 3-4. To make this program work without changing the basic structure, you must rely
on the user to indicate checks by entering them as negative values. Adding the negative
value to the running total corresponds to subtracting the value of the check. The convention
also makes reasonable intuitive sense, and the user should be able to follow that convention
as long as the program provides the necessary instructions.
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/*
* File: balance1 .c
* ------------ -------
* This file contains the firs t version of a program to
* balance a checkbook. The user enters checks and deposi ts.
* throughou t the month (checks are entered as nega tive
* numbers). The end of the input is indicated by entering
* 0 as a sentinel value.
*/



#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{

double entry , balance;

printf(“This program helps you balance your checkbook.\n”);
printf(“Enter each check and deposi t during the month.\n ”);
printf(“To indicate a check, use a minus sign.\n”);
printf(“Signal the end of the month with a 0 value.\n ”);
printf(“Enter the initial balance: \n”);
balance = GetReal( );
while (TURE) {

printf(“ Enter check (-) or deposi t: “ );
entry = GetReal( );
if (entry == 0) break;
balance += entry ;
printf(“Current balance = %g\n”, balance);

}
printf(“The final balance = %g\n”, balance);

}

If you run the program, it might produce the following sample run showing an initial
balance of $100 against which the user has written four checks (for $50, $35, $10, and $25)
and to which the user has made a single deposit of $50, resulting in a final balance of $30.

Although the program is still not as versatile or fancy as you might like, it is now able to
perform a function that potential users might regard as valuable.
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Suppose you want to extend this program by adding some additional features. For
example, you might want it to detect when the user has bounced a check. To add such a
feature, you must first learn how to write programs that can make decisions. When writing a
program, you often encounter situations in which you want the program to execute a
statement only if some condition applies or to choose between two alternative courses of
action depending on the result of some test. This style of operation within a program is

This program helps you balance your checkbook.
Enter each check and deposi t during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100100100

100





Enter check (-) or deposi t: -50-50-50

-50





Current balance = 50
Enter check (-) or deposi t: -35-35-35

-35





Current balance = 15
Enter check (-) or deposi t: -10-10-10

-10





Current balance = 5
Enter check (-) or deposi t: 505050

50





Current balance = 55
Enter check (-) or deposi t: -25-25-25

-25





Current balance = 30
Enter check (-) or deposi t: 000

0





Final balance = 30



called conditionalconditionalconditional

conditional

executionexecutionexecution

execution

.
The simplest way to express conditional execution in C is with the if statement, which

can be used in either of two basic forms:

if (conditional-test ) {
…statements executed if the test is true…

}

or

if (conditional-test ) {
…statement executed if the test is true…

else
…steatements executed if the test is false…

}

The first form of the if statement is used when your solution strategy calls for a set of
statements to be executed only in a particular circumstance. If that circumstance does not
apply, those statements are skipped. The second form is used when the solution strategy
calls for two distinct contingencies: if some condition holds, the program executes one set
of statements; if not, it executes another set of statements.

The conditional-text component shown in these paradigms is a special type of
expression that asks a question. You will learn a great deal more about this sort of
expression in Chapter 4, but for now, you can get by with a very simple class of conditional
tests formed by using C’s relationalrelationalrelational

relational

operatorsoperatorsoperators

operators

. The six relational operators defined in C
are given in the following list, along with their more conventional mathematical equivalents
in parentheses. Because some of the mathematical forms (≠, ≤, and ≥) do not exist on a
standard keyboard, C uses a combination of two symbols to suggest the mathematical form.

== Equal =
!= Not equal ≠
> Greater than >
< Less then <
>= Greater than or equal to ≥
<= Less than or equal to ≤

Each of these operators is used to compare two values, one on each side. For example, to
test whether the value of the variable x is greater than or equal to 0, you would write the
following conditional test:

x >= 0

Conditional tests make it possible to implement the proposed change in the check-book
balancing program: determining whether a check has bounced. If the user enters a check
that exceeds the current balance, you can make the program do two things:

1. Print out a message to the user indicating that a check has bounced.
2. Deduct the service charge assessed by the bank as a bounced-check penalty, which

we will assume for the moment is $10.

To make this extension to the program, you need to include a conditional test to check
whether the user has exceeded the current balance. An approach that seems particularly



inviting is simply to check whether these is a negative balance at the end of operation, as
shown in Figure 3-5. Note the bug symbol on the program example, which indicates that
the program contains an as-yet-undiscovered bug. To make sure that you don’t copy
incorrect code, I have marked all buggy examples in this book with such symbols.

The only change form the previous version of this program is that the following if
statement has been added to the end of the while loop:

if (entry == 0) {
printf(“This check bounces. $10 fee deduc ted.\n ”);
balance -= 10;
}

In English, this statement says that if the balance is less than 0, the program prints out a
message to that effect and makes the appropriate charge against the balance. The last line
within the body of the if statement is

balance -= 10;

which is a shorthand for the longer

balance = balance - 10;
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This change in the checkbook-balancing program seems so simple that it hardly merits
a second thought. All too often, programmers make changes that appear small and
innocuous without bothering to test the resulting program thoroughly. Failure to test code is
a very serious error. A more important error, however, is the failure to recognize that all
code, no matter how simple it seems, needs testing. The program shown in Figure 3-5
contains a subtle bug. Finding the bug is complicated by the fact that the program seems to
work if you test it superficially. For example, the following sample run makes it seem as if
the program is functioning correctly:

FIGUREFIGUREFIGURE
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/*
* File: balance2 .c
* ------------ -------
* This file contains a buggy second attemp t at a program to
* balance a checkbook.

This program helps you balance your checkbook.
Enter each check and deposi t during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100100100

100





Enter check (-) or deposi t: -50-50-50

-50





Current balance = 50
Enter check (-) or deposi t: -60-60-60

-60





This check bounces. $10 fee deduc ted.
Current balance = -20
Enter check (-) or deposi t: 505050

50





Current balance = 30
Enter check (-) or deposi t:



*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{

double entry , balance;

printf(“This program helps you balance your checkbook.\n”);
printf(“Enter each check and deposi t during the month.\n ”);
printf(“To indicate a check, use a minus sign.\n”);
printf(“Signal the end of the month with a 0 value.\n ”);
printf(“Enter the initial balance: \n”);
balance = GetReal( );
while (TURE) {

printf(“ Enter check (-) or deposi t: “ );
entry = GetReal( );
if (entry == 0) break;
balance += entry ;
if (balance < 0) {

printf(“This check bounces. $10 fee deduc ted.\n ”);
balance -= 10;

}
printf(“Current balance = %g\n”, balance);

}
printf(“The final balance = %g\n”, balance);
}

When the user enters the $60 check, the program correctly determines that this amount is
more than there is in the account because the value of balance becomes negative. To let the
user know about this state of affairs, the program writes out a message and deducts the $10
charge, as instructed. So far, so good.

If you decided to end your testing here, you would never discover the bug in this
program. Let’s try a different ser of input data, which is the same except that the last deposit
is $10, not $50. This time the sample run looks like this:

The sample run reveals a serious problem: when the user makes the $10 deposit trying to
move the account back into the black, the program decides that user has bounced a check
and promptly charges another $10 fee.

After you discover the symptoms of the failure, the problem is easy to identify. For a
check to bounce, two things must be true. First, the user must have just written a check.

This program helps you balance your checkbook.
Enter each check and deposi t during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100100100

100





Enter check (-) or deposi t: -50-50-50

-50





Current balance = 50
Enter check (-) or deposi t: -60-60-60

-60





This check bounces. $10 fee deduc ted.
Current balance = -20
Enter check (-) or deposi t: 101010

10





This check bounces. $10 fee deduc ted.
Current balance = -20
Enter check (-) or deposi t:



Second, the act of writing that check must have resulted in a negative balance. Your
program tests only the second condition. To correct the error, you must include both of
these conditions in your test. In particular, the program must determine whether a check
was written before looking to see whether that check might have bounced. To test for both
conditions, you use the && operator, which is C’s way of spelling “and”:

if (entry < 0 && balance < 0) {
printf(“This check bounces. $10 fee deduc ted.\n);
balance = 10

}

Making this change in the program results in the corrected checkbook-balancing program
shown in Figure 3-6.
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.c.c.c

.c

(corrected(corrected(corrected

(corrected

version)version)version)

version)

/*
* File: balance3 .c
* ------------ -------
* This file contains a corrected version of a program to
* balance a checkbook, including a working bounced-check
*feature.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

main()
{

double entry , balance;

printf(“This program helps you balance your checkbook.\n”);
printf(“Enter each check and deposi t during the month.\n ”);
printf(“To indicate a check, use a minus sign.\n”);
printf(“Signal the end of the month with a 0 value.\n ”);
printf(“Enter the initial balance: \n”);
balance = GetReal( );
while (TURE) {

printf(“ Enter check (-) or deposi t: “ );
entry = GetReal( );
if (entry == 0) break;
balance += entry ;
if (balance < 0 && entry < 0) {

printf(“This check bounces. $10 fee deduc ted.\n ”);
balance -= 10;

}
printf(“Current balance = %g\n”, balance);

}
printf(“The final balance = %g\n”, balance);

}

Are you finished with the program? Probably not. All you’ve done so far is discover
and fix one bug. To be confident that your program works, you should test it more

This program helps you balance your checkbook.
Enter each check and deposi t during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100100100

100





Enter check (-) or deposi t: -50-50-50

-50





Current balance = 50
Enter check (-) or deposi t: -60-60-60

-60





This check bounces. $10 fee deduc ted.
Current balance = -20
Enter check (-) or deposi t: 101010

10





Current balance = -10
Enter check (-) or deposi t:



thoroughly. In particular, you should see if it works correctly on the example for which it
failed before. Running the same set of data through the balance.c program yields the
following sample run:

So far, so good. The $10 deposit is handled correctly, indicating that the bug you sought to
fix is indeed gone. But what about other bugs? When you are writing a program, how can
you be sure that you have found all the problems?

The short answer is: you can’t. Many programs that have gone through years and years
of testing without any apparent problems suddenly fail when a previously untested
condition occurs. The best you can do with a program is to be as thorough as possible in
your testing so that the chance of leaving in one of these lingering bugs is minimized.

In the case of the checkbook balancer, it certainly pays to attempt some additional tests.
So far, all the numbers used in the examples have been integers. To test it properly, you

need to run the program using values that include cents. Suppose, for example, that, after
again starting from and initial balance of $100, the user writes checks for $49.95 and
$19.95. The following sample run shows the balance after these two checks.

The last balance display seems a little odd at first glance. The balance in the account after
the two checks is 30 dollars and 10 cents, and it is somewhat disconcerting to see that vale
displayed as 30.1 instead of 30.10. When working with dollars and cents, it is customary to
write out exactly two digits after the decimal point. Unfortunately, the %g specification in
printf, which is used here to display the floating-point values, always shows the result in the
shortest possible form. Numerically, 30.1 and 30.10 are equivalent, and printf chooses the
first one, even though it is not appropriate to the application.

The fact that the balance. c program displays 30.10 might not be a bug in the technical
sense. The answer is, after all, mathematically correct. On the other hand, it is almost
certainly not what the user wants to see. To satisfy the user, you need to correct this
deficiency.

Fortunately, changing the program to display two digits after the decimal point is easy.
All you need to do is replace the %g in the two printf calls with %.2f. This format code tells
printf to display floating-point output with two digits to the tight of the decimal point. Thus,
the final statement in the program should look like this:

printf(“final balance =%.2\n” , balance);

But what do the characters in the %.2f specification mean? What other options exist for
controlling the format of the output data? These questions are important of you want to
deign programs that will satisfy your users, who often have exacting requirements

This program helps you balance your checkbook.
Enter each check and deposi t during the month.
To indicate a check, use a minus sign.
Signal the end of the month with a 0 value.
Enter the initial balance: 100.00100.00100.00

100.00





Enter check (-) or deposi t: -49.95-49.95-49.95

-49.95





Current balance = 50.05
Enter check (-) or deposi t: -19.95-19.95-19.95

-19.95





Current balance = 30.1
Enter check (-) or deposi t:



concerning how output is displayed. The next section answers these questions by looking
more closelfy at printf and its operation.
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The printf function is one of C’s most distinctive features and has been part of the
standard library since early in the history of the language. It provides as powerful and
convenient mechanism for displaying information. So far in this book, you have used printf

to display integers, real numbers, and strings, but you have only scratched the surface of its
capabilities. To write programs that are more sophisticated in the way they display output
data, you will need to take a more in-depth look at what print has to offer.

A call to the printf function has the following paradigmatic form:

printf( “control strring ”, expression1, expression2,…);

The number of expressions passed as arguments depends on the number of date values that
need to be displayed. There may be no values, in which case the call is simply

printf(“control string ”);

or there may be a long list. As you learned in Chapter 2, printf operates by moving through
the control string, character by character, displaying each one on the terminal screen. Thus,
in the statement

printf( “Hello,world.\n”);

the call to printf prints the H, the e, the l, and so on, up to the period and the newline character
at the end of the string.

If printf encounters a percent sign (%) as it goes through the characters in the control
string, it responds in a special way. As noted earlier in this chapter, printf treats the percent
sign and the letter that follows it as a placeholder for a value that should be printed in that
position. That value is supplied by the first unused expression in the printf argument list. The
first percent sign in the control string goes with the fist expression after the control string,
the second percent sign goes with the second expression, and son, on until all the arguments
and percent signs have been used up. For example, in the statement

printf( “%d+ %d= %\n”, n1, n2, total);

The first %d is used to print the value of n1, the second %d is used to print the value of n2,
and the third %d is used to print the value of total . If the values of n1, n2, and total were 2, 3,
and 5, respectively, the printf statement above would generate the following output:

As a programmer, it is your responsibility to ensure that the number of percent sign
substitutions in the control string precisely matches the number of expressions beyond the
control string that are passed as arguments to printf. Unfortunately, the C compiler has no

2 + 3 = 5



way to check whether this rule is obeyed. If you write a call to printf in which the number of
substitution slots does not match the number of values, your program will generate
unpredictable output, if it continues to run at all.

FormatFormatFormat

Format

codescodescodes
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forforfor

for

printf

The real power of the printf function comes from the fact that it can display values in a
variety of formats (the f at the end of printf stands for formatted). In order to determine
precisely how a value should be displayed, the percent sign in the control string is followed
by a key letter that specifies an output format. The combination of the percent sign and the
key letter is called a formatformatformat

format

codecodecode

code

. In the example from the preceding section, the format
code is %d, which specifies a decimal integer. In addition to the %d format code, you have
already seen examples of the %g and %s format codes, which stand for floating-point and
string output, respectively. Not that each of these format codes requires it s corresponding
expression to be of a particular data type. When you use the %d format, you must make sure
that the expression you provide is of type int. Similarly, the %g format require a floating-
point expression, and the %s format requires a string. Unfortunately, the C compiler is
unable to check whether these types match, and it is therefore important to exercise extra
caution to make sure that the format codes are appropriate for their arguments.

The most common format codes for printf are listed below, arranged by the data type to
which they apply. A complete listing of the format codes available for use with printf appears
in Appendix A.

%d Decimal integer. In %d format, the value is displayed as a string of digits in
standard base-10 (decimal) notation. If the number is negative, the value is
preceded by a minus sign.

%f Floating-point. In %f format, the value is displayed as a string of digits with a
decimal point in the appropriate place.

%e Exponential. In %e format, the value is displayed in scientif ic notation using the
standard programming language representation

d.ddddde±xx

which corresponds to the mathematical quantity

d.ddddd×10XX

If you use the format code %E instead of %e, the output is exactly the same except
that the letter E used to indicate the exponent appears in upper case in the output.

%g General . In this format, the value is displayed using either %f or %e format,
whichever is shorter. If you use the format code %G instead of %g, any output
appearing in scientif ic notation will use an uppercase E. The %g format is probably
the best format to use if you have no way to predict in advance how large the
values will be.

%s String. In %s format, the corresponding expression must be a string, which is
displayed on the terminal screen, character by character. Percent sigh appearing
within this string have no special effect.

COMMONCOMMONCOMMON

COMMON
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When using the printf
func tion, be certain
that the number of
arguments matches
the number of percent
sign substitutions in
the control string.
Moreover, be sure that
the type of each
argument is consis tent
with the corresponding
forma t code.



%% Percent sign. The %% specification is not really a format but instead provides a way
for printing a percent sign as part of the output.
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When Charles Babbage first envisioned the automatic computer in the middle of the
nineteenth century, a large part of his motivation to create one was to generate tables of
mathematical functions that would no longer be subject to the enormous rate of error
associated with tables generated by hand. Today, computers still produce a great deal of
tabular data. Thus, the ability to generate tables and reports organized in columns remains
an important facet of practical programming.

One of the most important features in the printed version of a table is that the
information is lined up vertically in columns. Suppose, for example, that you had been
commissioned to generate, as part of an environmental study, a table showing the total area,
forested area, and percentage of forestation for each state in the United States1. Ideally, the
first few lines of your table would look something like this:

In tables of this sort, it is important that the values for each entry line up vertically in such a
way that whoever reads the table can tell what each value means. Given the tools you have
learned about so far, it would be impossible to generate a table in this form. If you were
limited to the printf format codes alone, the best you could do would be to use a printf

statement like

Pritnf(“%s%d%d%f%%\n”, state, totalArea, forestArea, percen t);

Unfortunately, this call would run all of the data together and the output would come out
looking like this:

In this version of the table, the columns swim across the screen and are almost impossible
to read.

In order to generate a table in the more readable columnar form shown earlier, you

1 Data source: The world Almanac and Book of Facts, New York: Pharos Books, 1992.

State Area Forest Percent
Alabama 50750 33945 66.9%
Alaska 591000 201632 34.1%
Arizona 114000 30287 26.6%
Arkansas 53187 26542 49.9%
California 158706 61532 38.8%
Colorado 104000 33340 32.1%

State Area Forest Percent
Alabama 50750 33945 66.9%
Alaska591000 201632 34.1%
Arizona 114000 30287 26.6%
Arkansas 53187 26542 49.9%
California 158706 61532 38.8%
Colorado 104000 33340 32.1%



need to be able to control several properties of the output format. First of all, the vertical
columns are created by making sure that each data entry occupies a certain amount of space.
The number of character positions allocated to the entries in a particular column is called
the fieldfieldfield

field

widthwidthwidth

width

. In the nicely formatted version of the table, the name of the state is printed
in a field 14 characters wide, and the two areas (total area and forested area) are each
printed in a field six characters wide. The field widths are chosen so that they can hold the
largest data item that might legitimately appear in that column. The longest state name
(North or South Carolina) is 14 characters long, so a 14-chatacter field is adequate, at least
for the present. As the largest state, Alaska determines the field width necessary to hold the
area information, and you can see from the data (Alaska’s area is 591,000 square miles) that
a six-digit field is sufficient. As a software engineering strategy, it often pays to leave room
for some expansion in such fields, though the example is easier to understand if the amount
of extra space is minimized.

The second formatting property that you need to consider is alignmentalignmentalignment

alignment

. When
numbers are displayed in a table, the standard approach is to line the numbers up so they all
end at the same position because doing so makes them much easier to read. This style of
alignment is called rightrightright

right

alignmentalignmentalignment

alignment

because all the data entries line up on the right. On the
other hand, you would like the names of the states to line up at the left margin. This style of
alignment is called leftleftleft

left

alignmentalignmentalignment

alignment

and is the most common style for nonnumeric data.
Finally, it is extremely useful to be able to control the numeric precision at which the

data values are displayed. In the ugly version of the table, the percentage of forested area
for Alabama is shown as 66.8867% because

8867.66
50750

10033945




when calculated to the limits of precision used with %g format output. While this value is
indeed what the formula gives, displaying it with all those digits is silly and misleading.
Given the likely accuracy of the input data, you can have no confidence whatever that the
percentage of forested area is 66.8867 rather than 66.8868 square miles and not 50,751
square miles, which would result in a slightly different forested percentage. Moreover, the
last few digits in the percentage are almost certainly not signif icant for the study. In the first
version of the table, the percentage of forested area for Alabama is listed as 66.9%, which is
probably as much precision as you need. By specifying that you want only one digit to
appear after the decimal point, you can ensure that the table does not include extra digits
that are unlikely to be correct1.

The printf function gives you the opportunity to control the width, alignment, and
precision of the output data by including additional formatting information as part of the
format code. This additional information, written between the percent sign and the key
letter, looks like a floating-point number but is actually composed of the following parts,
each of which is optional:

1 Unfortunately,many people who come across this sort of data in a table assume that all of the
digits are accurate; after all, they came out of a computer. The truth is that the output data can never be
more precise than the input data, and displaying too many digits creates a false impression of accuracy
that is impossible to justify on statistical grounds. To avoid creating that sort of misimpression, you
should make sure that data values are never printed with extra digits beyond those you know to be correct.



 A minus sign, which indicates that the data in this field should be left aligned. If
the minus sign does not appear, the data will be aligned on the right.

 A numeric field width, which specifies the minimum number of characters to be
used for the output field. If you attempt to display a value that would otherwise
take less space than is indicated by the field width, the field will be padded with
extra blank space until it reaches the appropriate size. If no minus sign precedes
the field width, the extra space is added on the left so that the fields are right
aligned; if a minus sign is present, the extra space is added on the right, after the
value. Note that the field width indicates a minimum width. If a value is too large
to fit into a field of the specified size, the field is simply expanded to include the
complete value, even though doing so will disturb the column alignment. If the
field width does not appear, the data value is displayed using exactly the number of
character positions required, with no padding on either side.

 A decimal point followed by a specification of numeric precision. The
interpretation of this specification depends on the format code. For the %e and %f
formats, the precision specification indicates the number of digits that should
follow the decimal point; for the %g format, the precision specifies the maximum
number of signif icant digits. For the %s format, the precision specifies the
maximum number of characters to display or the string, which makes it possible to
avoid having a longer-than-expected string adversely affect the column widths. If
the precision specification is missing, printf displays the value in its entirety.

You already used the precision specification earlier in this chapter to improve the output of
the checkbook-balancing program. Since checkbooks deal with amounts of money
expressed in dollars and cents, it is conventional to specify that exactly two digits be shown
after the decimal point. This goal is easily accomplished by using the format specification

%.2f

which indicates that the value should be printed with exactly two digits after the decimal
point.

These new formatting specifications make it possible to develop the printf call to
display the forestation data in the columnar table presented earlier in this section. To make
the state appear at the left edge of a 14-character string field, you need to use the format
specification

%-14s

The minus sign specifies left alignment; the 14 indicates the width of the field. If you also
wanted to ensure that a new state with an even longer name didn’t extend past the column
boundary, you could include a precision specification indicating that only the first 14
characters should be printed. That complete format specification would look like this:

%-14.14s

Using this format, if printf were given the string “Distric t of Columbia ”, only the first 14 characters
would appear:

Distric t of Co



Without the precision specification, the string “Distric t of Columbia ” would appear in full, and all
of the other fields on that line would be shif ted six characters to the right.

For each of the two areas—total and forested—you need a right-aligned numeric field
six digits wide, so the appropriate format specification would be

%6d

For the percentage of forestation, the field width is four: two digits before the decimal point,
the decimal point itself, and one digit after the decimal point. Moreover, since you only

want to display a single digit after the decimal point, the format specification for the
percentage of forested land is

%4.1f

By putting all these specifications together, you can write the printf statement necessary to
produce the properly formatted table:

printf(“%-14.14s %6d %6d %4.1f%%\n”,state, totalArea, forestArea, percen t);
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In any program, no matter how polished and complete it seems, the odds are good that
someone—the original programmer or someone who inherits the project—will want to
change something about it later. There may be bugs to fix or new capabilities that need to be
added. Part of our job as programmers is to realize that all programs will someday need to
be changed, and it is also our responsibility to make life easier for those who have to make
the changes.

ProgrammingProgrammingProgramming
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stylestylestyle

style

An important way you can help simplify the task of maintaining programs you write is
to make your programs easy to read. One of the fundamental truths about software
development is that programs are read more often than they are written. Moreover, the most
crucial readers of a program are not machines but people—the other programmers who will
work on that program over its lifetime. Getting your program into a state the compiler can
accept is only part of the programming process. Good programmers spend most of their
time on aspects of the program that the compiler ignores entirely, such as the comments.
When the compiler sees the /* symbol that indicates the beginning of a comment, it stops
paying any attention to characters until it sees the closing */. If your human readers do the
same, your comments are not doing their job. Good style and program readability are
critical for program maintenance. Writing good comments and ensuring that your code
makes sense to human readers may take some extra time initially, but that investment will
end up saving considerable time when the program is later revised.

What constitutes good programming style? How do you achieve it. From a stylistic
point of view, what are the criteria that determine whether a particular program is well
written or badly written? Unfortunately, it is difficult to provide precise answers to these
questions, just as it is difficult to provide rules for maintaining good writing style in English.



This book presents some guidelines and strategies for achieving good programming style,
but the real proof lies in whether your programs are in fact easy for other people to read. As
an experiment, take a look at one of your programs and ask yourself how easy it would be
to understand if you were seeing it for the first time.

There are, however, several stylistic guidelines that you can follow to help you write
better programs. The following are some of the most important ones:

 Use comments to tell your readers what they need to know. Explain anything that
you think is complicated or that might be difficult for someone to understand
simply by reading the program itself. If you anticipate that someone might want
to modify a program, indicate briefly how you might go about doing so. On the
other hand, don’t cloud the issue by talking at length about obvious aspects of the
program. For example, some programmers insist on writing comments like

total += value; /* Add value to total */

Anyone who needs this comment should not be working on the program in the
first place. Finally, and perhaps most importantly, make sure the comments you
write correctly reflect the current state of the program. When you make changes,
be sure to update the comments as well.

 Use indentation to mark the various levels of program control. Careful use of
indentation to highlight the bodies of functions, loops, and conditionals is critical
to readability and makes the program structure much clearer. Indentation rules for
each of the control statements will be discussed in Chapter 4.

 Use meaningful names. For example, in the checkbook program, the variable
name balance indicates clearly to the reader the value that variable contains. Using
just the single character b would make your program shorter and easier to type,
but it would not be nearly as useful to the reader.

 Develop a convention for variable names that helps readers identify their
function. In this text, names of variables and data types always begin with a
lowercase letter, such as n1, total, or string . By contrast, function names (such as
GetInteger ) usually begin with an uppercase letter. Moreover, whenever a name
consists of several English words run together, as in GetIneteger , the first letter in
each of those words is capitalized to make the name easier to read.

 Use standard idioms and conventions when appropriate. Many software
companies publish local rules about style or program structure, some of which
may be at odds with the practice suggested in this book. Following the old adage,
“when in Rome, do as the Romans do,” you should adhere to local standards
when they exist so that other programmers will have an easier time understanding
the programs you write. On the whole, programming prospers when a community
can agree on a commit on set of basic conventions.

 Avoid unnecessary complexity. It is often worth sacrificing some efficiency in the
interest of readability.

The bottom line is that you want your programs to be easy to read. To make sure that they
are, you should proofread your own programs for style, just as a writer would proofread an



article. Start each programming assignment early enough that you can put it away for a day.
Then take it out and look at it from a fresh perspective. How easy is the program for you
to understand? How easy would it be for someone ease to maintain the program in the
future? If you discover that your program doesn’t make sense or is somehow difficult to
read, you should take the time to revise it.

DesigningDesigningDesigning

Designing

forforfor

for

changechangechange

change

You can also make programs easier to modify by designing them to accommodate
change. Because programmers know that programs are more likely to change in certain
areas than in others, you can usually make an educated guess about which aspects of a
program should be made as flexible as possible.

Think back to the balance.c program presented earlier in this chapter. What aspects of
that program are programmers most likely to want to change? If nothing else, it is almost
certain that the charge assessed for bouncing a check will change over time. How easy
would it be for a programmer to alter that value? As the program is written now, that
programmer would have to ferret around in the details of the program to discover exactly
where the $10 figure appears in the program. The Programmer would then need to make
two changes. The most obvious one is in the line

balance -= 10;

However, it is equally important to update the printf statement on the previous line as
follows:

printf(“This check bounces. $10 fee deduc ted.\n ”);

Considering this problem from the perspective of those who will make future changes, you
really want to be able to make a single edit that then propagates its effect throughout the
entire program. By doing so, you are programming defensively. No one can come along and
break the program by changing something in one place but not in another.

TheTheThe

The

#define#define#define

#define

mechanismmechanismmechanism

mechanism

The best tool available in C for centralizing editing changes is the #define construct. In
its simplest form, #define has the following paradigmatic form:

#define symbol value

In this paradigm, symbol represents a name that follows the same rules used for variables
and value represents a C constant. Whenever the symbol appears anywhere in the program
after #define is introduced, the specified value is substituted in place of the symbol. For
example, if you put the line

#define bouncedCheckFee 10.00

at the beginning of the checkbook program, you could then rewrite the if statement as
follows to take advantage of the definition:



if (entry < 0 && balance <0){
printf(“This check bounces. $%.2f fee deduc ted.\n ”, bouncedCheckFee);
balance -= BouncedCheckFee;

}

To change the bounced-check fee in the future, the programmer who inherits this program
would only have to change the #define statement at the top of the program.

The final version of the checkbook-balanc ing program, which includes both the change in
the printf format specification and the definition of the BouncedCheckFee constant, is shown in
Figure 3-7. Note that the program also includes additional comments to help new
programmers understand how to change BouncdCheckFee to some different value.
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(final(final(final

(final

version)version)version)

version)

/*
* File: balance4 .c
* ------------ -------
* This file contains the version of a program to
* balance a checkbook.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

/*
* Constant: BouncedCheckFee
* ---------------------------------------
* To change the charge assessed for bounced checks, change
* the definition of this constant. The constant must be a
* floa ting-point value (i.e., must contain a decimal point).
*/

#define BouncedCheckFee 10.00

/* Main program */

main()
{

double entry , balance;

printf(“This program helps you balance your checkbook.\n”);
printf(“Enter each check and deposi t during the month.\n ”);
printf(“To indicate a check, use a minus sign.\n”);
printf(“Signal the end of the month with a 0 value.\n ”);
printf(“Enter the initial balance: \n”);
balance = GetReal( );
while (TURE) {

printf(“ Enter check (-) or deposi t: “ );
entry = GetReal( );
if (entry == 0) break;
balance += entry ;
if (balance < 0 && entry < 0) {

printf(“This check bounces. $%.2f fee deduc ted.\n ”,BouncedCheckFee);
balance -= BouncedCheckFee;

}
printf(“Current balance = %.2f\n” , balance);

}
printf(“Final balance = %.2f\n”, balance);

}

Using #define to set values of constant that are likely to change is an important part of



good software engineering. You will see many additional examples of this technique
throughout the text.

SUMMARYSUMMARYSUMMARY

SUMMARY

In Chapter 2, you learned how to write simple programs that accept input data,
calculate results, and generate output. Chapter 3 has sought to extend your knowledge by
introducing the concept of control statements. By using control statements, you can make
your programs solve much more sophisticated problems, such s those that involve testing to
see whether a condition holds or those that require repetition of certain operation.

This chapter encourages you to approach control statements by thinking about the
kinds of problems they can solve. Each statement is a tool appropriate to a particular
situation, and you have seen how to apply particular tools through the use of simple idioms
and paradigms. Chapter 4 looks at control statements in more detail.

Beyond becoming familiar with control statements, you also had the
opportunity—primarily through the evolution of the balance.c example—to discover that
writing programs to solve problems is not as easy as it might appear. Particularly if you
think too quickly about your modifications to a program or fail to test programs thoroughly,
it is easy to introduce subtle bugs into your programs that keep them from working as you
intend. To some extent, such bugs are an unavoidable part of the programming process, but
you can save yourself considerable time and aggravation by using good programming
discipline. To help you develop that discipline, this chapter includes several useful
guidelines and conventions to improve you programming skills.

Important points about programming introduced in this chapter are:
 Common operations within a program can be represented as programming idioms,

which permit you to learn one simple pattern that is applicable to a variety of
programming problems.

 C defines several shorthand assignment operators that make it easier for you to specify
certain common operations.

 Strategies that work for two or three data values are often not appropriate as the scale
of the problem grows.

 The for statement can be used to repeat a set of statements a specified number of times.
 When used in the particular idiomatic form given in this chapter, the while statement

can be used to repeat a set of statements until a designated sentinel value is entered.
 The if statement is used to specify that a particular set of statements should be executed

only If a certain condition applies. The condition itself is ordinarily expressed by using
relational operators to compare two data values.

 Seemingly innocuous changes can introduce serious bugs. You should always be
suspicious of your program and test them as thoroughly as you can.

 The printf function provides considerable control over output formatting.
 Programs should be written so that they can be understood easily by other

programmers. It is important for you to write your programs with future readers in
mind.
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QUESTIONS

1. Explain the concept of a programming idiom. What role do such idioms play in the
process of learning to program?

2. What is the idiom that corresponds to the English command “request an integer value
from the user and store it in a variable"?

3. What idiom would you use to multiply the value of the variable cellCount by 2?
4. What is the most common way in c to write a statement that has the same effect as

x = x+ 1;

5. What idiom would you use to repeat a set of commands 15 times?
6. Define the following terms: loop, control line, cycle, body, and index variable.
7. What for control line would you use to count from 15 to 25?
8. In the add10.c program, the statement

total = 0;

appears before the for lop. Why is this statement important? On the other hand, why is
it not necessary to include the following statement as well?

value = 0;

Explain how the different use of these variables makes it necessary to initialize total
but not value.

9. What is a sentinel? What considerations are involved in choosing a sentinel value for a
particular application?

10. What is the idiom presented in this chapter for repeating an operation on a list of input
values until a sentinel value appears?

11. What statement is used in this chapter to specify conditional execution, and what are its
two forms?

12. What are the six relational operators that exist in C, and what are the corresponding
mathematical symbols?

13. Why is it important to test programs thoroughly, even after making simple, seemingly
innocuous changes?

14. In the balance.c program, what is the reason for using the format specification $.2f in the
printf calls?

15. How would you write a printf statement to display the string value stored in the variable
name, so that the resulting output was left justified in a 20-character field? How would
you ensure that names longer than 20 characters would not affect the alignment of
other items in a table?

16. How would you write a printf statement to display the floating-point value stored in the
variable distance so that exactly three digits appear to the right of the decimal point?

17. What factors should you consider when choosing variable names for your programs?
18. What is the advantage of the #define construct in terms of program maintenance?
19. How would you use #define to introduce a constant name pi with the value 3.14159?
20. In the balance.4c program (Figure 3-7), the comment associated with the definition of



BouncedCheckfee indicates that the constant value must be a floating-point number. What
statement in the program would fail to operate correctly if BouncedCheckfee were defined
as an integer in violation of this rule? How could you change the program to eliminate
this restriction?

21. As a programmer, you must be able to put yourself in the position of a user. From this
perspective, consider the balance.c program presented in this chapter. Is the program
easy to use? Does it provide the capabilities you want? What changes would you make
in the behavior of the program?

22. In any form of writing, it is important to consider your audience. If your audience
misses the point, the text has not accomplished its purpose. In writing a program, who
is your most important audience?

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. As noted I the section on “The read-until-sentine l idiom,” one strategy for
generalizing the add10.c program is to allow the user to enter the number of values to
be added when the program is run. As outlined in the text, make the modifications
necessary to change the addd10.c program so that it reads in the number of values first,
followed by the actual numbers to be added.

2. Write a program that displays the message

Hello, world.

10 times on separate lines.

3. Using the Gertrude Stein “a rose is a rose is a rose” example as an model, write the for
loop that displays the repeated parts of Macbeth’s lament

4. Modify the add10.c program so that instead of adding integers, it adds 10 floating-
point numbers.

5. Write a program that prints out the squares of the numbers from 1 to 10, using the
format shown in the following sample run:

Tomor row and tomorrow and tomorrow.

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100



Design your program so that the limits 1 and 10 are easy to change.

6. According to legend, the German mathematician Karl Friedrich Gauss (1777-a855)
began to show his mathematical talent at a very early age. When he was in elementary
school, Gauss was asked by his teacher to compute the sum of the numbers between 1
and 100. Gauss is said to have given the answer instantly: 5050. Write a program that
computes the answer to the question Gauss’s teacher posed.

7. Write a program that reads in five integers from the user and then displays their
average, as illustrated by the following sample run:

Note that even though all the input values are integers, the average may have a decimal
fraction. Also, remember to design your program so that it is easy to change the number
of input values to some number other than five.

8. Modify the program you wrote in exercise 7 so that the program begins by asking the
user for the number of values, like this:

9. Using the addlis t.c example as a model, write a program that reads in a list of integers
until the user enters the value –1 as a sentinel. At that point, the program should
display the average of the values entered so far. Your program should be able to
duplicate the follow ing sample run:

Writing this program requires more thought than writing the addlis t.c program in the
text and is a good test of your problem solving abilities.

10. The section on “The repeat-N-times idiom” uses the following code to display one of
Gertrude Stein’s familiar lines:

This program averages a list of 5 integers.
? 959595

95





? 100100100

100





? 898989

89





? 919191

91





? 979797

97





The average is 94.4

This program averages a list of 5 integers.
Howmany values are there in the list> 555

5





? 959595

95





? 100100100

100





? 898989

89





? 919191

91





? 979797

97





The average is 94.4This program averages a list of 5 integers.
Enter –1 to signal the end of the list.
? 959595

95





? 100100100

100





? 898989

89





? 919191

91





? 979797

97





? –––

–

111

1





The average is 94.4



for ( = 0; i < 2; i++) {
printf(“a rose is “);

}
printf(“a rose.\n”);

Rewrite this program so that the word rose appears only once. Your new program
should generate exactly the same output as the original, including the period and the
newline character.

11. In the program you wrote for exercise 5, the output was not formatted into columns,
which makes the result more difficult to read. Change the program so that it prints a
tabular version of both the squares and cubes of the numbers from 1 to 10, as follows:

12. Suppose you are writing a program to display a table of vote totals for candidates at a
convention. When your program is ready to display the output data, the name of the
candidate is stored in the string variable candidate, and the votes for that candidate are
stored in the integer variable votes. How would your write a printf statement to display
the name and vote count so that the names line up on the left and the numbers line up
on the right, as illustrated by the following table, which shows the delegate tallies
from the Democratic Party convention of 1992:

In writing this printf statement, display the name of each candidate in a 15-character field;
if the name is longer than that, only the first 15 characters should appear. You may
assume that there are fewer than 10,00 delegates at the convention and therefore that
the number of votes never requires more than four digits to represent.

Remember that you need not write a program to generate the entire table—just the
one printf statement. Even so, try to think of a way to test your printf statement to be sure
it works in the desired way.

13. In exercise 4 in Chapter 2, you wrote a program to calculate compound interest over
two years. Rewrite the program so that it displays the accumulated balance after each
of N years, where N is a number entered by the user.

Number Square Cube
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 454
8 64 512
9 81 729
10 100 1000

Clinton 3372
Brown 596
Tsongas 209
Other 74



14. Write a program that reads in a list of integers from the user until the user enters the
value 0 as a sentinel. When the sentinel appears, your program should display the
largest value in the list, as illustrated in the following sample run:

Think about the problem before you start to write the program. What strategy do
you plan to use?

Figuring out how to find the largest number in a list is by far the most
conceptually important exercise in this chapter. Once you understand how to solve the
fundamental problem—not the problem of how to write the necessary statements in C
but rather of how to design the algorithmic strategy—you are ready to go on and learn
more about details of programming.

This program finds the larges t integer in a list.
Enter 0 to signal the end of the list.
? 171717

17





? 424242

42





? 111111

11





? 191919

19





? 353535

35





? 000

0





The larges t value is 42
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To understand the relationship between statements and expressions.
 To recognize that the equal sign used for assignment is treated as a binary operator in

C.
 To understand that statements can be collected into blocks.
 To recognize that control statements fall into twoclasses: conditional and iterative.
 To learn how to manipulate Boolean data and to appreciate its importance.
 To increase your familiarity with the relational operators:=, !=, < ,<=, >, and >=.
 To understand the behavior of the &&, ||, and ! operators.
 To master the details of the if, switch , while, and for statements.

III

I

n Chapter 2, you learned that a C program operates by executing the statements

contained within the body of a function called main. This chapter covers the different
statement types available in C and, in the process, extends the set of tools you have for
solving problems.

As in most programming languages, statements in C fall in to one of two principal
classifications: simplesimplesimple

simple

statementsstatementsstatements

statements

, which perform some action, and controlcontrolcontrol

control

statementsstatementsstatements

statements

,
which affect the way in which other statements are executed. You have already seen a
variety of simple statements in C, such as assignments and calls to the printf function. You
have also encountered various control statements. The for statement makes it possible to
repeat a set of program steps a given number of times, the while statement allows you to
specify repetition until some condition depending on some conditional test. Up to now,
however, you have studied these statements in an informal, idiomatic way. To use the full
power these statements provide, you need a more detailed understanding of how each type
of statement works and how it can be applied as part of your problem-solving repertoire.
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SimpleSimpleSimple

Simple

statementsstatementsstatements

statements

In the programs in Chapter 2 and 3, you saw simple statements used to accomplish a
variety of tasks. In particular, there were statements that read in data from the user, such as

n1 = GetInteger();



statements that compute new values, such as

total = n1 + n2;

and statements that display information, such as

printf(“Thde total is %.\n” , total);

Informally, it makes sense to think of each of these statement types as a separate tool
and to use them idiomatically. If you need to read an integer, all you need to do is
remember that there is an idiom for that purpose, which you can then write down. If you
need to display a value, you know that you should use the printf function along with the
special facilities for printf formatting described in the section on “Formatted output” in
Chapter 3. Viewed formally, however, these simple statements all have a unified structure
that makes it easy for the C compiler to recognize a legal statement in a program. In C, all
simple statements—regardless of their function—fit the following rule

Thus, the paradigm for a simple statement is imply this:

Expression;

Adding the semicolon after the expression turns the expression into a legal statement form
Even though any expression followed by a semicolon is a legal statement in C, it is

not true that every such combination represents a useful statement. To be useful, a
statement must have some discernible effect. The statement

n1 + n2;

consists of the expression n1 + n2 followed by a semicolon and is therefore a legal statement.
It is, however, an entirely useless one because nothing is ever done with the answer; the
statement adds the variables n1 and n2 together and then throws the result away1. Simple
statements in C are typically assignments (including the shorthand assignments and
increment/decrement operators) or calls to functions, such as printf, that perform some
useful operation.

It is easy to see that program lines such as

pntf(Hello, world.\n”);

are legal statements according to the Simple Statement Rule. In the definition of expression
given in Chapter 2, function calls are legal expressions, so that the function call part of the
above line—everything except the semicolon—is a legal expression. Putting the semicolon
at the end of the line turns that expression into a simple statement.

But what about assignments? If a line like

Total = 0;

is to fit the Simple Statement rule, it must be the case that

SIMPLESIMPLESIMPLE

SIMPLE

STATEMENTSTATEMENTSTATEMENT

STATEMENT

RULERULERULE

RULE

A simple statement consists of an expression followed
by a semicolon.

1 Some C compilers are clever enough to issue a warning for useless statements of this sort.



Total = 0

is itself an expression.
In C, the equal sing used for assignment is simple a binary operator, just like + or /.

The = operator takes two operands, one on the left and one on the right. For our present
purposes, the left operand must be a variable name, although that restriction is relaxed in
Chapter 11. When the assignment operator is executed, the expression on the right-hand
side is evaluated, and the resulting value is then stored in the variable that appears on the
left-hand side. Because the equal sign used for assignment is an operator,

total = 0

is indeed an expression, and the line

total = 0;

is therefore a simple statement.

EmbeddedEmbeddedEmbedded

Embedded

assignmentsassignmentsassignments

assignments

The description of assignment in the previous section should seem familiar because it
is equivalent in effect to the earlier, less formal definition given in the section on
“Assignment statements” in Chapter 2. Now comes the interesting wrinkle. If an
assignment is an expression, then that expression must itself have a value. Moreover, if an
assignment produces a value, it must also be possible to embed that assignment in some
more complicated expression.

When an assignment is used as part of some larger expression, the value for the
assignment subexpression is the value assigned. For example, if the expression

x = 6

appears as an operand to another operator, the value of that assignment as an expression is
the value assigned to the variable x, which is 6. Thus, the expression

(x = 6) + (y = 7)

has the effect of setting x to 6 and y to 7, which makes the value of the expression as a
whole 13. The parentheses are required in this example because the – operator has a lower
precedence than +. Assignments that are written as part of larger expressions are called
embeddedembeddedembedded

embedded

assignmentsassignmentsassignments

assignments

.
Although they have some important and extremely convenient uses, embedded

assignments often make programs more difficult to read because they tend to hide the fact
that the values of variables are changing somewhere in the middle of a more complicated
expression. For this reason, this text limits the use of embedded assignments to a few
special circumstances where they seem to make the most sense.

MultipleMultipleMultiple

Multiple

assignmentsassignmentsassignments

assignments

Of these special circumstances in which embedded assignments are used, the easiest
one to describe occurs when you want to set several variables to the same value. Instead of



writing separate assignment statements, C’s definition of assignment makes it possible to
write a single statement like

n1 = n2 = n3 = 0;

which has the effect of setting all three variables to 0. This statement has the desired result
because C evaluates assignment operators from right to left. The entire statement is
therefore equivalent to

n1 = (n2 = (n3 = 0));

the expression n3 = 0 is evaluated, which set n3 to 0 and then passes 0 along as the value of
the assignment expression. That value is assigned to n2, and the result is then assigned to n1.
Statements of this sort are called multiplemultiplemultiple

multiple

assignmentsassignmentsassignments

assignments

.
When writing multiple assignments, it is good practice to ensure that all the variables

are of the same type to avoid the possibility that automatic conversion will lead to
unintended results. To illustrate the type of problem that can occur suppose that the variable
d has been declared as a double and the variable i has been declared as an int. What is the
effect of the following statement?

d = i = 1.5; This statement is likely to confuse the reader.

when this expression is evaluated, the value 1.5 is truncated to an integer before it is
assigned to i, so i gets the value 1. The value of the embedded assignment expression is the
value assigned, so it is the integer 1, not the floating-point value final result is that d is
assigned the value 1.0.

In C’s precedence hierarchy, assignment operators, including the shorthand
assignment operators like += and *=, are evaluated after the arithmetic operators. If two
assignments compete for the same operand, the assignments are applied from right to left.
This rule runs counter to the rule used for the other operators, which are applied from left to
right. The direction in which operators of the same precedence class are evaluated is called
the associativityassociativityassociativity

associativity

of that class. Traditional operators like + and – are evaluated from left to
right and are therefore called leftleftleft

left

associativeassociativeassociative

associative

. The assignment operators are evaluated from
right to left and are called rightrightright

right

associativeassociativeassociative

associative

. A table showing the precedence and
associativity for all the operators introduced through Chapter 4 appears in the Summary at
the end of this chapter, and a complete precedence table for all the operators in C is
provided in Appendix A.

BlocksBlocksBlocks

Blocks

Simple statements allow programmers to specify actions. Except for the hello.c
program in Chapter 2, however, every program you have seen so far requires more than
one simple statement to do the job. For most programs, the solution strategy requires a
coordinated action consisting of several sequential steps. The add3.c program, for example,
had to first get one number, then get a second, then add the two together, and finally display
the result. Translating this sequence of actions into actual program steps required the use of
several individual statements that all became part of the main program body.

To specify that a sequence of statements is part of a coherent unit, you can assemble



those statements into a blockblockblock

block

, which is a collection of statements enclosed in curly braces,
as follows:

{
statemen t1
statemen t2
statemen t3

…
statemen tn

}

You have already seen blocks in several of the programming examples from the previous
chapters. The body of each main program is a block, as are all the control statement bodies
in the programs in Chapter 3.

As discussed in the section on “Programming style ” in Chapter 3, the statement in the
interior of a block are usually indented relative to the enclosing context. The compiler
ignores the indentation, but the visual effect is extremely helpful to the human reader
because it makes the structure of the program jump out at you from the format of the page.
Empirical research has shown that using either three or four spaces at each new level makes
the program structure easiest to see; the programs in this text use four spaces for each new
level. Indentation critical to good programming, so you should strive to develop a
consistent indentation style in your programs.

The only aspect of blocks that tends to cause any confusion for new students is the
role of the semicolon. In C, the semicolon is part of the syntax of a simple statement; it acts
as a statement terminator rather than as a statement separator. While this rule is perfectly
consistent, it can cause trouble for people who have previously been exposed to the
language Pascal, which use a different rule. In practical terms, the differences are:

1. There is always a semicolon at the end of the last simple statement in a block in
C. In Pascal, the semicolon is usually not present, although most compilers allow
it as an option.

2. There is never a semicolon after the closing brace of a statement block in C. In
Pascal, a semicolon may or may not follow the END keyword depending on the
context.

The convention for using semicolons in C has advantages for program maintenance and
should not cause any problem once you are used to it.

When the C compiler encounters a block, it treats the entire block as a single
statement. Thus, whenever the notation statement appears in an idiom or a paradigm, you
can substitute for it either a single statement or a block. To emphasize that they are
statements as far as the compiler is concerned, blocks are sometimes referred to as
compoundcompoundcompound

compound

statementsstatementsstatements

statements

.

1-21-21-2

1-2

ControlControlControl

Control
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In the absence of any directive to the contrary, statements in a C program are executed
one at a time in the order in which they appear. For most applications, however, this strictly



top-to-bottom ordering is not sufficient. Solution strategies for real-word problems tend to
involve such operating a set of steps or choosing between alternative sets of actions.
Statements that affect the way in which other statements are executed are called control
statements.

Control statements in C fall into two basic classes:
1. Conditionals. In solving problems, you will often need to choose between twoor

more independent paths in a program, depending on the result of some
conditional test. For example, you might be asked to write a program that
behaves one way if a certain value is negative and some different way otherwise.
The type of control statement needed to make decisions in called a conditionalconditionalconditional

conditional

.
In C, there are two conditional statement forms: the if statement introduced in
Chapter 3 and the switch statement introduced later in this chapter.

2. Iteration. Particularly as you start to work with problems that involve more than a
few data items, your programs will often need to repeat an operation a specified
number of times or as long as a certain condition holds. In programming, such
repetition is called iterationiterationiteration

iteration

. In C, the control statements used as the basis for
most iteration are the while statement as the for statement, which were introduced
in Chapter 3.

Each control statement in C consists of two parts: the control line, which specifies the
nature of the repetition or condition, and the body, which consists of the statements that are
affected by the control line. In the case of conditional statements, the body may be divided
into separate parts, where on set of statements in executed in certain cases and another set
of statements is executed in others.

The body of each control statement consists of other statements. The effect of the
control statement itself—no matter whether it specifies repletion or conditional
execution—is applied to each of the statements in the body. Those statements moreover,
can be of any type. They may be simple statements, they may be compound statements,
other may themselves be control statements, which in turn contain other statements. When
a control statement is used within the body of another control statement, it is said to be
nestednestednested

nested

. The ability to nest control statements, on e inside another, is one of the most
important characteristics of modern programming languages.
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In the course of solving a problem, it is often necessary to have the program test a
particular condition that affects the subsequent behavior of the program. For example, the
final version of the blance.c program in Chapter 3 uses an if statement involving a conditional
test to determine whether a check has bounced. The if statement, along with many of the
other facilities that control the execution of a program, use expressions whose values are
either true for false. This type of data—for which the only legal values are true and
false—is called BooleanBooleanBoolean

Boolean

datadatadata

data

, after the mathematician Georag Boole, who developed an
algebraic approach for working with such values.

Most modern programming languages define a special Boolean type whose domain



consists of precisely these two values. C does not define such a type—a deficiency that
makes understanding the nature of logical decision and much more difficult for new
programmers. To correct this shortcoming, the genlib library defines a special type called bool .
It also defines the constant names TURE and FALSE, both of which must be written entirely in
upper case. You can declare variables of type bool and manipulate them in the same way as
other data objects.

C defines several operators that work with Boolean values. These operators comprise
two major classes, relational operators and logical operators, which are discussed in the
next two sections.

RelationalRelationalRelational

Relational

operatorsoperatorsoperators

operators

The relationalrelationalrelational

relational

operatorsoperatorsoperators

operators

are used to compare two values. C defines six relational
operators, which actually fall into two precedence classes. The operators that test the
ordering relationship between twoquantities are

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

These operators appear in the precedence hierarchy below the arithmetic operators + and –

and are followed in the hierarchy by the following operators, which test for equality and
inequality:

== Equal
!= Not equal

When you write programs that test for equality, be very careful to use the == operator, which
is composed of two equal signs. A single equal sign is the assignment operator. Since the
double equal sign violates conventional mathematical usage, replacing it with a single
equal sign is a particularly common mistake. This mistake can also be very difficult to track
down because the C compiler does not usually catch it as an error. A single equal sign
usually turns the expression ito an embedded assignment, which is perfectly legal in C; it
just isn’t at all what you want. For example, if you wanted to test whether the value of the
variable x wereequal to 0 and wrote the following conditional expression

If (x = 0) … This is incorrect.

The results would be confusing. This statement would not check to see if x wereequal to 0.
It would instead insist on this condition by assigning the value 0 to x, which c would then
interpret (for reasons too arcane to describe at this point) as indicating a test result of FLASE.
The correct test to determine whether the value of the variable x is equal to 0 is

If (x == 0)…

Be careful to avoid this error. A little extra care in entering your program can save a lot of
debugging time later on.

The relational operators can only be used to compare atomicatomicatomic

atomic

datadatadata

data

values—data
values that are not built up from smaller component parts. For example, integers, floating-
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When writing programs
that tes t for equality,
be sure to use the ==
operator and not the
single = operator,
which signifies
assignmen t. This error
is extremely common
and can lead to bugs
that are very difficul t ot
find, because the
compiler cannot detec t
the error.



point numbers, Boolean values, and characters (which are introduced in Chapter 9)
constitute atomic data because they cannot be decomposed into smaller pieces. Strings, on
the other hand, are not atomic because they are composed of individual characters. Thus,
you can use relational operators to compare two values of the types int , double, or bool , but
you cannot use them to compare two values of type string . A mechanism by which to
compare strings will be introduced in Chapter 5.

LogicalLogicalLogical

Logical

operatorsoperatorsoperators

operators

In addition to the relational operators, which take atomic values of any type and
produce Boolean results, C defines three operators that take Boolean operands and combine
them to formother Boolean values:

! Logical not (TRUE if the following operand is FALSE)
&& Logical and (TRUE if both operands are TRUE)
|| Logical or (TRUE if either or both operands are TRUE)

These operators are called logicallogicallogical

logical

operatorsoperatorsoperators

operators

and are listed in decreasing order of
precedence.

The operators &&, || and ! closely resemble the English words and, or, and not. Even so,
it is important to remember that English can be somewhat imprecise when it comes to logic.
To avoid that imprecision, it is often helpful to think of these operators in a more formal,
mathematical way. Logicians define these operators using truthtruthtruth

truth

tablestablestables

tables

, which show how
the value of a Boolean expression changes as the values of its operands change. For
example, the truth table for the && operator, given Boolean values p and q, is

The last column of the table indicates the value of the Boolean expression p && q given
individual values of the Boolean variables p and q shown in the first two columns. Thus,
the first line in the truth table shows that when p is FALSE and q is FALSE, the value of the
expression p && q is also FALSE.

The truth table for || is

ppp

p

qqq

q

ppp

p

&&&&&&

&&

qqq

q

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

ppp

p

qqq

q

p||qp||qp||q

p||q

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE



Note that the || operator does not indicate one or the other, as it often does in English, but
instead indicates either or both, which is its mathematical meaning.

The ! operator has the following simple truth table:

If you need to determine how a more complex logical expression operates, you can break it
down into these primitive of operations and build up a truth table for the individual pieces
of the expression.

In most case, logical expressions are not so complicated that you need a truth table to
figure them out. The only common case that seems to cause confusion is when the ! or !=

operator comes up in conjunction with && or ||. When talking about situations that are not
true (as is the case when working with the ! and != operators), conventional English is
sometimes at odds with mathematical logic, and you should use some extra care to avoid
errors . For example, suppose you wanted to express the ideal “x is not equal to either 2 or
3” as part of a program. Just reading from the English version of this conditional test, new
programmers are very likely to write

if (x != 2 || x != 3) … This test is incorrect!

If you look at this conditional test from the mathematical point of view, you can see that the
expression within the if test is TRUE if either (a) x is not equal to 2 or (b) x is not equal to 3.
No matter what value x has, one of the statements must be TRUE, since, if x is 2, it cannot
also be equal to 3, and vice versa. Thus, the if test as written above would always succeed.

To fix this problem, you need to refine your understanding of the English expression
so that it states the condition more precisely. That is, you want the test in the if statement to
succeed whenever “it is not the case that either x is 2 or x is 3.” You could translate this
statement directly to C by writing

If (!(x == 2 || x ==))…

But the resulting statement is a bit ungainly. The question you really want to ask is whether
both of the following conditions are TRUE:

 x is not equal to 2, and
 x is not equal to 3.

If you think about the question in this form, you could write the test as

If (x != 2 &&x != 3)…

This simplification is a specific illustration of the following more general relationship from
mathematical logic:

!(p || q) is equivalen t to !p && !q

for any logical expressions p and q. This transformation rule and it s symmetric counterpart

!(p && q) is equivalen t to !p || !q

ppp

p

!p!p!p

!p

FALSE TRUE

TRUE FALSE
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can be somewha t
fuzzy in its approach to
logic; programming
requires you to be
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are called DeDeDe

De

MorganMorganMorgan

Morgan

’’’

’

sss

s

lawslawslaws

laws

. Forgetting to apply these rules and relying instead on the
English type of logic is a common source of programming errors.

Another common mistake comes from forgetting to use the appropriate logical
connective when combining several relational tests. In mathematics, one often sees an
expression of the form

1 < x < 10

While this expression makes sense in mathematics, it is not meaningful in C. In order to test
that x is both greater than 0 and less than 10, you need to indicate both conditions explicitly,
as follows:

0 < x && x < 10

Short-circuitShort-circuitShort-circuit

Short-circuit

EvaluationEvaluationEvaluation

Evaluation

C interprets the && and || operators in a way that differs form the interpretation used in
many other programming languages. In Pascal, for example, evaluating these operators
(which are written as AND and OR) requires evaluating both halves of the condition, even
when the result can be determined halfway through the process. The designers of C took a
different approach that is often more convenient for programmers.

Whenever a C program evaluates any expression of the form

exp1 && exp2

or

exp1 || exp2

the individual subexpressions are always evaluated from left to right, and evaluation ends
as soon as the answer can be determined. For example, if exp1 is FALSE in the expression
involving &&, there is no need to evaluate exp2 since the final answer will always be FALSE.
Similarly, in the example using ||, there is no need to evaluated the second operand if the
first operand is TRUE. This style of evaluation, which stops as soon as the answer in known,
is called short-circuitshort-circuitshort-circuit

short-circuit

evaluationevaluationevaluation

evaluation

.
A primary advantage of short-circuit evaluation is that it allows one condition to

control the execution of a second one. In many situations, the second part of a compound
condition is meaningful only if the first part comes out a certain way. For example, suppose
you want to express the combined condition that (1) the value of the integer x is nonzero
and (2) x divides evenly into y. You can express this conditional test in C as

(x != 0) && (y % x == 0)

because the expression y % x is evaluated only if x is nonzero. The corresponding expression
in Pascal fails to generate the desired result, because both parts of the Pascal condition will
always be evaluated. Thus, if x is 0, a Pascal program containing this expression will end
up dividing by 0 even though it appears to have a conditional test to check for that case.
Conditions that protect against evaluation errors in subsequent parts of a compound
condition, such as the conditional test

(x != 0)



in the preceding example, are called guardsguardsguards

guards

.

FlagsFlagsFlags

Flags

Variables of type bool are so important that they have a special name: flagsflagsflags

flags

. For
example, if you declare a Boolean variable using the declaration

bool done;

the variable done becomes a flag, which you can use in your program to record whether or
not you are finished with some phase of the operation. You can assign new values to flags
just as you can to any other variable. For example, you can write

done = TRUE;

or

done = FALSE;

More importantly, you can assign any expression that has a Boolean value to a Boolean
variable. For example, suppose the logic of your program indicates that you are finished
with some phase of the operation as soon as the value of the variable itemsRemaining becomes
0.To set done to the appropriate value, you can simply write

done = (itemsRemaining == 0);

The parentheses in this expression are not necessary but are often used to emphasize the
fact that you are assigning the result of a conditional test to a variable. The statement above
says, “Calculate the value of (itemsRemaining == 0), which will be either TRUE or FALSE, and
store that result in the variable done .”

AvoidingAvoidingAvoiding

Avoiding

redundancyredundancyredundancy

redundancy

ininin

in

BooleanBooleanBoolean

Boolean

expressionsexpressionsexpressions

expressions

Even though the staement

Done = (itemsRemaining == 0);

Is sufficient to store the correct Boolean value in the variable done, this type of statement
seems difficult for people to learn. New programmers have a tendency to achieve the same
effect with the following, much longer if statement:

If (itemsRemaining == 0){
Done == TRUE; These lines are a highly inefficient way to

} else { achiever the desired result ...

.

done = FALSE;
}

Although these lines have the desired effect, they do not have the efficiency or the
elegance you should seek to achieve in you programs. The second version requires five
lines to do the work of one and will make your programs much longer than they need to be.
As you work with Boolean data, it is important to remember that you can assign Boolean
values just like any other values and that explicit tests are no t necessary.



A similar problem occurs when you use a flag as part of a conditional test. To test
whether done has the value TREU , an experienced programmer writes

if(done) ...

and not

if (done == TRUE)… The == TRUE is redundant

Even though this second expression also works, the equality test is redundant. The value of
done is already guaranteed to be either TRUE or FALSE, which is precisely the sort of value the
if statement wants. You don’t need to ask whether done is equal to TRUE, since the extra test
provides no new information.

AnAnAn

An

exampleexampleexample

example

ofofof

of

BooleanBooleanBoolean

Boolean

calculationcalculationcalculation

calculation

As astronomers have known for centuries, the earth takes a little more than 365 days
to make a complete revolution around the sun. Because it takes about a quarter of a day
more than 365 days for it to complete its annual cycle, an extra day builds up every four
years, which must then be added to the calendar, creating a leap year. This adjustment helps
keep the calendar in sync with the sun’s orbit, but it is still off by a slight amount. To ensure
that the beginning of the year does not slowly drift through the seasons, the actual rule used
for leap years is slightly more complicated. Leap years come every four years, except for
years ending in 00, which are leap years only if they are divisible by 400. Thus, 1900 was
not a leap year even though 1900 is divisible by 4. The year 200, on the other hand, is a leap
year because it is divisible by 400.

Suppose you have been asked to write a program that reads in a year and determines
whether that year is a leap year. How would you write the Boolean expression necessary to
answer that question? In order to be a leap year, one of the following conditions must hold:

 The year is divisible by 4 but not divisible by 100, or
 The year is divisible by 400.

If the year is contained in the variable y, the following Boolean expression has the correct
result:

((Y % 4 == 0) && (y % 100 != 0)) || (y % 400 ==0)

Given C’s rules of precedence, none of the parentheses in this expression are actually
required, but using parentheses makes long Boolean expressions easier to read. If you take
the result of this expression and store it in a flag called isLeapYear , you can the test the flag at
other points in the program to determine whether the isLeapYear condition is true. A program
that performs the leap-year calculation is shown in Figure 4-1.

FigureFigureFigure

Figure
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programprogramprogram

program

fromfromfrom

from

leapyear.cleapyear.cleapyear.c

leapyear.c

main()
{

int year;
bool isLeapyear;
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redundancy when using
Boolean data. Standard
warning signs include the
comparison of a Boolean
value against the constant
TRUE and the use of an if
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already available as a
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printf(“Program to determine whether a year is a leap year.\n”);
printf(“What year? “);
year = GetInteger();
isLeapyear = ((year %4== 0) && (year %100 != 0)) || (year % 400 == 0);
if (isLeapYear){

printf(“%d is a leap year.\n”, year);
} else {

printf(“%d is not a leap year.\n” year);
}

}
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The simplest way to express conditional execution in c is by using the if statement,
which comes in two forms:

If (condition) statement
If (condition) statement else statement

The condition component of this paradigm is a Boolean-valued expression. The statements
can be either simple statements or blocks.

You use the first form of the if statement when your solution strategy calls for a set of
statements to be executed only if a particular condition applies. If that condition does not
apply, the statements that form the body of the if statement are simply skipped. For example,
in the balance.c example in Chapter 3, the statement

If (entry < 0 0 && balance < 0) {
Printf(“This check bonces. 410 fee deduc ted.\n”);
Balance -= 10;

}

fits into this category: either a check bounces or it doesn’t, and the program needs to take
action only in the bounced-check case.

You use the second form of the if statement for situations in which the program must
chose between two independent sets of actions based on the result of a test. This statement
form is illustrated by the odd even. C program given in Figure 4-2, in which the program
reads in a number and classifies it as either even or odd. The conditional expression used to
determine the answer is

n % 2 == 0

See if it is 0, which would indicate that n is an even number. If so, the statement
immediately after the if line is executed, which reports that the number is indeed even. If the
remainder is not 0, n must be odd, and the statement following the else line reports that fact.
The block of statements executed when the conditional expression is true is called the thenthenthen

then

clauseclauseclause

clause

of the if statement. The block of statements executed when the condition is FALSE is
called the elseelseelse

else

clauseclauseclause

clause

.
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oddeven.c

main()
{



int n;

printf(“Program to classify a number as even or odd.\n’);
printf(“n = ? “);
n = GerInteger( );
if (n % 2 == 0) {

printf(“Tha t number is even.\n”);
} else {

printf(“Tha t number is odd.\n”);
}

}

The fact that the else clause is optional in the if statement sometimes creates an
ambiguity, which is called the dangling-elsedangling-elsedangling-else

dangling-else

problemproblemproblem

problem

. If you write several if statements
nested one within another, some of which have else clauses and some of which don’t, it can
be difficult to tell which else goes with which if. When faced with this situation, the C
compiler follows the simple rule that each else clause is paired with the most recent if
statement that does not already have an else clause. While this rule is simple for the
compiler, it can still be hard for human readers to recognize quickly where each else clause
belongs. By adopting a more disciplined programming style than C requires, it is possible
to get rid of dangling-else ambiguities. The following rule governing how to use blocks
within if statements eliminates the problem.

Because this text uses the If/Else Blocking Rule, the if statement appears only in one of the
following four forms:

1. A single-line if statement used for extremely short conditions
2. A multilane if statement in which the statement in which the statements are

enclosed in a block
3. An if-else statement that always uses blocks to enclose the statements controlled by

the if statement, even if they consist of a single statement
4. A cascading if statement, used for expressing a series of conditional tests

Each of these forms is discussed in more detail in the sections that follow.

Single-lineSingle-lineSingle-line

Single-line

if statementsstatementsstatements

statements

The simple one-line format shown in the syntax
box on the left is used only for those if statements in
which there is no else clause and in which the body is a
single statement short enough to fit on the same line as
the if. In this type of situation, using braces and
extending the if statement form one to three lines
would make the program longer and more difficult to
read. The only example so far of this style is the
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single-linesingle-linesingle-line

single-line

if statementsstatementsstatements

statements

If (condition) statement ;

Where:
condition is the Boolean value being tested
statement is a single of statement to be

executed if the condition is TRUE



statement

if (value == Sentinel) break;

presented in the section on “Sentinel-based loops” in Chapter 3.

MultilineMultilineMultiline

Multiline

if statementsstatementsstatements

statements

Whenever the body of an if statement consists of
multiple statements or a single statement that is too long
for a single line, the statements are enclose in a block, as
shown in the syntax box on the left. In this form, the
statements are executed if the condition is TRUE. If the
condition is FALSE, the program takes no action at all and
continues with the statement following the if.
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if-else statementstatementstatement

statement

To avoid the dangling-else problem, the bodies of if
statements that have else-clauses are always enclosed
within blocks, as shown in the syntax box on the left.
Technically, the curly braces that surround the block are
necessary only if there is more than one statement
governed by that condition. By systematically using
those braces, however, you can minimize the possibility
of confusion and make your programs easier to maintain.

CascadingCascadingCascading
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ififif

if

statementsstatementsstatements

statements

The syntax box on the right illustrates an important
special case of the if statement that is useful for
applications in which the number of possible cases is
larger than two. The characteristic form is that the else

part of a condition consists of yet another test to check
for an alternative condition. Such statements are called
cascadingcascadingcascading

cascading

ififif

if

statementsstatementsstatements

statements

and may involve any number of
else if lines. For example, the program signtest.c in Figure
4-3 uses the cascading if statement to report whether a
number is positive, zero, or negative. Note that three is
no need to check explicitly for the n < 0 condition. If the
program reaches that last else clause, there is no other
possibility, since the earlier tests have eliminated the
positive and zero cases.

In many situations, the process of choosing

SYNTAXSYNTAXSYNTAX

SYNTAX
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multiline

if statementsstatementsstatements

statements

If (condition) {
statements;

}
Where:

Condition is the Boolean value being tested
statements is a block of statements to be
executed if the condition is TRUE

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for

if else statementsstatementsstatements

statements

If (condition) {
StatementsT;

} else {
statementsF;

}

Where:
condition is the Boolean value being tested
statementsT is a block of statements to be
executed if the condition is TRUE

statementsF is block of statements to be
executed if condition is FALSE

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for

cascading if statementsstatementsstatements

statements

If (condition1) {
statements1;

} else if (condition2) { any
statements2 number

} else if (conditions3) { may
statements3 appear

} else {
statementsnone

}

Where:
Each conditioni is a Boolean expression
Each statemensi is a block of statements to
be executed if conditioni is TRUE

statementsnone is the block of statements to
be executed if every conditioni is FALSE



between a set of independent cases can be handled more efficiently using the switch

statement, which is described in a separate section later in this chapter.
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program

fromfromfrom

from

signtest.csigntest.csigntest.c

signtest.c

main()
{

int n;

printf(“Program to classify a number by its sign\n”);
printf(“n = ? “);
n = GetInteger();
if (n > 0> {

printf(“Tha t number is positive.\n”);
} else if (n == 0) {

printf(“Tha t number is zero.\n”)’ ;
} else {

printf(“Tha t number is nega tive.\n”);
}

}
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(optional)

The C programming language provides another, more compact mechanism for
expressing conditional execution that can be extremely useful in certain situations: the ?:
operator. (This operator is referred to as question-mark colon, even though the two
characters do not actually appear adjacent to one another.) Unlike any other operator in C. ?:
is written in two parts and requires three operands. The general formof the operation is

(condi tion) ? expression1 : expression 2

The parentheses around the condition are not technically required, but many C
programmers in clued them to emphasize the boundaries of the conditional test.

When a C program encounters the ?: operator, it first evaluates the condition. If the
condition turns out to be TRUE, expression1 is evaluated and used as the vale of the entire
expression; if the condition is FALSE, the value is the result of evaluating expression2. The ?:

operator is therefore a shorthand form of the if statement

If (condi tion) {
Value = expression1;

} elsse {
value = expression2;

}

Where the value of the ?: expression as a whole is whatever would have been stored in
value in the expanded, if-statement form.

For example, you can used the ?: operator to assign to max either the value of x or the
value of y, whichever is greater, as follows:

max = (x > y) ? x : y;

One of the most common situations in which the ?: operator makes sense is in calls to printf
where the output you want differs slightly depending on some condition. For example,
suppose that you are writing a program that counts the number of some item and that, after



doing all the counting, stores the number of items in the variable nItems . How would you
report this value to the user? The obvious way is just to call printf using a statement like

printf (“%d items found.\n”, nItems);

But if you are a language purist, you might be a little chagrined to read the output

when nItems happens to have the value 1. You could, however, correct the English by
enclosing the printf line in the following if statement:

if (nItems > 1) {
printf(“%d items found.\n”, nItems);

} else {
printf(“%d item fond.\n”, nItems);

}

The only problem is that this solution strategy requires a five-line statement to express a
relatively simple idea. As an alternative, you could use the ?: operator as follows:

printf (“%d item% s found.\n”, nItems, (nItems> 1) ? “s”: “”);

The string “ item” in the output would then be followed by the string “s” if nItems is greater
than one and an empty string otherwise.

As another example, you can use ?: to print out the value of a Boolean variable in a
readable way. Remember that the type bool is not actually part of the C language, and there
is therefore no built-in mechanism for printing values of that type. Even so, you can easily
use printf and ?: to display the value of the Boolean variable errorFlag as follows :

printf(“errorFlag = %s\n” , (errorFlag) ? “TRUE”: “FALSE”);

In C, it is possible to overuse the ?: operator. If an essential part of the decision-making
structure with a program is hidden away in the ?: operator, those decision-making
operations can easily get lost in the rest of the code. On the other hand, if using ?: makes it
possible to handle some small detail without writing a complicated if statement, this
operator can simplify the program structure considerably.
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The if statement is ideal for those applications in which the program logic calls or a
two-way decision point: some condition is either TRUE or FALSE, and the program acts
accordingly. Some applications, however, call for more complicated decision structures
involving more than twochoices, where those choices can be divided into a set of mutually
exclusive cases: in one case, the program should do x; in another case, it should do y; in a
third, it should do z; and so forth. In many applications, the most appropriate statement to
use for such situations is the switch statement, which is outlined in the syntax box on the
right.

1 items found.
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It is good programming
practice to include a break
statemen t at the end of
every case clause within a
switch statemen t. Doing so
will help you to avoid
programming errors that
can be extremely difficul t
to find. It is also good
practice to include a
default clause unless you
are sure you have covered
all the cases.

The header line of the switch statement is

switch (e)

Where e is an expression called the controlcontrolcontrol

control

expressionexpressionexpression

expression

.
The body of the switch statement is divided into individual
groups of statements introduced with one of two key words:
case or defaul t. A case line and all the statements that follow it
up to the next instance of either of these keywords are
called a casecasecase

case

clauseclauseclause

clause

; the defaul t line and its associated
statements are called the defaultdefaultdefault

default

clauseclauseclause

clause

. For example, in
the paradigm shown in the syntax box, the range of
statements

case c1:
Stements1
break;

constitutes the first case clause.
When the program executes a switch statement, the

control expression e in evaluated and compared against the
value c1, c2, and so forth, each of which must be an integer
constant (or, as you will see in Chapter9, any value that
behaves like an integer, such as a character). If one of the
constants matches the value of the control expression, the statements in the associated case
clause are executed.When the program reaches the break statement at the end of the clause,
the operations specified by that clause are complete, and the program continues with the
statement following the entire switch statement. If none of the case constants match the
value of the control expression, the statements in the default clause are executed.

The paradigm shown in the syntax box deliberately suggests that the break statements
are a required part of the syntax. I encourage you to think of the switch syntax in precisely
that form. C is defined so that if the break statement is missing, the program statements
executing statements from the next clause after it finishes the selected one. While this
design can be useful in some cases, it tends to cause more problems than it solves. To
reinforce the importance of remembering to include the break statement, every case clause
in this text ends with an explicit break statement (or sometimes with a return statement, as
discussed in Chapter 5).

The one exception to this rule is that multiple case lines specifying different constants
can appear together, one after another, before the same statement group. For example, a
switch statement might include the following code:

case 1:
case 2:

statemen ts
break;

Which indicates that the specified statements should be executed if the select

expression is either 1 or 2. The C compiler treats this construction as two case clauses, the
first of which is empty. Because the empty clause contains no break statement, a program
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switch (e) {
case c1:
statement111

1

break;
case c2:
statements222

2

break;
… more case clauses…
defaul t:
statementsdefdefdef

def

break;
}

where:
e is the control expression, which is used to
choose what statements are executed

each ci is a constant value
each statementsi is a sequence of statements
to be executed if ci is equal to e

statementdef is a sequence of statements to be
executed if none of the ci values match the
expression e



that selects that path simply continues on with the second clause. From a conceptual point
of view, however, you are probably better off to think of this construction as a single case

clause representing twopossibilities.
The defaul t clause is optional in the switch statement. If none of the cases match and

there is no defaul t clause, the program simply continues on with the next statement after the
switch statement without taking any action at all. To avoid the possibility that the program
might ignore an unexpected case, it is good programming practice to include a defaul t clause
in every switch statement unless you are certain you have enumerated all the possibilities.

Because the switch statement can be rather long, programs are easier to read if the case

clauses themselves are short. If there is room to do so, it also helps to put the case identifier,
the statements forming the body of the clause, and the break statement all together on the
same line. This style is illustrated in the cardrank.c program in Figure 4-4, which shows an
example of a switch statement that might prove useful in writing a program to play a card
game. In this game, the cards within each suit are represented by the numbers 1 to 13.
Displaying the number of the card is fine for the cards between 2 and 10, but this style of
output is not particularly satisfying for the values 1, 11, 12, and 13, which should properly
be represented using the names ace, Jack, Queen, and King. The cardrank.c program uses the
switch statement to display the correct symbol for each card
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cardrank.ccardrank.ccardrank.c

cardrank.c

main()
{

int n;

printf(“What is the rank of the card (1-13)? “);
n = GetInteger();
switch (n) {

case 1: printf( “Ace\n”); break;
case 11: printf(“Jack\n”); break;
case 12: printf(“Queen\n”); break;
case 13: printf(“King\n”); break;

}
}

The fact that the switch statement can only e used to choose between cases identified by
an integer (or integer-like) constant does place some restrictions on its use. You will
encounter situations in which you want to choose between several cases based on the value
of a string variable or in which the values you want to use as case indicator are not
constants. Since the switch statement cannot be used in such cases, you will instead need to
rely on cascading if statements. In situations that allow the use of the switch statement, using
it can make your program both more readable and more efficient.
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The simplest iterative construct is the while statement, which repeatedly executes a
simple statement or block until the conditional expression becomes FALSE. The paradigm
for the while statement is shown in the syntax box. As with the if statement, the C compiler
allows you to eliminate the curly braces surrounding the body if the body consists of a



single statement. For the while loops used in this text, the body is always enclosed in braces
to improve readability.

The entire statement, including both the while

control line itself and the statements enclosed within
the body, constitutes a whilewhilewhile

while

looplooploop

loop

. When the
program executes a while statement, it first evaluates
the conditional expression to see if it is TRUE or
FALSE. If it is FALSE, the loop terminatesterminatesterminates

terminates

and the
program continues with the next statement after the
entire loop. If the condition is TRUE, the entire body
is executed, after which the program goes back to
the top to check the condition again. A single pass
through the statements in the body constitutes a

cyclecyclecycle

cycle

of the loop.
There are two important principles to observe about the operation of a while loop:

1. The conditional test is performed before every cycle of the loop, including the
first. If the test is FALSE initially, the body of the loop is not executed at all.

2. The conditional test is performed only at the beginning of a loop cycle. If that
condition happens to become FALSE at some point during the loop, the program
doesn’t notice that fact until a complete cycle has been executed. At that point,
that program evaluates that test condition again. If it is still FALSE, that loop
terminates.
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while looplooploop

loop

You have already seen examples of the while statement, beginning with the section on
“Sentinel-based loops” in Chapter 3. That particular style of using while was designed for
sentinel detection and represents a somewhat special case. To illustrate the use of the while
statement in its more traditional form, it is useful to pose a problem for which the
conditional test falls most naturally at the beginning of the loop.

Suppose that you have been asked to write a program that adds up the digits in a
positive integer. A sample run for this program might then be

where the result of 19 comes form adding 1 + 7 + 2 + 9. How would you go about writing
such a program?

You have already seen several programs that keep a running total, and the same basic
strategy applies here. You need to declare a variable for the sum, initialize it to 0, go
through a loop adding in digits, and finally display the sum at the end. That much of the
structure, with the rest of the problem left written in English, is shown below:

This program sums the digits in an integer.
Enter a positive integer: 172917291729

1729





The sum of the digits is 19

SYNTAXSYNTAXSYNTAX
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whilewhilewhile

while

statementsstatementsstatements

statements

while (condition) {
statements

}

Where:
condition is the conditional test used to
determine whether the loop should
continues for another cycle

statements are the statements to be repeated



main()
{

int n, dsum;

printf(“This program sums the digits in an integer.\n”);
pirntf(“Enter a positive integer: “ );
n = GetInteger();
dsum = 0;
For each digit in the number, add that digit to dsum.
Printf(“The sum of the digits is %d\n”, dsum);

}

The sentence

For each digit in the number, ad that digit to dsum...

.

clearly specifies a loop structure of some sort, since there is an operation that needs to be
repeated for each digit in the number. If it were easy to determine how many digits a
number contained, you might choose to use a for loop and count up to the number of digits.
Unfortunately, finding out how many digits there are in an integer is just as hard as adding
them up in the first place. The best way to write this program is just as to keep adding in
digits until you discover that you have added the last one. Loops that run until some
condition occurs are most often coded using the while statement.

The essence of this problem lies in determining how to break up a number into its
component digits. The key insight is that the arithmetic operators / and % are sufficient to
accomplish the task. The last digit of an integer n is simply the remainder left over when n
is divided by 10, which is the result of the expression n % 10. The rest of the number—the
integer that consists of all digits except for the last one—is given by n /10. For example, if n
has the value 1729, the / and % operators can be used to break that number into two parts,
172 and 9, as shown in the following diagram:

Thus, in order to add up the digits in the number, all you need to do is add the value n % 10

to the variable dsum on each cycle of the loop and then divide the number n by 10. The next
cycle will add in the second-to-last digit form the original number, and so on, until the
entire number has been processed in this way.

But how do you know when to stop? Eventually, as you divide n by 10 in each cycle,
you will reach the point at which n becomes 0. At that point, you’ve processed all the digits
in the number and can exit from the loop. In other words, as along as the value of n is
greater than 0, you could keep going. Thus, the while loop needed for the problem is

while (n > 0) {
dsum += n %10;
n /= 10;

}

n

1729

9172
n % 10n / 10
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Think carefully about the
conditional expression you
use in a while loop so that
you can be sure the loop
will eventually exit. A loop
that never finishes is called
an inf inite loop..

The entire digitsum.c program is shown in Figure 4-5.
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digitsum.cdigitsum.cdigitsum.c

digitsum.c

main()
{

int n, dsum;

pirntf(“This program sums the digits in an integer.\n”);
printf(“Enter a positive integer: “);
n = GetInteger();
dsum = 0;
while (n > 0) {

dsum+= n % f10;
n /= 10;

}
printf(“The sum of the digits is %d\n”, dsum);

}

InfiniteInfiniteInfinite

Infinite

loopsloopsloops

loops

When you use a while loop in a program, it is important to make sure that the
condition used to control the loop will eventually become FALSE, so that the loop can exit. If
the condition in the while control line always evaluates to TRUE, the computer will keep
executing cycle after cycle without stopping. This situation is called an infiniteinfiniteinfinite

infinite

looplooploop

loop

.
As an example, suppose that you had carelessly written the while loop I the digitsum.c

program with a >= operator in the control line instead of the correct > operator, as shown
below:

while (n >= 0) {
dsum += n % 10; This loop will never stop running ...

.

n /= 10;
}

The loop no longer stops when n is reduced to 0, as it does in the correctly coded example.
Instead, the computer keeps executing the body over and over and over again, with n equal
to 0 every time.

To stop an infinite loop, you must type a special command sequence on the keyboard
to interrupt the program and forcibly cause it to quit. This command sequence differs from
machine to machine, and you should be sure to learn what command to use on your own
computer.
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loop-and-a-half

problemproblemproblem

problem

The while loop is designed for situations in which there is some test condition that can
be applied at the beginning of a repeated operation, before any of the statements in the body
of the loop are executed. If the problem you are trying to solve fits this structure, the while

loop is the perfect tool. Unfortunately, many programming problems do not fit easily into
the standard while loop paradigm. Instead of allowing a convenient test at the beginning of
the operation, some problems are structured in such a way that the test you would like to



write to determine if the loop is complete falls most naturally somewhere in the middle of
the loop.

Consider for example, the problem of reading input data until a sentinel value appears,
which was discussed in the section on “Sentinel-based loops” in Chapter 3. When
expressed in English, the structure of the sentinel-based loop consists of repeating the
following steps:

1. Read in a value.
2. If the value is equal to the sentinel, exit form the loop.
3. Perform whatever processing is required for that value.

Unfortunately, there is no test you can perform at the very beginning of the loop to
determine whether the loop is finished. The termination condition for the loop is reached
when the input value is equal to the sentinel; in order to check this condition, the program
must have first read in some value. If the program has not yet read in a value, the
termination condition doesn’t make sense. Before the program can make any meaningful
test, it must have executed the part of the loop that reads in the input value. When a loop
contains some operations that must be performed before testing for completion, it
represents an instance of what programmers call the loop-and-halfloop-and-halfloop-and-half

loop-and-half

problemproblemproblem

problem

.
One way to solve the loop-and-a-half problem in C is to use the break statement,

which, in addition to its use in the switch statement, has the effect of immediately
terminating the innermost enclosing loop. By using break , it is possible to code the loop
structure for the sentinel problem in a form that follows the natural structure of the problem:

while (TRUE)) {
prompt user and read in a value
If (((

(

value == sentinel)))

)

break ;;;

;

process the data value
}

The initial line

while (TRUE)

needs some explanation. The while loop is defined so that it continues until the condition in
parentheses becomes FALSE. The symbol TRUE is a constant, so it can never become FALSE.
Thus, as far as the while statement itself is concerned, the loop will never terminate. The only
way this program can exit from the loop is by executing the break statement inside it.

It is possible to code this sort of loop without using the while (TRUE) control line or the
break statement. To do so, however, you must change the order of operations within the loop
and request input data in two places: one before the loop begins and then again inside the
loop body.When structured in this way, the paradigm for the sentinel-based loop is

prompt user and read in the first value
while (value != sentinel) {

process the data value
prompt user and read in a new value

}



Figure 4-6 shows how this paradigm can be used to implement the addlis t.c program
presented in Chapter 3 without using a break statement.
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programprogramprogram

program
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from

addlist.caddlist.caddlist.c

addlist.c

main()
{

int value, total;

printf(“This program adds a list of numbers.\n”);
pirntf(“Signal end of list with a 0.\n”);
total = 0;
printf(“ ? “ );
value = GetInteger();
while (value != 0) {

total += value;
pirntf(“ ? “ );
value = GetInteger();

}
printf(“The total is %d\n”, total);

}

Unfortunately, there are two drawbacks to using this strategy. First, the order of
operations in the loop is not what most people would expect. In any English explanation of
the solution strategy, the first step is to get a number and the second is to add it to the total.
The while loop paradigm used in Figure 4-6 reverses the order of the statements within the
loop and makes the program more difficult to follow. The second problem is that this
paradigm requires two copies of the statements that read in a number. Duplication of code
presents a serious maintenance problem because subsequent edits to one set of statements
might not be made to the other. Empirical studies have shown that students who learn to
solve the loop-and-a-half problem using the break statement form are more likely to write
correct programs than those whodon’t.1

Despite the disadvantages, some instructors disklike using break to solve the loop-and-
a-half problem. The principal reason for doing so is that it is easy to overuse the break

statement in C. One way to guard against the overuse of the break statement is disallow its
use entirely. To me, such an approach seems overly draconian. In this text, I use the break
statement within a while loop only to solve the loop-and-a-half problem and not in other,
more complex situations where its use is likely to obscure the program’s structure.

1-71-71-7

1-7

TheTheThe

The

for statementstatementstatement

statement

One of the most important control statements in C is the for statement, which is most
often used in situation s in which you want to repeat an operation a particular number of
times. The general form of the for statement is shown in the syntax box to the right.

The operation of the for loop is determined by the three italicize expressions on the for
control line: init, test, and step. The init expression indicates how the for loop should be
initialized and usually sets the initial value of the index variable. For example, if you write

1 The best known study corroborating this finding is “Cognitive strategies and a looping constructs:
and empirical study” by Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich (Communications of the ACM,
November 1983).



for (i = 0;…

the loop will begin by setting the index variable i to 0. If the loop begins

for (I = -7; …

the variable i will start as –7, and so on.
The test expression is a conditional test written

exactly like the test in a while statement. As long as the
test expression is TRUE, the loop continues. Thus, in the
loop that has served as our canonical example up to now

for (i = 0; i < n; I++)

the loop begins with i equal to 0 and continues as long as i
is less than n , which turns out to represent a total of n

cycles, with i taking on the values 0, 1, 2, and so for the ,
up to the final value n-1. The loop

for (i = 1; i <= n; i++)

begins with i equal to 1 and continues as long as i is less than or equal to n. This loop also
runs for n cycles, with i taking on the values 1, 2, and so forth, up to n.

The step expression indicates how the value of the index variable changes from cycle
to cycle. The most common form of step specification is to increment the index variable
using the ++ operator used in the for loops throughout Chapter 3, but its is not the only
possibility. For example, one can count backward by using the -- operator or count by twos
by using += 2 instead of ++.

As an illustration of counting in the reverse direction, the program liftoff.c in Figure 4-7
counts down form 10 to 0.
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liftoff.cliftoff.cliftoff.c

liftoff.c

/*
* File: liftoff.c
* --------------
* simulates a countdown for a rocket launch.
*/

#include <stdio.h>
#include “genlib.h ”

/*
* Coustant: StartingCoun t
* -----------------------------
* Change this constant to use a differen t starting value
* for the countdown.
*/

#define StartingCoun t 10

/* Main program */

main()
{
int t;

for (t = StartingCoun t; t >= 0; t--) {
printf(“%2d\n” , t);
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for statementsstatementsstatements

statements

for (init; test ; step ) {
statements

}

Where:
init is an expression evaluated to initialize the loop
test is a conditional test used to determine whether
the loop should continue, just as in the while

statement cycle
statements are the statements to be repeated



}
printf(“Liftoff!\n”);

}

When liftoff.c is run, it generates the following sample run:

The liftoff.c program demonstrates that any variable can be used as an index variable. In
this case, the variable is called t, presumably because that is the traditional variable for a
rocket countdown, as in “T minus 10 seconds and counting.” In any case, the index variable
must be declared at the beginning of the program just like any other variable.

The expressions init, test, and step are each optional, but the semicolons must appear.
If init is missing, no initialization is performed. If test is missing, it is assumed to be TRUE.
If step is missing, no action occurs between loop cycles. Thus the control line

for (; ; )

is identical in operation to

while (TRUE)

NestedNestedNested

Nested

for loopsloopsloops

loops

As your programs become more complicated, you will often need to nest one for

statement inside another. In this case, the inner for loop is then executed through its entire
set of cycles for each iteration of the outer for loop. Each for loop must have its own index
variable so that the variable so that the variables do not interfere with one another.

As an example of nested for loops, consider the timestab.c program in Figure 4-8.
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timestab.ctimestab.ctimestab.c

timestab.c

/*
* File: timestab.c
* -------------------
* Generates a multiplica tion table where each axis
* runs form LowerLimit to UpperLimi t.
*/

#include <stdio.h>
#include “genlib.h ”

/*
* Constants
* ------------

10
9
8
7
6
5
4
3
2
1
0
Liftoff!



* LowerLimi t – Starting value for the table
* UpperLimi t – Final value for the table
*/

#define LowerLimi t 1
#define UpperLimi t 10

/* Main Program */

mainn()
{

int i, j;

for (i = LowerLimi t; I<= UpperLimi t; i++) {
fro (j = LowerLimi t; j <= UpperLimi t; j++) {

printf(“ %4d”, i * j);
}
printf(“\n”);

}
}

The timestab.c program displays the following 10×10 multiplication table:

The outer for loop, which uses i as its index variable, runs through each row of the table. For
each row, the inner for loop runs through each column in that row, displaying the individual
entry, which is the value of i * j (the row number times the column number). Note that the
printf(“\n”) call that advances the cursor to the next line appears in the outer loop, because this
statement should only be executed once at the end of each row, and not after every value in
the row.

TheTheThe

The

relationshiprelationshiprelationship

relationship

betweenbetweenbetween

between

for andandand

and

while

As it happens, the for statement

for (init; test; step ) {
statements;

}

is identical in operation to the while statement

init;
while (test ) {

statements;
step ;

}

Even though the for statement can easily be rewritten using while, there are considerable

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 21 24 32 36 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 20 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 100
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Be very careful when
tes ting floa ting-poin t
numbers for equality.
Because floa ting-poin t
numbers are only
approximations, they migh t
not behave in the same
way as real numbers in
mathema tics. In general, it
is best to avoid using a
floa ting point variable as a
for loop index.

advantages to using the for statement when it makes sense to do so. With a for statement, all
the information you need to understand exactly which cycles will be executed is contained
in the control line of the statement. For example, whenever you see the statement

for (i = 0; i< 10; i++) {
... body ...

}

in a program, you know that the statements in the body of the loop will be executed 10
times, once for each of the values of i between 0 and 9. In the equivalent while loop form

i = 0;
while (i< 10) {

... body ...
i++;

}

the increment operation at the bottom of the loop can easily get lost if the body is large.
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Because the init, test, and step components of the for loop can be arbitrary expressions,
there is no obvious reason why the loop index in a for loop has to be an integer. The fact that
it is possible to count from 0 to 10 by twos using the for loop

for (i = 0; i <= 10; i += 2)...

suggests that it might also be possible to count from 1.0 to 2.9 in increments of 0.1 by
declaring x as a double and then using

for (x = 1.; x <= 2.0; x += 0.1) ... This test may fail.

On some machines, this statement has the desired effect. On others, it might fail to include
the last value. For example, when the for loop

for (x = 1.0; x<= 2.0; x += 0.1) {
printf(“%.1f\n, x); This loop might not include the value 2.0

}

is run on the computer system I used t oproduce this text, it generates the following output:

Notice that the value 2.0, which you would expect to see form looking at the loop control
line, is missing.

The problem here is that floating-point numbers are not exact. The value 0.1 is very

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9



close to the mathematical fraction 1/10 but is almost certainly not precisely equal to it. As
0.1 is added to the index variable x, the inaccuracy can accumulate to the point that, when x
is tested against 2.0 to determine whether the loop is finished, its value may be
2.000000001 or something similar, which is not less than or equal 2.0. The condition in the
for loop is therefore not satisfied, and the loop terminates after running for what seems to be
one too few cycles. The best way to fix this problem is to restrict yourself to using integers
as index variables in for loops. Because integers are exact, the problem never arises.

If you really want to count from 1.0 to 2.0 by increments of 0.1, you could count form
10 to 20 and then divide the index by 10:

for (i = 10 ; i <= 20; i++) {
x = i / 10.0;
printf(“%.1f\n” , x);

}

This for loop correctly produces the 11 values in the sequence 1.0, 1.1, 1.2, ... , 2.0.
The same warning about comparing floating-point numbers for equality applies in

many other circumstances besides the for loop. Numbers that seem as if they should be
exactly equal might not be, given the limitations on the accuracy of floating-point numbers
stored in a particular machine.

SUMMARYSUMMARYSUMMARY

SUMMARY

In Chapter 3, you looked at the process of programming form a holistic perspective
that emphasized problem solving. Along the way, you learned about several control
statements in an informal way. In this chapter, you were able to investigate how those
statements work in more detail. You were also introduced to a new type of data called
Boolean data. Although this data type contains only two values—TRUE and FALSE—being
able to use Boolean data effectively is extremely important to successful programming and
is sell worth a little extra practice.

This chapter also introduced several new operators, and at this point it is helpful to
review the precedence relationships for all the operators you have seen so far. That
information is summarized in Table 4-1 the operators are listed from highest to lowest
precedence.

The important points introduced in this chapter include:

OperatorOperatorOperator

Operator

AssociativetyAssociativetyAssociativety

Associativety

TABLE 4-1
Precedence table
for operators
used through
Chapter 4

unary - ++ -- ! (type cast)
* / %
+ -
< <= > >=
== !=
&&
||
?:
= op=

right-to-left
left-to-righ t
left-to-righ t
left-to-righ t
left-to-righ t
left-to-righ t
left-to-righ t
left-to-righ t
right-to-left
right-to-left



 Simple statements consist of an expression followed by a semicolon.
 The = used to specify assignment is an operator in C. Assignments are therefore legal

expressions, which makes it possible to write embedded and multiple assignments.
 Individual statements can be collected into compound statements, more commonly

called blocks.
 Control statements fall into two classes: conditional and iterative.
 The genlib library defines a data type called bool that is used to represent Boolean data.

The type bool has only two values: TRUE and FALSE.
 You can generate Boolean values using the relational operator (<, <=, >, >=, ==, and !=)

and combine them using the logical operators (&&, ||, and !).
 The logical operators && and || are evaluated in left-to-right order in such a way that the

evaluation stops as soon as the program can determine the result. This behavior is
called short-circuit evaluation.

 The if statement is used to express conditional execution when a section of code
should be executed only in certain cases or when the program needs to choose
between twoalternate paths.

 The switch statement is used to express conditional execution when a problem has the
following structure: in case 1, do this; in case 2; do that; and so forth.

 The while statement specifies repetition that occurs as long as some condition is met.
 The for statement specifies repetition in which some action is needed on each cycle in

order to update the value of an index variable.

REVIEWREVIEWREVIEW

REVIEW
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QUESTIONS

1. Is the construction

17;

a legal statement in C? Is it useful?
2. Describe the effect of the following statement, assuming that i, j, and k are declared as

integer variables:

i = (j +4) * (k = 16);

3. What single statement would you write to set both x and y (which you may assume are
declared to be type double) to 1.0?

4. What is meant by the term associativity? What is unusual about the associativity of
assignment with respect to that of the other operators you have seen?

5. What is a block? What important fact about blocks is conveyed by the term compound
statement, which is another name for the same concept?

6. What are the twoclasses of control statements?
7. What does it mean to say that twocontrol statements are nested?
8. What are the twovalues of the data type bool?
9. What happens when a programmer tries to use the mathematical symbol for equality in

a conditional expression?



10. What restriction does C place on the types of values that can be compared using the
relational operators?

11. How would you write a Boolean expression to test whether the value of the integer
variable n was in the range 0 to 9, inclusive?

12. Describe in English what the following conditional expression means:

(x != 4) || (x != 17)

for what values of x is this condition TRUE?
13. What does the term short-circuit evaluation mean?
14. Assuming that myFlag is declared as a Boolean variable, what is the problem with

writing the following if statement?

if (myFlag == TURE) ...

15. What are the four different formats of the if statement used in this text?
16. Describe in English the general operation of the switch statement.
17. Suppose the body of a while loop contains a statement that, when executed, causes the

condition for that while loop to become FALSE. Does the loop terminate immediately at
that point or does it complete the current cycle?

18. Why is it important for the digitsum.c program in Figure 4-5 to specify that the integer is
positive?

19. What is the loop-and-a-half problem? What two strategies are presented in the text for
solving it?

20. What is the purpose of each of the three expressions that appear in the control line of a
for statement?

21. What for loop control line would you use in each of the following situations:
a) Counting form 1 to 100.
b) Counting by sevens starting at 0 until the number has more than twodigits.
c) Counting backward by twos form 100 to 0.

22. Why is it best to avoid using a floating-point variable as the index variable in a for loop?

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. As a way to pass the time on long bus trips, young people growing up in the United
States have been known to sing the following rather repetitive song:

99 bottles of beer on the wall.
99 bottles of beer.
You take one down, pass it around.
98 bottles of beer on the wall.

98 bottole of beer on the wall....

Any way, you get the idea. Write a C program to generate the lyrics to this song.
(Since you probably never actually finished singing this song, you should decide how
you want it to end.) In testing your program, it would make sense to use some constant



other than 99 as the initial number of bottles.

2. While we’re on the subject of silly songs, another old standby is “This old Man,” for
which the first verse is

This old man, he played 1.
He played knick-knack on my thumb.
With a knick-knack, paddy-whack,
Give your dog a bone.
This old man came rolling home.

Each subsequent verse is the same, except for the number and the rhyming word at the
end of the second line, which gets replaced as follows:

2—shoe 5—hive 8—pate
3—knee 6—sticks 9—spine
4—door 7—heaven 10—shin

Write a program to display all 10 verses of this song.

3. Write a program that reads in a positive integer N and then calculates and displays the
sum of the first N odd integers. For example, if N is 4, your program should display
the value 16, which is 1 + 3 +7.

4. Why is everything either at sixes or at sevens?
— Gilbert and Sullivan, H.M.S. Pinafore, 1878

Write a program that displays the integers between 1 and 100 that are divisible by
either 6 or 7.

5. Repeat exercise 4, but this time have your program display only those numbers that are
divisible by 6 or 7 but not both.

6. Rewrite the liftoff.c program given in Figure 4-7 so that it uses a while loop instead of a
for loop.

7. Rewrite the digitsum.c program given in Figure 4-5 so that instead of adding the digits in
the number, it generates the number that has the same digits in the reverse order, as

illustrated by this sample run:

8. In mathematics, there is a famous sequence of numbers called the Fibonacci sequence
after the thirteenth-century Italian mathematician Leonardo Fibonacci. The first two
terms in this sequence are 0 and 1, and every subsequent term is the sum of the
preceding two. Thus the first several numbers in the Fibonacci sequence are as
follows:
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This program reverses the digits in an inteer.
Enter a positive integer: 172917291729
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The reversed number is 9271
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Write a program to display the values in this sequence from F0 through F15. Make sure
the value line up as shown in the following sample run:

9. Modify the program in the preceding exercise so that instead of specifying the index of
the final term, the program displays those terms in the Fibonacci sequence that are les
than 10,000.

10. Write a program to display the following diagram on the screen. The number of rows
in the figure should be a #define constant, which has the value 8 for this sample run:

11. Modify the program you wrote n exercise 10 so that it generates a different triangle. In
this triangle, each line contains two more points than the previous line does, and the
point of the triangle faces upward, as follows:

This program lists the Fibonacci sequence.
F(1) = 0
F(2) = 1
F(2) = 1
F(3) = 2
F(4) = 3
F(5) = 5
F(6) = 8
F(7) = 13
F(8) = 21
F(9) = 34
F(10) = 55
F(11) = 89
F(12) = 144
F(13) = 233
F(14) = 377
F(15) = 610

*
**
***
****
*****
******
*******
********

*
***
*****
*******
*********
***********
*************
***************
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate the importance of functions as a tool for simplifying program structure.
 To understand the concept of calling a function and the reason for supplying

argument as part of the call.
 To understand function prototypes and how to write them.
 To be able to implement simple functions containing statements used in the

previous chapters.
 To be able to use the return statement to specify the result of a function.
 To understand the concept of predicate functions and how to use them effectively. To

understand the relationship between formal parameters in a function and arguments in
its caller.

 To appreciate how the computer used stack frames to keep track of local variables and
return addresses for each function call.

 To understand the meaning of the term procedure.




To be able to apply stepwise refinement as a problem-solving strategy.

TTT

T

his chapter examines in more detail the concept of a function, which was first
introduced in Chapter 2. A function is a set of statement s that have been collected together
and given a name. By allowing the programmer to signify the entire set of operation with a
single name, programs become much shorter and much simpler. Without functions, simple
programs would become unmanageable as they increased in size and sophistication.

In order to appreciate how functions reduce the conceptual complexity of programs,
you need to understand the concept in two ways. From the reductionistic perspective, you
need to understand how functions work in an operational sense so you can predict their
behavior. At the same time, you must be able to take a step backward and look at functions
holistically, so that you can also understand why they are important and how to use them
effectively.
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functions

You have been working with functions in this text ever since the very first
program—the “Hello world” program from Chapter 2. That program contained just one
statement, which was a call to the printf function:

printf( “Hello, world.\n”);

A function, such as printf, represents a set of programming steps used to perform a useful
operation. In this respect, a function is similar to a complete program. Indeed, the
programs you have seen up to now have been written as a function, which happens to have
the name main .

The difference in concept between a function and a program lies primarily in who or
what makes use of it. When, as a user, you sit down in front of your computer and start up
an application, you are running a program that performs some action on your behalf. Thus,
programs are invoked by and serve the needs of an external user. Functions, on the other
hand, provide a mechanism by which a program can invoke a set of previously defined
operations on its behalf. The operation of a function is thus entirely internal to the program
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PITFALLSPITFALLSPITFALLS

PITFALLS

Be careful to differentiate
in your mind the ideas of
input and output in the
program domain and the
related concepts of
arguments and results in
the func tion domain. Input
and output allow
communica tion between a
program and its user.
Arguments and results
allow communica tion
between a func tion and its
caller.

domain.
As a user of the “Hello world” program, you have no idea that the program calls the

printf function as part of its operation; you know only that the words “Hello world” appear
on the screen. The programmer who wrote the hello.c program, however, recognized that
printf provides a useful service that makes it possible to display messages on the screen with
very little difficulty. Most of the hard work was done by the system programmer who wrote
the program steps necessary to implement the printf function itself . Since that work has
already been done, other programmers like yourself can use the printf function without
having to write all the steps that make it work. You don’t even have to know what those
steps are.

In order to consider functions more concretely, it helps to review some of the basic
terminology for functions that was introduced in Chapter 2. First of all, a functionfunctionfunction

function

consists
of a set of statements that have been collected together and given a name. The act of
executing the set of statements associated with a function is known as callingcallingcalling

calling

that function.
To indicate a function call in C, you write the name of the function, followed by a list of
expressions enclosed in parentheses. These expressions are called argumentsargumentsarguments

arguments

and allow
the calling program to pass information to the function. In hello.c , the printf function knows
what to display because the main program provided the necessary data as part of the
function call. If a function requires no information form its caller, it need not have nay
arguments, but an empty set of parentheses must still appear in the function call.

Once called, the function takes the data supplied as arguments, does its work, and then
returns to the program step from which the call was make. Remembering what the calling
program was doing and being able to get back precisely to that point is one of the defining
characteristics of the function-calling mechanism. The operation of going back to the
calling program is called returningreturningreturning

returning

from the function. As part of the return operation,
functions can also send results back to the calling program, as illustrated by the function
GetInteger in the statement

n1 = GetInteger(();

After the GetInteger function per forms it s task of reading in an integer form the user, it
passes that integer back to the calling program as the value of the GetInteger() call. This
operation is called returningreturningreturning

returning

aaa

a

valuevaluevalue

value

.
In a sense, arguments provide input to functions and the return values provide output

back to their callers. Despite the conceptual similarity, it is critically important to make a
sharp distinction between input operations, such as GetInteger , and the use of arguments in
the function domain. A function like GetInteger provides a mechanism for getting input from
the user; when GetInteger needs an input value, whoever is sitting in from of the terminal
must physically enter that value on the keyboard. Arguments to a function, on the other
hand, provide a means for a function to receive input form its caller, which is another part
of the program and not the human user. Data passed in the form of arguments may have
been calculated as part of the program operation. You should also be careful to differentiate
the use of output operations, such as printf, form the technique of returning a result. When
you use printf, the output appears on the terminal screen. When a function returns a result,
that information goes back to the calling program, which is free to use it in whatever way
makes sense for the program. New programmers have a tendency to use input/output
operations within functions when the logic of the situation calls for using arguments and
results.

To understand how functions fit into the framework of C, you need to recognize that a
function call is imply an expression and can be used in any context in which an expression
can appear. Moreover, the arguments to a function are also expressions, which can
themselves contain function calls or any other operations that would be legal in an
expression.

To illustrate that functions and their arguments are expressions, it is useful to introduce
several standard functions form the math system library. This library includes many of the
standard mathematical functions you learned in high-school algebra and trigonometry. For
example, the math library contains the function sqrt for taking the square root of its
argument, ass well as sin and cos for trigonometric sines and cosines. Each of these
functions takes a double as an argument and returns a result, also of type double. You can use



these functions in simple statements, such as
root3 = sqrt (3.0);

or in more complicated ones. For example, you can compute the distance form the origin to
the point (x,y) using the standard distance formula for points in a plane:

distance =
22 yx 

In C, this formula corresponds to the statement
distance = sqrt (x *x + y * y);

Similarly, you can compute a tangent using the trigonometric identity

tanθ =



cos
sin

which can be written in C as
tangen t = sin(theta) / cos(theta);

A list of the important functions available in the math library is included in Appendix A.
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In ANSI C, all functions must be declared before they are used. Function declarations
are analogous to variable declarations, which you have already seen in the section on
“Variables” in Chapter 2. A variable declaration tells the compiler the name of a variable
and the type of value it contains. A function declaration works similarly, but specifies more
details. In C, a function declaration defines

 the name of the function
 the type of each argument to the function and , in most cases , a descriptive name

for the argument
 the type of value the function returns

A function declaration in C is called a functionfunctionfunction

function

prototypeprototypeprototype

prototype

and has the following form:

result-type name (argument-specifiers);

The result-type field indicates the type of the
function result, the name field indicates the
field indicates the function name, and the
argument-specifiers field indicates the names
and types of the arguments to be passed to this
function. The format for this field is simply a
list, separated by commas, of the type of each
argument. As discussed later in this section,
each type name in the argument specific ations
may be followed by a variable name that
provides additional information to human
readers.

For example, the math library contains the
following prototype for the sqrt function:

double sqrt(double);

The prototype tells you that the function sqrt takes one argument, which is a double , and
returns a double as well.

Note that the prototype specifies only the types of the values that pass back and forth
between the caller and the function itself . The prototype says nothing about the actual
statements that define the function or even about what the function does. To use the sqrt
function, you need to understand that the result is the square root of its argument. The c
compiler, however, does not need this information. All it needs to know is that sqrt takes a

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for

functionfunctionfunction

function

prototypesprototypesprototypes

prototypes

result-type name(argument-specifiers);

Where:
result-type is the type of value the function returns.
name is the function name.
argument-specifiers is a list, separated by commas,

of individual specifications for the argument
types. An argument specification consists of a
type, optionally followed by a descriptive
variable name.



double and returns a double . The precise effect of the function is communicated to
programmers by the function name and the associated documentation.

Another way to provide useful information to programmers is to include, along with
each of the argument specifications, a descriptive name that identif ies the nature of that
particular argument. This name does not affect the program in any substantive way,
although it provides important information to the programmer who wants to use that
function. For example, sin is declared in math.h as

double sin(double);

which specifies only the type of the argument. Programmers who need to use this function
might prefer to see the prototype written as

double sin(double angleInR adians);

A prototype written in this form provides useful new information: that sin takes one
argument of type double , representing an angle measured in radians. In your own functions,
you should always include descriptive names for the expected arguments and use these
names when you talk about the operation of that function in the associated comments.

If a function does not take arguments, C uses the special keyword void as the argument
specification. For example, the function GetInteger from the simpio library takes no arguments
from its caller and returns a value of type int. The prototype for this function is therefore

int GetInteger(void);
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The functions introduced so far in this chapter have all been part of some
programming library. Library functions are interesting in their own right, but they do not
tell the whole story of functions. As a programmer, you will often be content to use library
functions without knowing any of the internal details. But you will also want to use
functions that are not part of any library. In those cases, you have no choice but to define
the functions yourself.

For example, suppose that you have been assigned the task of writing a program that
converts temperatures form the Celsius scale used in most countries to the Fahrenheit scale
used in the United States. You will probably want to define a simple conversion function
that you can then use in other parts of the program. The computation is relatively easy,
because the process of converting one temperature scale to another is simple a matter of
applying the formula

F= C +32
5
9

Adding a new function to a C program consists of two distinct steps:

1. You need to specify the function prototype, which is usually done near the top of the
entire program, after the #include lines.

2. At some later point in the program, you need to provide the implementation of that
function, which specifies the actual steps involved.

The prototype is short and indicates only the argument and result types. The
implementation is longer and provides the details.

In writing a function, it is usually best to start with the prototype. In this example, you
are writing a function that converts from Celsius to Fahrenheit. You may choose any name
for that function, using the same rules as those given for naming variable s in Chapter 2. The
name should make it easy for anyone reading the program to determine what the function
does. For example, the following name is not easily open to misinterpretation:

double CelsiusToFahrenhei t (double c);

The implementation for a function is written by starting with its prototype, taking away the



semicolon at the end to the line, and then adding the body of the function. A functionfunctionfunction

function

bodybodybody

body

is always a block and therefore consists of statements enclosed in curly braces. The
statement in the block may be preceded with variable declarations such as the ones used in
the function main for most of the programs presented so far.

TheTheThe
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statement

If a function returns a result, the statements in the function body must include at least
one returnreturnreturn

return

statementstatementstatement

statement

, which specifies the value to be returned. The paradigmatic form for
the return statement is shown in the syntax box to the left.

In most cases, the return statement includes a parenthesized expression that indicates
the value of the result1. However, it can also be sued for
functions that have no results. Such functions are
discussed in the section on “Procedures” later in this
chapter. When it is used in the

return (expression );

form, the return statement causes the function to return
the indicated value immediately. As such, the return
statement encompasses both of the following English
ideas: “I’m done now” and “Here is the answer.” In

some programming languages, such as Pascal and Fortran, indicating that the execution of
a function is complete and specifying its result are separate operations. If you have had
experience with such languages, it may take some time to get used to the return statement in
C.

The return statement completes the list of tools you need to write the implementation of
CelsiusToFahrenhei t:

double celsiusToFahrenhei t (double c)
{

return (9.0 / 5.0 * c + 32);
}

The function calculates the value of the appropriate expression and returns the result as the
value of the function.
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By itself, the function CelsisusToFahrenhei t does not constitute a complete program.
Every complete program also has a function named main, which is called when the
program starts up. To test your CelsiusToFahrenhei t function, you might want to implement a
version of main that used CelsiusToFahrenhei t to generate a temperature conversion table. The
complete program to do so is shown in Figure 5-1.

The main program cons8istes of the for loop that you used in Chapter 4 to generate
tables. Each line in the temperature conversion table is generated by the statement

printf(“%3d %dg\n”, c, CelsiusToFahrenhei t(c));

This statement calls the CelsiusToFahrenhei t function to compute the Fahrenheit equivalent of
the Celsius temperature c2. That value is then passed as an argument to printf, which goes on
to display the value.

1 The parentheses in the paradigm for the return statement are optional, but C programmers often use
them to improve readability.

2 In the for loop, the index variable c is declared to be an int , even though CelsiusToFahrenhei t is
defined to take a double. As noted in the section on “Using for with floating-point data” in Chapter 4,
integers are exact, and the program is therefore certain to run the correct number of times. When
CelsiusToFahrenhei t is called with the argument c, and automatic conversion is performed to change the
value to type double.
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return (expressionexpressionexpression

expression

);

Where:
expression is the value to be returned.

If the function has no result, the syntax is:
return;



Note that the program in Figure 5-1 has many more comments than most of the
program presented so far. Each function should have its own descriptive comment so that
readers of the program can understand each function as a unit. In my experience, one of the
most helpful comments you can write for a function is one that gives an example of how the
function is used. Hereafter in this text, the comments for a function include a “Usage” line
that provides such a example.
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c2ftable.c

/*
* file: c2ftable.c
* -----------------
* This program illustrates the use of functions by gener ating
* a table of Celsius to Fahrenhei t conversions.
*/

#include <stdio.h>
#include “genlib.h ”

/*
* Constants
* ------------
* LowerLimi t – Starting value for temperature table
* UpperLimi t – Final value for temperature table
* StepSize -- Step size between table entries
*/

#define LowerLimi t 0
#define UpperLimi t 100
#define StepSize 5

/* Function prototypes */

double CelsiusToFahrenhei t (double c);

/* Main program */

main()
{

int;

printf(“Celsius to Fahrenhei t table .\n”);
printf(“ C F\n”);

for (c = LowerLimi t; c <= UpperLimi t; c += Stepsize) {
printf(“%3d %3g\n, c, CelsiusToFahrenhei t(c));

}
}

/*
* Function: CelsiusToFahrenhei t
* Usage: f = CelsiusToFahrenhei t(c);
* ------------------------------------------
* This function returns the Fahrenhei t equivalen t of the Celsius
* temperature c.
*/

double CelsiusToFahrenhei t(double c)
{

return (9.0/5.0 * c + 32);
}
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Functions are not usually as simple as CelsiusToFahrenhei t is. In my cases, calculating a
function requires making some tests or writing a loop. Such details add to the complexity of



the implementation but do not change its basic form. For example, the library function abs
computes the absolute value of its integer argument and has the prototype

int abs(in t n)

The abs function is defined in the ANSI standard library stdlib . Suppose, however, that you
had to write it yourself. How would you write its implementation? The definition of
absolute value indicates that if the argument is negative, the function should return its
negation, which is a positive number. If the argument is positive or zero, the function
should simply return the argument value unchanged. Thus, you can implement the abs
function as follows:

int abs(in t n)
{

if (n < 0) {
return (-n);

} else {
return (n);

}
}

As this implementation shown, a return statement can occur anywhere in the function body.
Similarly, you can define a function MinF to return the smaller of two floating-point

arguments as follows:

double MinF(double  x, double y)
{

if (x < y) {
return (x);

} else {
return (y);

}
}

The control structure used within a function can be much more complex than the simple
examples above. Suppose you want to define a function called Factorial that takes an integer n
and returns the product of the integers between 1 and n. The first several factorials are
shown in the following list:

Factorial (0) = 1 (by definition)
Factorial (1) = 1 = 1
Factorial (2) = 2 = 1 × 2
Factorial (3) = 6 = 1 × 2 × 3
Factorial (4) = 24 = 1 × 2 × 3 × 4
Factorial (5) = 120 = 1 × 2 × 3 × 4 × 5
Factorial (6) = 720 = 1 × 2 × 3 × 4 × 5 × 6

Factorials are usually designated in mathematics using an exclamation point, as in n!, and
have extensive applications in statistics, combinatorial mathematics, and computer science.
A function to compute factorials is a useful tool for solving problems in those domains.

The Factorial function takes an integer and returns an integer, so its prototype looks like
this:

int Factorial (int n);

Implementing Factorial , however, requires some work. As a programming problem, the task
of computing a factorial is similar in many respects to adding a list of numbers, which you
learned about in chapter 3. In the addlis t.c program, a variable called total is declared to keep
track of the running total. At the beginning of the program, total is initialized to 0. As each
new value comes in, it is added to total so that total continues to reflect the sum of the
numbers entered so far. In the current problem, the situation is much the same, except that
you have to keep track of a product rather then a sum. To do so, you can:



1. Declare a variable called produc t.
2. Initialize it to 1.
3. Multiply it by each of the integers between 1 and n.
4. Return the final value of as the result of the function.

To cycle through each of the integers required in step 3, you need a for loop, which begins
at 1 and continues until it reaches n. The for loop will require an index variable, for which
the traditional choice of i seems quite appropriate. Thus you need to declare two variables
at the beginning of Factorial by writing

int produc t, i:

The variable product holds the running product, and i holds the index.
The implementation of Factorial , shown in Figure 5-2, is short enough to present all at

once without explaining the details step by step.
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Factorial function
int Factorial (int n)
{
int produc t, i

produc t = 1;
for (i = 1; i <= n; i++) {

produc t *= i;
}
return (product);

}
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The examples of functions presented so far in this section all return numeric results,
and the historical association of the word function with mathematics often makes numeric
functions seem the most natural. However, functions in C can return values of any data
type. For example, if you were writing a program to work return values of any data type.
For example, if you were writing a program to work with dates, it might be useful to have a
function to convert a numeric month between 1 and 12 into the string that indicates the
corresponding month name between January and December. While the numeric values are
easier to work with internally (if, for example, you needed to compare two dates to see
which came earlier), the output display may be more readable with the traditional English
names. To solve this problem, you could define the function MonthName as shown in Figure
5-3.
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MonthName function
string MonthName (int month)
{

switch (month) {
case 1: return (“January”);
case 2: return (“February”);
case 3: return (“March”);
case 4: return (“April”);
case 5: return (“May”);
case 6: return (“June ”);
case 7: return (“July ”);
case 8: return (“August”);
case 9: return (“September ”);
case 10: return (“October ”);
case 11: return (“November”);
case 12: return (“December ”);
defaul t: return (“Illegal month ”);

}
}



To use this function, you would call MonthName from some other part of the program
and then use printf to display the result. For example, if the integer variables month, day , and
year contain the values 7,20, and 1969 (the date of the Apollo 11 landing on the moon), the
statement

printf(“%s%d, %d\n”, MonthName(mon th), day, year);

would generate the output

In the switch statement within the MonthName function, the return statements in each case clause
automatically exit from the entire function and make an explicit break statement
unnecessary. As indicate in the section on the switch statement in Chapter 4, you can avoid a
lot of pain in the debugging process if you design your programs so that every case clause
ends with either a break or a return statement.
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The examples in the preceding section illustrate that functions can return values of
different data types. The function Factorial, for example, returns a value of type int, and the
function MonthName returns a value of type string . Although functions in C can return values
of any type, there is one result type that deserves special attention. That type is the data type
bool , which was introduced in Chapter 4 and is defined by including the genlib library.
Functions that return value of type bool are called predicatepredicatepredicate

predicate

functionsfunctionsfunctions

functions

and play an
important role in modern programming.

Recall that there are only two values of type bool: TRUE and FALSE. Thus a predicate
function—no matter how may arguments it takes or how complicated its internal processing
may be—must eventually return one of these two values. The process of calling a predicate
function is therefore analogous to asking a yes/no question and getting an answer.

Consider the following function definition, which, given an integer n , answers the
question “is n an even number?”:

bool IsEven (int n)
{

return(n % 2 == 0);
}

A number is even if there is no remainder when that number is divided by two. If n is even,
the expression

n %2== 0

therefore has the value TURE, which is returned as the result of the IsEven function,. If n is
odd, the function returns FALSE. Because IsEven returns a Boolean result, you can use it
directly in a conditional context. For example, the following main program uses IsEven to
list all the even numbers between 1 and 10:

main()
{

int i;

for (i = 1; i<= 10; i++) {
if (IsEven(i)) printf ( “%2d\n”, i);

}
}

When new programmers use predicate functions, they often make the errors described
in the section on “Avoiding redundancy in Boolean expressions” in Chapter 4. Until you
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get more experience with Boolean data and predicate functions, you may find yourself
tempted to put an if statement inside the implementation of IsEven or to make unnecessary
comparisons against TRUE, such as

if (IsEven (i) == TRUE) ... The == TRUE is redundant.

If you find yourself making such errors, you may want to review the discussion of Boolean
data in Chapter 4.

As another example of a predicate function, you could write one that tests whether a
given year is a leap year, as follows:

bool IsLeapYear (int Year)
{

return (((year % 4 ==0) && (year % 100 != 0)) || (year % 400 == 0));
}

You encountered the Boolean expression to determine whether year is a leap year in Chapter
4. By taking this expression and putting it into a function, you no longer have to include the
entire calculation explicitly to make this test. Once the function is defined, the rest of the
program can simply use statements of the form:

if (IsLeapYear(year)) …
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Until now, your ability to work with string data has been limited to a few extremely
simple operations: you know how to use GetLine to read in a string and how to use printf to
display one on the screen. In Chapter 9, you will learn about an entire library of string
functions that enable you to manipulate string data in a variety of ways. Meanwhile, it
makes sense to introduce you to one o fits functions. That function is StringEqual , which you
can use to tell whether two strings contain exactly the same characters.

There are two principal reasons for introducing the StringEqual function at this point in
the text. First, having StringEqual in your repertoire of programming idioms will allow you to
use strings in much more creative ways, which will in turn make it possible for you to write
more interesting programs. Second, StringEqual is a predicate function and helps to illustrate
the importance of these functions in programming applications.

The prototype for the StringEqual function is
bool StringEqual (string s1, string s2);

which indicates that StringEqual takes two strings as arguments and returns a Boolean value.
That value is TRUE if the two strings, s1 and s2, are precisely equal, character for character.
If there are any differences between the strings, StringEqual returns False . The following
examples illustrate this behavior:

StringEqual(“abc” , “abc”) returns TRUE
StringEqual( “abc” , “def”) returns FALSE
StringEqual( “abc” , “abcd ”) returns FALSE
StringEqual (“abc”, “ABC”) returns FALSE

Note that the characters in the string must match exactly; if there are extra characters in one
string or if the case of the characters differs in the two strings, StringEqual returns FALSE.

You can use StringEqual whenever you want to ask the user a questing and then take
some action based on the response. For example, suppose you have written a program that
plays a game with the user and you want to offer the user a chance to play again. You can
ask the user a question by displaying an appropriate prompt and then get a response by
calling GetLine:

printf(“Would you like to play again? ”);
answer = GetLine();



the StringEqual function makes it possible for the program to do something with the answer.
For example, you can write a main program that looks like this:

main()
{

string answer;

whele (TRUE) {
playOneGame(();
printf(“would you like to play again? ”);
answer = GetLine();
if (StringEqual( answer, “no”)) break;

}
}

If the user enters the word no, the program exits form the while loop. If the user gives any
other response, the program plays another game. A program that checks the user’s response
more carefully is discussed in exercise 11.
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So far in this chapter, we have considered functions from the holistic perspective.
Thinking about functions in this way helps you understand how they are used and what
they provide as a programming resource. To develop confidence that the functions you
write will work as they should, however, you also need to develop an understanding of how
functions operate internally.

As a first step toward understanding the mechanics of functions, consider the program
shown in Figure 5-4, which includes both the Factorial function presented earlier in this
chapter and a main program that displays a factorial table.
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fact.c
/*
* File: fact.c
* -------------
* This program includes the Factorial function and a test
* Program that prints the factorials of the numbers between
* the limits lowerLimit and UpperLimi t, inclusive.
*/

#include <stdio.h>
#include “genlib.h ”

/* 
* Constants
* -------------
* LowerLimi t – starting value for factorial table
* UpperLimi t – Final value for factorial table
*/

#define LowerLimi t 0
#define UpperLimi t 7

/* Function prototypes */

int Factorial (int n);

/* Main program */

main()
{

int i;



for (i = LowerLimi t; i <= UpperLimi t; i++) {
printf(“%d! = %5d\n” , i, Factorial(i));

}
}

/*
* Function: Factorial
* Usage: f = Factorial(n);
* ------------------------------
* Returns the factorial of the argumen t n, where factorial
* is defined as the produc t of all integers from 1 up to n.
*/

int Factorial (int n)
{

int porduct, i;

produc t = 1;
for (i = 1; i <= n; i++) {

produc t *= i;
}
return (porduct);

}

The fact.c program makes good sense if you look at it as two separate pieces. The main
program simple counts from LowerLimi t to UpperLimi t. On each cycle, it calls Factorial on the
index i and then displays the result. By this point, you are accustomed to using the name i to
indicate an otherwise unremarkable index variable used to count cycles in a for loop. Not
surprises here. The Factorial function is likewise straightforward. There is a little more going
on than in the main program, but not much more. You can easily understand what this
function is doing. In particular, you should recognize that n is the number whose factorial
we’re computing, that produc t holds the accumulating product on each cycle, and that i is
once again an unremarkable index variable used to track the progress of the for loop. Thus,
each piece of the program makes sense in and of itself.

For new students, confusion arises only when looking at the program as a whole. If
you do that without understanding how to think about functions, you can run into some
interesting problems. First, there are two variables named i, one in the main program and
one in the Factorial function. Each variable is used as a loop index, but the two variables will
have different values. Second and equally confusing is the fact that there are other parts of
the program in which two different names are used to refer to the same value. In the main
program, the number whose factorial we are seeking to compute is stored in the loop index i.
In the Factorial function, that same value is called n. How do you make sense out of all this

confusion?
Even if the program is confusing as a whole, it is important to remember that the

functions make sense when you look at them one at a time. As long as you look only at main
or only at Factorial , none of these points of confusion exist. Each function definition makes
sense by itself. That fact—as commonplace as it might seem—is of fundamental
importance. As programs grow, there is no way you can comprehend them as a whole. Your
only hope of making sense of a large program is to break it down into pieces, each of which
is small enough to make sense by itself. In the fact.c program, the problem, the problem of
making a list of factorials has been separated into two easy-to-understand pieces.
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To understand how the two pieces of the program work together, you will find it
helpful to develop a sense of how C itself handles the confusion. That it manages to do so is
important for us as programmers and enables us to think about the individual functions
separately. How does C make sense of the facts that the same name may be used for
different values and that a single conceptual value may be represented by different names?
To help you understand the answer to this question, it is useful to introduce a semantic



distinction between argument values in the caller and the variables used to hold those
values in the context of a function.

When the main program calls Factorial (which itself appears as one of the arguments to
the function printf), the argument is the expression i. When this statement is executed, the
effect is to look up the current value of i and pass it to the function Factorial , which has the
prototype

int Factorial (int n);

The prototype declares a variable named n of type int–a variable whose purpose is to serve
as a placeholder for the actual argument. A variable defined in a function header that serves
as a placeholder is called a formalformalformal

formal

parameterparameterparameter

parameter

.
When a function is called, the following steps are taken:

1. The values of each argument are computed as part of the operation of the calling
program. Because the arguments are expressions, this computation can involve
operators and other functions, all of which are evaluated before the new function is
actually called.

2. The value of each argument is copied into the corresponding formal parameter
variable. If there is more than one argument, the arguments are copied into the
parameters in order; the first argument is copied to the first parameter, and so forth.
If necessary, automatic type conversions are performed between the argument

values and the formal parameters as in an assignment statement. For example, if a
value of type int is passed to a function where the parameter is declared as a double ,
the integer is converted into the equivalent floating-point value before it is copied
into the parameter variable.

3. The statements in the function body are evaluated until a return statement appears.
4. The value of the return expression is evaluated and converted, if necessary, to the

result type specified for the function.
5. The calling program continues, with the returned valued substituted in place of the

call.

Every call to a function results in the creation of a separate set of variables. When variables
were represented graphically in Chapter 2 as boxes, all the boxes were enclosed within a
larger box representing the function main, which was the only function in the program. If
you want to follow the computer’s operation for a larger program with more than one
function, you need to draw a new set of variable boxes each time one function calls another.
As was true in the case of the function main , there must be one box for every variable that
function declares, including the formal parameters. These variables are meaningful only
within the program that declares them and are therefore called local variables .

For example, when the main program runs in the fact.c example, you first need to create
space for the variables in the function main. The function main declares only one
variable —the loop index i—so that the variables for main can be represented as follows:

The double lines around the variable boxes are used to enclose all the variables associated
with a particular function call. This collection of variables is called the frameframeframe

frame

—or, for
reasons that will soon be apparent, the stackstackstack

stack

frameframeframe

frame

—for that function.
Assume that LowerLimi t is defined to be 0 as it was in the program listing. In this case, on

the first cycle through the for loop, i has the value 0. As before, you can represent this
condition in the frame by noting the value insider the box for that variable.

main
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main

i
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The main program then calls printf and, as part of evaluating the arguments to printf, computes
the result of the expression

Factorial(i)

To represent the computer’s actions in the frame diagram, you begin by looking up the
value of i in the current frame, where you discover that the value is 0. You must then create
a new frame for Factorial , for which the value 0 is the first (and only) argument. The Factorial
function has three variables: the formal parameter n and the local variables produc t and i.
Your framed for Factorial therefore needs three variable cells:

The first thing that happens is that the formal parameter n is initialized with the value of the
argument, which was 0. The contents of the frame then look like this:

When you create the frame for Factorial , the frame for main does not go away entirely. Instead
that frame is set aside temporarily until the operation of Factorial is complete. To indicate this
situation in the conceptual model represented by the box diagram, the best technique is to
draw each new frame diagram on an index card and then to place the new card on top of
the card for the previous frame, thereby covering it up. For example, when you call the
function factorial, the index card representing the factorial frame goes on top of the frame for
main

As the diagram shows, the entire set of frames forms a stack with the most recent frame on
top, which is the origin of the term stack frame. The frame for main is still there; you just
can’t see any of it as long as the function Factorial is active. In particular, the name i no longer
refers to the variable declared in main but to the variable named i in Factorial .

The next step in the process is to execute the body of Factorial by running through each
of its steps in the current frame. The variable produc t is initialized to 1, and the program
reaches the for loop. In the for loop, the variable i is initialized to 1, but since the value is
already larger than n, the body of the for loop is not executed at all. Thus, when the
program reaches the return statement, the frame looks like this:
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n product i

main
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When Factorial returns, the value of produc t is passed back to the caller as the result of the
function. Returning from a function also implies throwing away its frame, exposing once
again the variables in main :

The result, 1, is then passed to the printf function. The printf function goes through the same
process; the details of that operation, however, are hidden from you because you don’t
know how printf works internally. Eventually, printf displays the value 1 on the screen and
then returns, after which the function main goes on to execute the next for loop cycle.
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Much of the power of functions comes from the fact that once a function has been
defined, you can use it not only in the context of a main program, but also as a tool to
implement other functions that can be used as more sophisticated tools. These functions can
then be called form other functions, and son on, creating an arbitrarily complex hierarchy.

Suppose you have a group of n distinct objects on a table in front of you. From that
group of objects, you would like to select k objects. The question you want to answer is:
How many different ways are there to select k objects out of the original collection of n
distinct objects?

To make the problem concrete, suppose that the objects on the table are the five U.S.
coins: a penny, a nickel, a dime, a quarter, and a half-dollar. You want to know how many
different ways there are to take, for example, two coins from the table. You could take the
penny and the nickel, the penny and the dime, the nickel and the quarter, or any of several
other combinations. If you list all the possibilities, you discover that there are 10 different
combinations, as follows:

penny + nickel nickel + quarter
penny + dime nickel + half-dollar
penny + quarter dime + quarter
penny + half-dollar dime + half-dollar
nickel + dime quarter + half-dollar

In this example, n is 5 and k is 2. The solution can be expressed as a function of the values n
and k. That function comes up frequently in probability and statistics and is called the
combinationscombinationscombinations

combinations

functionfunctionfunction
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, which is often written in mathematics as
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
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or, in functional notation, as

C(n,k)

As it turns out, the combinations function has a simple definition in terms of factorials:

C(n,k) =
)!(!

!
knk

n


For example, you can verify that C(5,2) is indeed 10 by working out the mathematics step
by step:
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C(5,2) =
!3!2

!5


=
62

120


= 10

If you want to implement this function in C, it would probably be best to use a longer name
than the single letter C used in mathematics. The one-character name might well cause
confusion, if for no other reason than that the function and the language in which it is
implemented would have the same name. As a general rule, function names used in this text
tend to be longer and more expressive than variable names. Function calls often appear in
parts of the program that are far removed from the point at which those functions are
defined. Since the definition may be hard to locate in a large program, it is best to choose a
function name that conveys enough information about the function so that the reader does
not need to look up the definition. Local variables, on the other hand, are used only within
the body of a single function, and it is therefore easier to keep track of what they mean. In
the interest of having the name of the combinations function make sense immediately when
anyone looks at it, we will use the name Combinations as the function name, rather than the
letter C.

To implement the Combinations function using the definition based on factorials, you can
take advantage of the fact that you already have an implementation of Factorial. Given
Factorial , the implementation of Combinations is a straightforward translation of its
mathematical definition 1;

int Combinations (int n, int k)
{

return (Factorial (n) / (Factorial (k) * Factorial (n – k));
}

You can then write a simple main program to test the Combinations function as follows:
main()
{

int n, k;

printf(“Enter number of objects in the set (n)? ”);
n = GetInteger();
printf(“Enter number to be chosen (k)? ”);
k = GetInteger();
printf(“C(%d,%d) = %d\n”, n, k, Combinations( n, k));

}

The complete program, combine.c , is shown in Figure 5-5.
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combine.c

/*
* File: combine.c
* -------------------
* This program tests a function to compute the mathema tical
* combina tion function combina tions( n, k), which gives the
* number of ways to choose a subset of k objects from a set
* of n distinct objects.
*/

#include <stdio.h>

1 The mathematical definition based on factorials does not lead to a particularly efficient
implementation of the Combinations function, and you would almost certainly choose a different
implementation strategy in practice. Nonetheless, this definition is easy to read and provides a useful
opportunity to illustrate the mechanics of one function calling another.



#include “genlib.h ”
#include “simpio.h”

/* Main program */

main()
{

int n, k;
printf( “Enter number of objects in the set (n)? ”);
n = GetInteger();
printf( “Enter number to be chosen (k)? ”);
k = GetInteger();
printf( “C(%d,%d) = %d\n”, n, k, Combinations(n, k));

}

/*
* Function: Combinations
* Usage: ways = Combinations (n, k);
* -------------------------------------------
* Implemen ts the Combinations function, which returns the number
* of distinct ways of choosing k objects from a set of n objects.
* Inmathema tics, this function is often written as C(n, k), but a
* function called C is not very self0descriptive, particular ly in
* a language which has precisely the same name.
*/

int Combinations (int n, int k)
{

return (Factorial( n) / (Factorial(k) * Factorial(n – k)));
}

/*
* Function: Factorial
* Usage: f = Factorial(n);
* ----------------------------
* Returns the factorial of the argumen t n, where factorial
* is defined as the produc t of all integers from 1 up to n.
*/

int factorial (int n)
{

int produc t, i;

produc t = 1;
for (i = 1; i <= n; i++) {

produc t *= i;
}
return (product);

}

The following output illustrates one possible sample run of the combine.c program:

What happens inside the computer when this program runs? Just as in the factorial example,
a frame is created for the function main , which now declares two variables, n and k. After the
user enters the two values and the program reaches the printf statement, the variables in the
frame have the following values:

Enter number of objects in the set (n)? 555

5





Enter number to be choose (k)? 222

2





C(5,2) = 10

main

n
5

k
2



To execute the printf statement, the computer must evaluate the call to the Combinations
function, which results in the creation of a new frame that overlays the previous one:

In this example, which has more function calls than the factorial example does, each new
frame must record precisely what the program was doing before it make the call. Here, for
example, the call to Combinations comes from the last line in main, as indicated by the tag M1
in the program text that follows:

main()
{

int n, k;

printf(“Enter number of objects in the set (n)? ”
n = GetInteger();
printf(“Enter number to be chosen (k)? ”);
k = GetInteger();
printf(“C(%d, %d) = %d\n” , n, k, Combinations( n, k));

}

When the computer executes a new function call, it keeps track of where execution should
continue in the calling program once this call is completed. The point at which execution
should continue is called the returnreturnreturn

return

addressaddressaddress

address

, which is represented in these diagrams using
a circled tag. To help you remember where you are in the execution of the program, you
need to record in the frame diagram the point from which the call was make, like this:

Once the new frame has been created, the program begins to execute the body of the
Combinations function, which is reprinted with each call to factorial noted with a tag as
follows:

int Combinations (int n, int k)
{

return (Factorial (n) / (Factorial (k) * Factorial (n –k)));
}

To execute this statement, the computer must make the three indicated calls to the function
Factorial . According to the rules specified by ANSI C, the compiler may make these calls in
any order. In this case, let us arbitrarily choose to evaluate them from left to right. The first
call requests the computer to calculate Factorial (n) and results in the creation of the following
frame:
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The Factorial function runs through its operation just as it did before and returns the value
120 to the point in its caller indicated by the tag C1. The frame for the Factorial function
disappears, and you are left in the frame for Combinations ready to go on to the next phase of
the computation. You can illustrate the current state of things by going back and filling in
the returned value in place of the original call like this:

return (120 / (Factorial (k) * Factorial (n – k)));

The box around 120 in the diagram indicates that the enclosed value is not part of the
program but the result of some previous computation.

From this point, the computer goes on to evaluate the second call to Factorial , where the
argument is k. Since k has the value 2, this call causes the following frame to be created:

Once again, the Factorial function completes its operation without making further calls, and
the function returns to point C2 with the value of 2!, which is 2. Inserting this value into the
expression that records the result so far shows the computation in the following state:

return ( 120 / 2 * Factorial (n – k)))

There is now only one more call to make, which begins by evaluating the argument
expression n –k. Given the values of n and k in the Combinations frame, the argument
expression has the value 3, which leads to the creation of another frame:

From this point, Factorial calculates the value of 3! and returns the value 6 to position C3 in
the caller, resulting in the following position:

return ( 120 / ( 2 * 6 ));

the Combinations function now has all the values it needs to calculate the result, which is 10.
To find out what to do with this result, you need to consult the Combinations frame, which is
once again the top frame on the stack:
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The frame indicates that the program should take the return value and substitute it in place
of the call at M1 in the function main. If you take 10 and substitute it for the call to Combination
in printf statement, you get the following state:

printf(“C(%d, %d) = %d\n”, n, k, 10 );

Given this result, printf can happily generate the output line

Which is the last operation in the program.
This exercise of going through all the internal details is intended to help you

understand the function-calling mechanism in C. you might find it helpful to trace through
your own program once or twice at this level of detail, but you should not make a habit of it.
Instead, you should learn to think about functions more informally and try to develop an

intuitive sense of how they work. When a program calls a function, the function performs
its operation and the program then continues from the point at which the call was made. If
the function returns a result, the calling program is free to use that result in subsequent
computation. As a programmer, you need to get to the point where you feel comfortable
thinking about the process without worrying about the details. The computer, after all, is
taking care of them for you.

1-51-51-5

1-5

ProceduresProceduresProcedures

Procedures

So far, the functions presented in this chapter have all returned some kind of value to
their caller. In programming, it is quite common to call a function not for the result it
returns but rather for the effect it produces. For example, when you call the printf function in
a statement such as

printf(“Hello, world.\n”);

you are not trying to get printf to come back with some value. What you care about is
displaying the message on the screen.

A function that does not return a value and is instead executed for its effect is called a
procedureprocedureprocedure

procedure

. Many programming languages, including Pascal and Fortran, provide
completely separate mechanisms for defining functions and procedures. In those languages,
functions and procedures are distinct conceptual entities. In C, these two concepts are
merged, and most books about C use the term function to refer to both procedures and
functions. For the most part, I follow that convention in this book. But it is important to
recognize that some functions will return no result. Thus, when it is important to emphasize
that a particular function has no result, I will sometimes use the word procedure.

In C, a procedure is identif ied by using the keyword void in the function prototype in
place of the result type. For example, the prototype

void GiveInstructions(void);

declares a function that takes no arguments and returns no result. As with any function, the
prototype appears near the beginning of the program; the implementation of GiveInstructions
appears separately later in the program. A generic implementation of such a procedure
might be

void GiveInstructions(void)
{

printf(“This program performs some important calculation\n”);
printf(“for the user. This function, or one very much\n”);
printf(“like it, can be used to give the user whatever\n”);
printf(“instructions are requir ed to use the program,\n”);

C(5,2) = 10



printf(“such as the format for input data and the like.\n”);
}

As is true with most procedures, GiveInstructions does not include a return statement but instead
simply “falls off the end,” which C interprets as indicating that the execution of the
procedure is complete. Procedures can, however, use a return statement to force an
immediate return from the procedure. When return is used within a procedure, no expression
may follow the word return.

Once the GiveInstructions procedure is defined, all the main program has to do in order to
display the instructions on the screen is call that procedure. Thus the main program would
presumably begin as follows:

main()
{

GiveInstructions();
rest of main program

}

by making these printf statements into a separate procedure, you can improve the structure of
the program and make it easier to read. When someone is reading through the main
program, the single line

GiveInstruction();

tells the reader everything that is likely to be important. A reader interested in what happens
in the rest of the program can easily read past this line, since it is not necessary to read
through an entire series of printf calls. On the other hand, any one interested in the details of
the instructions can find the implementation of the GiveInstructions procedure and focus on
that part of the program.
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As suggested by the GiveInstructions example in the preceding section, procedures and
functions enable you to divide a large programming problem into smaller pieces that are
individually easy to understand. The process of dividing up a problem into manageable
pieces is called decompositiondecompositiondecomposition

decomposition

and represents a fundamental programming strategy.
Finding the right decomposition, however, turns out to be a difficult task that requires
considerable practice. If you choose the individual pieces well, each one will have
conceptual integrity as a unit and make the program as a whole much simpler to understand.
If you choose poorly, however, the decomposition can end up getting in the way. Although

this chapter and several of those that follow present some useful guideline, there are no
hard-and-fast rules for selecting a particular decomposition; you will learn how to apply
this process through experience.

When you are faced with the task of writing a program, the best strategy is usually to
start with the main program. From the perspective of the main program, you think about
the problem as a whole and then try to identify the major pieces of the entire task. Once
you figure out what the big pieces of the program are, you can then subdivide the entire
problem into individual components along these lines. Since some of these components
might themselves be complicated, it is often appropriate to break them down into still
smaller pieces. You can then continue this process until every piece of the problem is
simple enough to be solved on its own.This process is called top-downtop-downtop-down

top-down

designdesigndesign

design

, or stepwisestepwisestepwise

stepwise

refinementrefinementrefinement

refinement

.
To illustrate this process, the rest of this chapter is devoted to developing a program to

generate a calendar display. The calendar runs through an entire year, displaying each
month in format that looks like this:

February 1992
Su Mo Tu We Th Fr Sa

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29



The implementation has to be clever enough to know, for example, that February 1 fell on a
Saturday in 1992 and that February has 29 days in a leap year. Moreover, the program must
be able to display the data in a form in which everything lines up correctly on the screen.
There is quire a lot to do.

This program is many times longer and considerably more complicated than any
program or function you have seen so far in this text. If, however, you break the program
into pieces so the no individual piece is either log or complicated, the program as a whole
becomes manageable.

StartingStartingStarting
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Start by thinking about the main program. What does it have to do? At a very general
level, the calendar program must read in a year from the user and then display a calendar
for that year. It might also be good to provide the user with some instruction, particularly if
the program ends up having special cases or restrictions of which the user should be aware.
The principle of stepwise refinement indicates that once you have the general description
for a program, you should stop there and write it down, using calls to procedures and
functions to take care of those parts of the program that have yet to be written. If you adopt
this approach, the main program might look like this:

main()
{

int year;

GiveInstructions();
year = GetYearFromUser();
PrintCalendar (year);

}

The first statement is a call to a GiveInstructions procedure, which will turn out to be quire
similar in its implementation to the GiveInstructions procedure that appeared in the section on
“Procedures” earlier in this chapter. The second statement is a call to a function
GetYearFromUser, which you will use to handle the process of reading in a year. The
implementation of GetYearFromUser might be as simple as display in a prompt and calling
GetInteger , but you might want to include other operations as well, such as checking to see if
the user has entered a valid year. The last line of the main program calls the function
PrintCalendar , passing it the desired year as an argument. Implementing this last function will
involve most of the work required to solve the entire problem, but the problem is now
slightly simpler because the main program has taken care of all the user interaction.

At the level of detail shown in the implementation of main, the program makes
complete sense. As long as GiveInstruction , GetYearFromUser , and PrintCalendar do their jobs, the
program will work just fine. Of course, you haven’t yet written implementations for any of
those functions, so it might seem premature to depend on them. Doing so, however, is the
key to successful decomposition. As you go along, you invent new procedures and
functions that solve useful pieces of the task and then implement each level in the solution
hierarchy in terms of those pieces.

ImplementingImplementingImplementing

Implementing

PrintCalendar

After writing the main program, you are lest with three function to write. Although you
could choose to start with any of them, let’s go right to the heart of the problem and
implement PrintCalendar . Judging from the call in the main program, the prototype for
PrintCalendar is

void PrintCalendar (int year);

what does its implementation look like?
Consider the PrintCalendar function at the abstract level and think about what it does. It

displays a complete calendar by printing out 12 individual monthly calendars. This insight



is sufficient to write an implementation of the function that is appropriate to this level of the
decomposition. The body of PrintCalendar is simply a loop that calls another function to
display each individual month and then prints a newline character so that each month is
separated from the next one by a blank line:

void PrintCalendar (int year)
{

int month:

for (month = 1; month <= 12; month++) {
printCalendarMon th (month, year);
printf (“\n”);

}
}

The PrintCalendarMon th function takes two arguments—the month and the year—since it
requires both pieces of information. The argument month is required so that the function
knows which month to display; year is required because the calendar for a particular month
varies from year to year.

ImplementingImplementingImplementing

Implementing

PrintCalendarMonth

Implementing printCalendarMon th is a little more difficult. The problem is to display a single
month in a format that looks like this:

The first two lines of output are reasonable easy to handle. The only part that might seem
hard is taking the numeric value month and translating it into its conventional name. This
operation, however, turns out to be very easy for a reason that is well worth noting: you
already have seen a function that performs precisely this operation. The function MonthName
presented in the section on “Functions that return nonnumeric values” earlier in this chapter
is just what you need. Given MinthNmae, you can display the two header lines of the calendar
using the statements:

printf(“ $%s%d\n” , MonthName (month), year);
printf(“ Su MoTu We Th Fr Sa\n”);

Now comes the interesting part. The rest of the monthly calendar consists of the integers
between 1 and the number of days in the month. A for loop can handle this aspect of the task.
The catch is that the formatting is tricky. For one thing, the month has to start on the correct
day of the week. For another, after each Saturday, the output has to continue at the
beginning of the next line.

To solve the formatting problems, you will need to keep track of both the day of the
week and the day of the month. How should the days of the week be represented? One
approach is simply to number them. The most convenient numbering scheme, given the
calendar layout, is to define Sunday to be 0, Monday to be 1, and so forth, up to Saturday,
which is numbered 6. So that you could refer to the names of these days in the program, you
might choose to define them as constants, as follows:

#define Sunday 0
#define Monday 1

February 1992
Su Mo Tu We Th Fr Sa

1
2 3 4 5 6 7 8
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16 17 18 19 20 21 22
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#define Tuesday 2
#define Wednessday 3
#define Thursday 4
#define Friday 5
#define Saturday 6

There is an advantage to starting the weekday numbering with 0: doing so means that you
can implement the operation of cycling past the end of one week by using the remainder
operator. If the variable weekday contains the integer corresponding to the current day of the
week, the expression

(weekday + k ) % 7

indicates the day of the week that occurs k days late on. For example, if to day is a Friday
(when weekday has the value 5), 10 days from today is a Monday, because the expression

(5 + 10) % 7

comes out to be 1, In particular, you can apply this formula to write the following statement,
which corresponds to the idea of moving ahead to the next weekday:

weekday = (weekday + 1) % 7;

The more familiar expression

weekday++; The ++ operator will count past 6

is not appropriate here because weekday would eventually become 7,8,9, and so forth,
which do not correspond to weekdays. By dividing by 7 and taking the remainder, you can
ensure that the result is always between 0 and 6. When you use the reminder operation to
confine the result of a calculation to a small cyclical range by taking a remainder, you are
using a process that mathematicians call modularmodularmodular

modular

arithmeticarithmeticarithmetic

arithmetic

. Modular arithmetic is
extremely useful in programming; you will see several additional examples of its use
throughout the text.

If you keep track of the weekday, writing the main loop inside the PrintCalendarMon th
function is not difficult. The following code does the job:

for (day = 1; day <= nDays; day++_ {
print(“ %2d”, day);
if (weekday == Saturday) printf (“\n”);
weekday = (weekday + 1) % 7;

}

This loop displays each number, keeps track of the weekday, and puts in the new line after
each Saturday. The last line of the calendar must end with a new line, so the loop should be
followed by the followed statement:

if (weekday != Sunday) printf(“ \n”);

which ensures that a newline character follows the last line even if that week did not
complete the cycle back to Sunday.

At this point, only three tasks remain:

1. Figuring out the number of days in the month
2. Determining on what day of the week the beginning of the month falls
3. Indenting the first line of the calendar so that the first day appears in the correct

position

The strategy of stepwise refinement suggests that you should not try to solve these
problems at this level of the decomposition. Instead, you can turn these three operations
into calls to functions that you implement later. Applying this strategy enables you to write
a complete implementation of PrintCalendarmon th:

void PrintCalendarMon th (int month, int year)
{



int weekday, nDays, day;

printf(“ %s %d\n”, MonthName (month), year);
printf(“ su Mo Tu We Th Fr Sa\n”);
nDays = MonthDays (month, year);
weekday = FirstDayOfMonth (month, year);
IndentFirstLine (weekday);
for (day = 1; day <= nDays; day++) {

printf(“ %2d”, day);
if (weekday == Saturday) printf (“\n”);
weekday = (weekday + 1) % 7;

}
if (weekday != Sunday) printf (“\n”);

}

Using stepwise refinement to implement PrintCalendarMon th means that writing the
implementations for three of the functions used within it—MonthDays , FirstDayOfMonth, and
IndentFirstLine—was deferred until later. When you go back to fill in these missing pieces, you
can implement the functions in any order, but you must complete them all before you can
execute the program.

The easiest function to implement is the last one in the list: IndentFirstLine . This function
is intended to take the day of the week supplied by FirstDayOfMonth and make sure that the
first line of the calendar starts with enough blank spaces so that the first day appears at the
correct position. If the month begins on a Sunday, the calendar should start immediately at
the beginning of the first line. If it begins on a Monday, the program needs to print out one
data’s worth of spaces to account for the missing Sunday. Because each calendar entry takes
up three spaces, the implementation of IndentFirstLine is simply a loop that prints out three
spaces for every missing day, counting from the beginning of the week. The following
implementation accomplishes the task:

void IndentFirstline (int weekday)
{

int i;

for (i = 0; i < weekday; i++) {
printf (“ ”);

 }
}

Of the two remaining functions, MonthDays is considerably simpler and requires nothing
more than implementing the following rhyme:

Thirty days hath September,
April, June, and November,
All the rest have thirty-one,
Except February alone,
Which has twenty-eight, in fine,
And each leap year, twenty-nine.

The verse lists several independent case, which suggest the use of a switch statement. The
complete implementation of the function follows:

int MonthDays (int month, int year)
{

switch (month) {
case 2:

if (IsleapYear (year)) return (29);
return (28);

case 4: case 6: case 9: case 11:
return (30);

defaul t:
return (31);



}
}

You already have an implementation of IsLwapYear from the section on “Predicate functions”
earlier in this chapter, and you should simply use it. It is almost always better to use existing
code than to rewrite it from scratch.

The FirstDayOfMonth function could be hard to implement, but only if you try to clever. A
simple, workable strategy is to pick some day in history and count forward from there.
Computers are, after all, quite fast; the user won’t notice any delay. For example, January 1,
1900, fell on a Monday. For every year since then, you need to add 365 or 366 days,
depending on whether the year was a leap year. For each month of the current year
preceding the one in question, you need to add the number of days in that month. By
performing these calculations using modular arithmetic and taking the remainder after
dividing by 7, the program can compute the weekday for the beginning of any month since
1900 using the following implementation:

int Fits tDayOfMonth (int month, int year)
{

int weekday, i;

weekday = Monday;
for (i =1900; i < year; i++) [

weekday = (weekday + 365) %7;
if (IsLeapYear (i)) weekday = (weekday + 1) % 7;

}
for (i = 1; i < month; i++) {

weekday = (weekday + MonthDays(i, year)) % 7;
}
return (weekday);

}

CompletingCompletingCompleting
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Finishing the program is just a matter of filling in some of the details. For example,
you need to implement the functions GiveInstructions and GetYearFromUser . Because the
definition of FirstDayOfMonth requires that the year not be earlier than 1900, it would be good
for these functions to mention that restriction and to enforce it. For example, the following
implementation of GetYearFromUser checks to see if the year meets that condition; if not, the
user is given a chance to retry.

int GetYearFromUser (void)
{

int year:

while (TRUE) {
printf (“Which year? “);
year = GetInteger();
if (year >= 1900) return (year);
printf(“The year must be at least 1900.\n”);

}
}

The rest of the process consists of copying the implementations of IsLeapYear and MonthName
from earlier in the chapter, making sure all the function prototypes are included, writing
comments, and, finally, compiling and testing the program. The complete implementation is
shown in Fiture5-6.
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calendar.c

/*
* File: calendar.c
* -------------------



* This program is used to gener ate a calendar for a year
* entered by the user.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

/*
* Constants:
* ------------
* Days of the week are represen ted by the integers 0-6.
* Months of the year are identified by the integer 1-12;
* Because the numeric represen tation for months is in
* common use, no special constants are defined.
*/

#define Sunday 0
#define Monday 1
#define Tuesday 2
#define Wednesday 3
#define Thursday 4
#define Friday 5
#define Saturday 6

/* Function prototypes */

void GiveInstructions (void);
int GetYearFromUser (void);
void Printcalendar (int year);
void PrintCalendarMon th (int month, int year);
void IndentFirstLine (int weekday);
int Monthdays (int month, int year);
int FirstDayOfMonth (int month, int year);
string MonthName (int month);
bool IsLeapYear (int year);

/* Main program */

main()
{

int year;

GiveInstructions();
year = GetYearFromUser();
PrintCalendar (year);

}
/*
* Function: GiveInstructions
* Usage: GiveInstructions ();
* ---------------------------------
* This procedure prints out instructions to the user.
*/

void GiveInstructions(void)
{

printf(“This program Displays a calendar for a full\ n”);
printf(“year. The year must not be before 1900.\n”);

}

/*
* Function: GetYearFromUser
* Usage: year = GetYearFromUser ();
* -------------------------------------------
* This function reads in a year from the user and returns



* that value. If the user enters a year before 1900, the
* function gives the user another chance.
*/

int GetYearFromUser (void)
{

int year:

while (TRUE) {
printf (“Which year? “);
year = GetInteger();
if (year >= 1900) return (year);
printf(“The year must be at least 1900.\n”);

}
}

/*
* Function: PrintCalendar
* Usage: PrintCalendar (year);
* -----------------------------------
* This procedure prints a calendar for an entire year.
*/

void PrintCalendar (int year)
{

int month:

for (month = 1; month <= 12; month++) {
PrintCalendarMon th (month, year);
printf (“\n”);

}
}

/*
* Function: printCalendarMon th
* Usage: PrintCalendarMon th (month, year);
* ---------------------------------------------------
* This procedure prints a calendar for the given month
* and year.
*/

void PrintCalendarMon th (int month, int year)
{

int weekday, nDays, day;

printf(“ %s%d\n”, MonthName (month), year);
printf(“ su Mo Tu We Th Fr Sa\n”);
nDays = Monthdays (month, year);
weekday = FirstDayOfMonth (month, year);
IndentFirstLine (weekday);
for (day = 1; day <= nDays; day++) {

printf(“ %2d”, day);
if (weekday == Saturday) printf (“\n”);
weekday = (weekday + 1) % 7;

}
if (weekday != Sunday) printf (“\n”);

}

/*
* Function: IndentFirs tLine
* Usage: IndentFirstLine (weekday);
* ------------------------------------------
* This procedure inden ts the firs t line of the calendar
* by printing enough blank spaces to get to the position
* on the line corresponding to weekday.



*/

void IndentFirstline (int weekday)
{

int i;

for (i = 0; i < weekday; i++) {
printf (“ ”);

 }
}

/*
* Function: MonthDays
* Usage: ndays = MonthDays (month, year);
* ---------------------------------------------------
* Monthdays returns the number of days in the indicated
* month and year. The year is requir ed to handle leap years.
*/

int MonthDays (int month, int year)
{

switch (month) {
case 2:

if (IsLeapYear (year)) return (29);
return (28);

case 4: case 6: case 9: case 11:
return (30);

defaul t:
return (31);

}
}

/*
* Function: FirstDayOfMonth
* Usage: weekday = FirstdayOfMonth (month, year);
* --------------------------------------------------------------
* This function returns the day of the week on which
* the indicated month begins. This program simply counts
* forward from January 1, 1900, whichwas a Monday.
*/

int Fits tDayOfMonth (int month, int year)
{

int weekday, i;

weekday = Monday;
for (i =1900; i < year; i++) [

weekday = (weekday + 365) %7;
if (IsLeapYear (i)) weekday = (weekday + 1) % 7;

}
for (i = 1; i < month; i++) {

weekday = (weekday + MonthDays (i, year)) % 7;
}
return (weekday);

}

/*
* Fucntion: MonthName
* Usage: name = MonthName (month);
* ---------------------------------------------
* MonthName converts a numeric month in the range 1-12
* into the string name for that month.
*/

string MonthName (int month)



{
switch (month) {

case 1: return (“January”);
case 2: return (“February ”);
case 3: return (“March”);
case 4: return (“April”);
case 5: return (“May”);
case 6: return (“June ”);
case 7: return (“July ”);
case 8: return (“August”);
case 9: return (“September ”);
case 10: return (“October ”);
case 11: return (“November”);
case 12: return (“December ”);
defaul t: return (“Illegal month ”);

}
}

/*
* Function: IsLeapYear
* Usage: if (IsLeapYear (year)) ………

…

* ----------------------------------------
* This function returns TRUE if year is a leap year.
*/

bool IsLeapYear (int Year)
{

return (((year % 4 ==0) && (year % 100 != 0)) || (year % 400 == 0));
}

SUMMARYSUMMARYSUMMARY
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In this chapter, you learned about functions, which enable you to refer to an entire set
of operations by using a simple name. By allowing the programmer to ignore the internal
details and concentrate only on the effect of a function as a whole, functions provide a
critical tool for reducing the conceptual complexity of programs.

This chapter also provided you with an essential programming technique—the strategy
of stepwise refinement. By starting with a general outline of the program and successively
refining each piece of the outline by dividing it into successively simpler steps, you can
solve a complex problem by writing a collection of functions that are individually quite
simple.

The important points introduced in this chapter include:
 A function consists of a set of program statements that have been collected

together and given a name. Other parts of the program can then call the function,
possibly passing it information in the form of arguments and receiving a result
returned by that function.

 Every function must be declared before it is used. A function declaration is called
a prototype.

 In addition to the prototype, functions have an implementation, which specifies
the individual steps that function contains.

 A function that returns a value must have a return statement that specifies the
result. Functions may return values of any type.

 Functions that return Boolean values are called predicate functions and play an
important role in programming.

 The strlib library includes the predicate function StringEqual , which compares two
strings for equality.

 Within the body of a function, the variables that act as placeholders for the
argument values are called formal parameters.

 Variables declared with a function are local to that function and cannot be used
outside of it. Internally, all the variables declared within a function, including the
parameters, are stored together in a stack frame.



 When a function returns, it continues from precisely the point at which the call
was make. The computer refers to this point as the return address and keeps track
of it in the stack frame.

 A function that returns no result and is executed only for its effect is called a
procedure.

 To apply stepwise refinement, you begin coding at the level of the main program.
You decompose the main program into separate functions that implement some
piece of the total solution. Once the main program is complete, you apply the
same strategy to each of the functions it calls, continuing the process until you
have implemented every function.
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1. Explain in Your own words the difference between a function and a program.
2. Define the following terms as they apply to functions: call, argument, return.
3. What is the difference between passing information ot a function by using

arguments and reading input data using functions like GetInteger? When would each
action be appropriate?

4. What is the prototype of the function sqrt in the math library?
5. The math library contains a function with the following prototype:

double atan2 (double, double);

Even if you have no idea what this function does, what information does the
prototype give you about using this function?

6. What is the purpose of including names along with the argument types in function
prototypes?

7. When writing a prototype, how do you indicate that a function takes no arguments?
8. How do you specify the result of a function in C?
9. Can there be more than one return statement in the body of a function?
10. Why was it unnecessary to include a break statement at the end of each case

clause in the MonthName function shown in Figure 5-3?
11. What is a predicate function?
12. What function would you use to determine whether two strings were equal? In

what library is that function defined?
13. What is the relationship between arguments and formal parameters?
14. Variables declared within a function are said to be local variables. What is the

signif icance of the word local in this context?
15. What does the term return address mean?
16. What is a prototype?
17. In your own words, describe the strategy of stepwise refinement.
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1. Write a program that displays the value of the mathematical constant

ф =
2

51

This constant ф is called the golden ratio. Classical mathematicians believed
that this number represented the most aesthetically pleasing ratio for the
dimensions of a rectangle, but it also turns up in computational mathematics.

2. In high-school algebra, you learned that the standard quadratic equation

ax2 + bx + c = 0

has two solutions given by the formula



x =
a

acbb
2

42 

The first solution is obtained by using + in place of ±; the second is obtained by
using – in place of ±.

Write a C program that accepts values for a, b, and c, and then calculates the
two solutions. If the quantity under the square root sign is negative, the equation
has no real solutions, and your program should display a message to that effect.
You may assume that the value of a is nonzero. Your program should be able to
duplicate the following sample run:

3. Modify the c2ftable.c program shown in Figure 5-1 so it displays a conversion table
that translates temperatures in the opposite direction: from Fahrenheit to Celsius.
Your program should be divided into a man program and a conversion function,
just as the c2ftable.c program is. The main program should generate a table of
Celsius equivalents, shown with one digit after the decimal point, for each
Fahrenheit temperature between 32 and 100, counting in steps of two degrees.
Thus your table should have the basic format shown in the condensed sample run
that follows:

4. The Fibonacci sequence, in which each new tem is the sum of the preceding two,
was introduced in Chapter 4, exercise 8. Rewrite the program requested in that
exercise, changing the implementation so that your main program calls a function
Fib (n) to calculate the nth Fibonacci number. In terms of the number of
mathematical calculations required, is your new implementation more or less
efficient than the one you used in Chapter 4?

5. Write a function RaiseIntToPower that takes two integers, n and k, and returns nk. Use
your function to display a table of values of 2k for all values of k from 0 to 10.

6. Write a function RaiseRealToPower that takes a floating-point value x and an integer
k and returns xk. Implement your function so that it can correctly calculate the
result when k is negative, using the relationship

x-k =
kx

1

Enter coefficients for the quadratic equation:
a: 111

1





b: -5-5-5

-5





c: 666

6





The first solution is 3
The second solution is 2

Fahrenhei t to Celsius table
F C
32 0.0
34 1.1

………

…

98 36.7
100 37.8



Use your function to display a table of value of 10k for all values of k from –4 to
4, as shown in this sample run:

Note: There is no single printf format code that will correctly display each of the
output lines in this table. To write a main program that produces precisely this
output, you need to use a different format specification when the value of k in
negative.

7. Write a function NDigits (n) that returns the number of digits in the integer n, which
you may assume is positive. Design a main program to test your function. For
hints about how to write this program, you might want to look back at the digitsum.c
program that was given in Figure 4-5.

8. When a floating-point number is converted to an integer in C, the floating-point
value is truncated by throwing away any fraction. Thus, when 4.99999 is
converted to an integer, the result is 4. In many case, it would be useful to have the
floating-point number x, the rounding operation can be achieved by adding 0.5 to
x and then truncating the result to an integer. If the decimal fraction of x is less
than.5, the truncated value will be the integer less than x; if the fraction is .5 or
more, the truncated value will be the next lager integer. Because truncation always
moves toward zero, negative numbers must be rounded by subtracting 0.5 and
truncating, instead of adding 0.5.

Write a function Round (x) that rounds a floating-point number x to the nearest
integer. Demonstrate that you function works by designing a suitable main
program to test it.

9. Write a predicate function IsPerfectSquar e (n) that returns TRUE if the integer n is a
perfect square. Remember that the function sqrt returns a floating-point result,
which is therefore only an approximation of the actual square root.

10. Write a predicate function Approx imatelyEqual (x, y) that returns TRUE if the two
floating-point numbers x and y are approximately equal in the sense that the
absolute value of the difference between the two numbers divided by the smaller
of their absolute values is less than some constantε. In mathematical terms, the
property you are seeking to verify is


|)||,min(|

||
yx

yx

In the program, you should use the line
#define Epsilon 0.000001

to define the constant ε . Using #define makes it easy to change the desired
accuracy. You may also use the function fabs in the math library to take the
absolute value of a floating-point value.

The approx imatelyEqual Function is useful in avoiding precision problems that

k 10k

----------- -------- ------- --------

-4 0.0001
-3 0.001
-2 0.01
-1 0.1
0 1.0
1 10.0
2 100.0
3 1000.0
4 10000.0



arise when comparing floating-point numbers for equality. To illustrate this
principle, use Approx imatelyEqual to Construct a correct test condition for the for loop

for (x = 1.0; x <= 2.0; x += 0.1) {
printf (“%.1f\n”, x);

}

so that the loop correctly display the values 1.0, 1.1, 1.2, and son on, up to and
including 2.0. As noted in the section on “using for with floating-pint data” in
Chapter 4, this loop will not include the value 2.0 on some machines because of
limitations in floating-point accuracy.

11. In the section entitled “A predicate function to test for string equality,” the
following loop was used to give the user the opportunity to play another game (the
game itself was unspecified):

while (TRUE) {
PlayOneGame ();
printf(“Would you like to play again? ”);
answer = GetLine ();
if (StringEqual( answer, “no”)) break;

}

The major problem with this approach is that the loop exits only if the user enters
the answer no; the program interprets any other response, such as NO or Absolutely
not, as positive, and plays another game. From the perspective of program design,
it would be much better to compare the user’s response against both yes and no. If
the user gives either of these responses, the program would act accordingly. If the
user gives any other response, the program could ask the question again.

Write a predicate function GetYesOrNo that takes a prompt string as its
argument and displays that prompt as a question to the user. If the user responds
with the word yes, GetYesOrNo should return TRUE. If the user responds with no,
GetYesOrNo should return FALSE. If the user gives any other response, the function
should display a message informing the user of the legal responses and then ask
the question again.

Given the GetYesOrNo function, you could then change the game-playing loop
to

while (TRUE) {
PlayOneGame ();
if (!GetYesOrNo (“Would you like to play again? ”)) break;

}

which might then generate the following sample run:

12. The value of the combinations function used in the text are often displayed in the
form of a triangle using the following arrangement:

C(0,0)
C(1,0) C(1,1)

………

…

play teh game………

…

would you like to play again? yesyesyes

yes





………

…

play the game………

…

Would you like to play again? maybemaybemaybe

maybe





please answer yes or no.
Would you like to play again? yesyesyes

yes





………

…

play the game………

…

Would you like to play again? nonono

no







C(2,0) C(2,1) C(2,2)
C(3,0) C(3,1) C(3,2) C(3,3)

C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)

and so on. This figure is called Pascal’s Triangle after the seventeenth-century
French mathematician Blaise Pascal, who invented it. Pascal’s Triangle has the
interesting property that every interior entry is the sum of the two entries above it.

Write a C program to display the first eight rows of Pascal’s Triangle like this :

13. Modify the calendar program from Figure 5-6 so that the year can be entered
using only two digits, in which case the year is assumed to be in the twentieth
century. Thus, if the user entered 94, the program would generate a calendar for
1994.

14. The restriction in the calendar program that limits its use to years since 1900 could
be something of an annoyance. To fix this problem, change the implementation of
the FirstDayOfMonth function so that for years prior to 1900, it counts backward to
find the appropriate day of the week. What other parts of the program must you
change after you remove this restriction?

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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OBJECTIVES

 To acquire a better sense of the process of algorithm development by investigating
several algorithms from classical mathematics.

 To recognize that most problems can be solved using any of several different
algorithms.

 To understand the considerations involved in choosing between alternative algorithms.
 To gain a sense of how to establish that an algorithm is correct.
 To understand and be able to apply the concept of a brute-force algorithm.
 To be able to write programs that use the technique of successive approximation.
 To learn how to use the Error function to report error conditions to the user.
 To be able to write programs that perform series expansions.

FFF

F

unctions are important to programming in part because they provide a basis for the

implementation of algorithms. The algorithm itself is the abstract strategy and is often
expressed in English. The function is the concrete realization of that algorithm in the
context of a programming language. When you want to implement an algorithm as part of a
program, you will usually write a function—which may in turn call other functions to
handle part of its work—to carry out that algorithm.

You have seen several simple algorithms implemented in the context of the sample
programs, but you have not had a chance to focus on the nature of the algorithmic process
itself. Most of the programming problems you have seen so far are simple enough that the
appropriate solution technique springs immediately to mind. As problems become more
complex, however, the solution strategies require more thought, and you will need to
consider more than one strategy before writing the final program.

This chapter illustrates how algorithmic strategies take shape by solving several
problems from classical mathematics, each of which can be approached in a variety of
ways. By looking at more than one solution to each problem, you can get a sense of how to
compare different strategies and choose among them.
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The first mathematicians in Western recorded history were temple priests in Egypt
nearly 4000 years ago. From that time, mathematics continued to develop and reached a
golden age in ancient Greece, which produced such mathematicians as Euclid, Pythagoras,
Thales, Archimedes, and Hypatia. Greek mathematicians were fascinated with many
different areas of mathematics but seemed to have a particular fondness for studying the
properties of the nonnegative integers—a field of mathematics now known as numbernumbernumber

number

theorytheorytheory

theory

...

.

A central problem in number theory—both for Greek mathematicians and for their
counterparts today—is the problem of determining whether a given number is prime. A
positive integer n is primeprimeprime

prime

if it has exactly two positive divisors, which are always itself
and 1. For example, 23 is prime because here are no numbers except 1 and 23 that divide it
evenly. The number 35, on the other hand, is not prime because, in addition to the factors 1
and 35, it can also be divided evenly by 7 and 5. It is important to notice that, according to
this definition, the integer 1 is not prime, because it has only one divisor.

Prime numbers are important to day because they play a central role in many form of
cryptographycryptographycryptography

cryptography

, the study of codes. In the world of modern electronic communications,
computers are often used to perform encoding and decoding operations, Several of the best
coding techniques available are based on prime numbers. The details of encryption are
beyond the scope of this text, but it is interesting to know that prime numbers do have
practical applications.

As a programmer, how could you design a function to determine whether an integer n
is prime? If you work directly from the definition, the most obvious approach would be to
count the number of divisors and see if there are exactly two. Common sense indicates that
any divisors of n must be less than or equal to n, so if you check all the numbers between 1
and n, you will find all the possible divisors. This observation suggests that you can
determine whether n is prime by following these steps:

1. Check each number between 1 and n to see whether it divides evenly into n.
2. Add 1 to a running count each time you encounter a new divisor.
3. Check to see whether the divisor count is 2 after all numbers have been tested.
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IsPrime

You can use this strategy as the basis for the implementation of a function, IsPrime, that
tests whether a number is prime, as shown in Figure 6-1. As the prototype for the function
indicates, IsPrime takes an integer n and returns a Boolean value, making it a predicate
function. The implementation uses the variable div isors to keep track of the number of
divisors found so far. At the beginning of the program, div isors is set to 0 and is incremented
every time a new divisor is found. The number n is prime if the count of the divisors is
exactly two after all numbers between 1 and n have been tested. The test is written using
the Boolean expression div isors == 2, and the function simply returns that value as its result.
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The strategy used in this implementation of IsPrime is not particularly clever of efficient,
but it does have one highly desirable property. It works. The IsPrime function represents an

algorithm for determining whether a number is prime. To demonstrate that IsPrime is indeed
an algorithm, it helps to recall the requirements imposed on algorithms, as they were
presented in Chapter 1. An algorithm must be:

1. Clear and unambiguous in its definition.
2. Effective, in the sense that its steps are executable.
3. Finite, in the sense that it terminates after a bounded number of steps.

Does the IsPrime function meet each of these conditions?
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IsPrime

bool IsPrime (int n)
{

int div isors, i;

div isors = 0;
for (i = 1; i <= n; i++) {
if (n % i == 0) div isors++;
}
return (div isors == 2);

}

First, is the definition of IsPrime clear and unambiguous? For algorithms expressed in
English, this condition is often difficult to meet. Like all other human languages, English
can be fuzzy. When you try to express an algorithm in English, you are likely to leave out a
step or gloss over some critical detail. When you express an algorithm in a programming
language, however, the language definition specifies a precise interpretation. Although a
human reader might misunderstand some aspect of the program, a correctly functioning
compiler will interpret the statements in exactly one way. The assignment of meaning to the
syntactic forms in a programming language is called the semanticssemanticssemantics

semantics

of the language.
Because the semantics of programming languages are much more rigid than the semantics
of human languages, it is easier to meet the first condition when the algorithm is presented
in program form.

Second, are the steps in IsPrime effective in the sense that it in possible to carry them
out? Once again, the fact that the algorithm has been presented in the form of a program
helps to meet this criterion. The semantics of the C programming language assign meaning
to each of the constructs in the program, and the compiler generates the necessary
instructions for the machine to execute.

Third, does IsPrime terminate after a finite amount of time? You can answer this
question by looking at the program structure. The only long-running component of the
function is the for loop. From the control line, you know that the loop will go through
exactly n cycles each time the function IsPrime is called. If n is very large, the function my
take a long time, but it must return eventually.
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When you write a
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program as thoroughly as
you can. Even so, there
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Because it meets each of the three required conditions, the function IsPrime given in
Figure 6-1 is indeed an algorithm.
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In addition to establishing that the implementation is an algorithm, it is also important
to determine whether that algorithm is correct. Does it give the right answer for every
possible value of n? Proving that an algorithm is correct is very hard to do in any formal
w ay, and most of the techniques for generating such proofs lie well beyond the scope of this
text. Even so, it is possible to outline the general direction of such a proof in the case of the
IsPrime implementation.

Think about the meaning assigned to the variable div isors in the program. In each cycle
of the for loop, div isors records the number of divisors encountered up to that point. Before
the for loop begins, no divisors have been found, and it is therefore appropriate to initialize
divisors to 0. In each cycle of the loop, the program adds 1 to div isors each time it finds a
new divisor. Thus, at the end of ith loop cycle, div isors holds the number of divisors between 1
and i. Since this property is true for every value of i, it must be true that at the end of the nth

cycle, the variable divisors contains the number of divisors between 1 and n. If the number
of divisors 2, then n must be prime.

A property that is true at the initial entry to a loop and that continues to be true at the
end of each loop cycle is called a looplooploop

loop

invariantinvariantinvariant

invariant

. For certain simple programs, you can
most easily establish the correctness of the program by demonstrating that the appropriate
loop invariant is maintained. For more complicated programs, proving correctness can be
quite difficult. In those cases, you will have to rely on less formal methods to determine
whether your program is in fact delivering the correct answers.

In general, there are two methods you can adopt to increase your confidence in the
correctness of a program. First, you can go through the code step by step and convince
yourself that it behaves as you intended it to behave. This process is called desk-checkingdesk-checkingdesk-checking

desk-checking

.
Learning to perform desk-checking with a properly skeptical eye and acquiring good skills
for reasoning about programs require practice and discipline. The second approach is
testingtestingtesting

testing

, in which you run your program on as many test cases as you can to check that it
performs correctly for each of those cases. For example, if you write a main program that
calls IsPrime on each number between 1 and 1000 and you then check the output to make
sure all the numbers are correctly classified, your confidence in the correctness of this
algorithm will certainly increase.

It is important, however, to remember that completely rigorous testing is almost
certainly impossible. There are just too many cases to test. Edsger Dijkstra, one of the
leading computer sciences of our time, has observed that “testing can reveal the presence of
errors, but never their absence.” It is essential that you keep this principle in mind as you
begin to write larger and more sophisticated programs.

ImprovingImprovingImproving
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algorithmic

efficiencyefficiencyefficiency

efficiency



As with most programming problems, determining whether a number is prime can be
solved in a variety of ways. The strategy used in Figure 6-1 has certain weaknesses. In
particular, the algorithm is inefficient and is not practical if the numbers you want to check
are large. For example, if you called IsPrime on the number 1,000,000, the function would
actually check each of the million values between 1 and 1,000,000 to see whether they are
divisors. Testing all these numbers is silly because 1,000,000 is obviously not prime; if
nothing else, it is divisible by 2 Surely there must be a better approach the determines the
answer without going through all the steps.

There are several ways in which you could increase the efficiency of the IsPrime

implementation by changing the underlying algorithm. For example, each of the following
three changes can have a significant effect on the number of steps IsPrime performs:

1. As the example of 1,000,000 makes clear, IsPrime does not have to check all the
divisors. As soon as it finds any divisor greater than 1 and less than n, it can stop
right there and report that n is not prime. You should therefore change the program
structure so that the function returns as soon as a divisor is found.

2. Once the program has checked to see whether the number is divisible by 2, it doesn’t
need to check whether it is divisible by the other even numbers. If n is divisible by 2,
the program can stop right there and report that n is not prime. If n is not divisible by
2, however, then it can’t possibly be divisible by 4 or 6 or any other even number.
Thus, once 2 has been eliminated as a possibility, IsPrime needs to check only the odd
numbers.

3. The program does not need to check for potential divisors all the way up to n . For
example, it could clearly stop at the halfway point because any value that is larger
than n / 2 can’t possible divide evenly into n. With a little more thought, however, you
can prove to yourself that the program doesn’t need to try any divisors larger than
the square root of n. To understand w hy, suppose that n is evenly divisible by some
integer d1. By the definition of divisibility, n / d1 is therefore an interger, which wel’ll
call d2. What can you say about the size of d1 and d2? Because n is equal to d1 × d2, if
either of those factors is larger than the square root of n, the other one must be
smaller. Thus, if n has any divisors, there must be one that is smaller than its square
root. This insight means that the for loop in the program needs to run only as long as

i n

If you combine these three strategies, you can write a much more efficient
implementation of the IsPrime function. The trick, however, is that you must be careful as
you write the program to ensure that the function still works correctly. An attempt that looks
as if it’s heading in the desired direction is shown in Figure 6-2.

Unfortunately, as the bug symbol indicates, this implementation has some serious
problems. The most glaring error is that the function returns the wrong answer for the
argument values 1 and 2. According the mathematical definition of primality, the number 1
is not a prime. This function incorrectly reports that it is, because the for loop does not find
any divisors. Moreover, in trying to avoid checking for even divisors later on, the function
uses the statement
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When you use a loop
within a program, check to
see if there are any
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loop that could just as well
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once, storing the result in
a variable, and then using
that variable, and then
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if (n % 2 == 0) return (FALSE);

This statement fails to take account of the fact that there is one even prime number—the
number 2 itself. By checking to see whether n is even without also checking to see whether
it is 2, IsPrime gets the wrong answer in this case as well.
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bool IsPrime (int n)
{

int i;

if (n % 2 == 0) return (FALSE);
for (i = 3; i <= sqrt (n); i += 2) {

if (n % i == 0) return (FALSE);
}
return (TURE); This program contains

} several serious errors.

To fix these bugs, the easiest approach is simply to check for 1 and 2 explicitly by
inserting the following lines at the beginning of the program:

if (n <= 1) return (FALSE);
if (n == 2)return (TRUE);

Such statements, which check for special cases prior to beginning an algorithmic process,
are quite common in programming. The tests themselves are usually quite simple, as
illustrated by the preceding if statements. The hard part is noticing that special cases exist in
the first place.

A more surprising problem is that the new implementation of IsPrime, which was
designed to be more efficient, sometimes takes longer to run than the old one did. How can
this be? The new implementation employs several clever insights to improve the efficiency
of the algorithm, but somehow the changes aren’t effective.

The problem in this case is subtle and lies in the for loop control line:

for (i = 3; i <= sqrt (n); i += 2)

As you will see later in this chapter, modern computers can calculate a square root in a
surprisingly short time. Even so, it still takes much longer to compute a square root than it
does to perform such simple arithmetic operations as multiplication and division. As write,
IsPrime calls the sqrt function on every cycle of the for loop, even though the answer it returns
is the same on every iteration. Because the value of n doesn’t change inside the loop, the
value of sqrt (n) does not change either. To avoid calling sqrt over and over again just to get
the same answer, you should calculate sqrt (n) once before the loop begins and store that
answer in a variable. For example, you could introduce a double variable called limit and
then replace the for loop control line with the following two statements:

limit = sqrt (n)p
for (i = 3; i <= limit; i += 2)

This simple change increases the efficiency of the IsPrime implementation signif icantly.
The implementation has another problem that is even harder to see. Finding this bug is



complicated by the fact that it may not show up in testing. You could call this function on
thousands of input values and get the correct answer every time. But someone might still
come along with a previously untested case for which the function fails. Even more
disturbing is the fact that this implementation of IsPrime might give the correct answer on
one machine and the wrong answer on a different one.

To understand the problem, you may want to review the discussion of “Using for with
floating-point data” in Chapter 4. In that section, you learned that it is dangerous to depend
on tests for strict equality involving floating-point numbers. Suppose the number n is the
square of a prime number. For example, suppose n is 49, which is the square of 7. What
value does sqrt return when it is called on 49? In the world of exact mathematics, the square
root is exactly 7, but the computer is not operating in that would. Floating-point numbers
are only approximations, and it is possible that sqrt (49) returns 6.999999999999 instead.
Although this number is barely less than 7.0, the difference may be enough to affect the
outcome of the test i <= limit. As written, the conditional test requires perfect mathematical
accuracy, which is not guaranteed with floating-point numbers. If i is 7 and limit is
6.999999999999, the last cycle of the loop will not be executed, and the program will never
check whether n is divisible by 7. Because 7 is the only factor of 49, failure to check 7 as a
divisor means that 49 will be incorrectly 7.00000000000001, the IsPrime function will give
the right answer. The correctness of the implementation therefore depends on the how the
hardware performs floating-point arithmetic.

Having the correctness of an implementation depend on the characteristics of the
computer on which it runs is a serious failing. In this case, it is easy to modify the program
so that the accuracy of the machine does not matter. If the square root of n might be too
small a limit, the function can always check and extra possible divisor, just to make sure.
Testing one extra divisor doesn’t hurt and is a small price to pay for ensuring that the
answer is correct. Thus, to correct the program, all you need to do is change the assignment
to limit to

limit = sqrt (n) + 1;

It would also be good programming practice to declare limit as an int, thereby ensuring that
all values used in the for loop control line are integers.

The final version of IsPrime that incorporates these corrections is shown in Figure 6-3.
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bool IsPrime (int n)
{

int i, limit;

if (n <= 1) return (FALSE);
if (n == 2) return (TRUE);
if (n % 2 ==0) return (FALSE)
limit = sqrt (n) +1;
for (i =3; i <= limit; i+= 2) {

if (n 5 i ==0) return (FALSE);
}
return (TRUE);

}
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What are the relative advantages of the original implementation of IsPrime and this new
version? The final version is considerably more efficient, and this efficiency will likely be
of significant interest to anyone who needs to use this function as part of a larger
application. On the other hand, you should recognize that the original version has
advantages too. In particular, the first version of the program is much more readable, and it
is much easier to see that the results produced by that implementation will conform to the
definition of prime numbers. The extra complexity of the final version is reflected in the
fact that it was much harder to get it working.

When you are faced with choosing an algorithm for a particular problem, your
primary concern is correctness . Striving to make a program more efficient is an admirable
goal, but you should never pursue efficiency to the point that your program starts giving the
wrong answers.

After correctness, several other factors are also important to successful programming,
including efficiency, clarity, and maintainability. For many practical applications,
Efficiency is extremely important. A program that runs too slowly may not be usable in
applications where quick action is required. An air traffic control system that takes five
minutes to detect that two planes are on a collision course is probable useless; a system that
can issue the same warning in a second might save lives. In an environment in which
several programmers collaborate on the same program, clarity must be a high-priority
concern. Other programmers must be able to make sense out of your code, so you should
strive to make their jobs as easy as you can. And for programs that are expected to be in use
for a long time, maintainability is essential. A program consciously designed to
accommodate change will be easier to maintain than one whose author failed to anticipate
the direction of its development.

You need to learn that even though one algorithm may be “better” than another
according to some measure, it is often the case that no algorithm is “best” from all
perspectives. For example, an algorithm that is quite efficient in terms of the amount of
time it requires to run may be very difficult to understand—a failing that often makes it hard
for someone other than the author to user that program. Conversely, the clearest algorithms
are often not particularly efficient. Which algorithm to use depends on the requirements of
the application. Such considerations are known as tradeoffstradeoffstradeoffs

tradeoffs

, and it is important to strike the
correct balance between the competing factors.
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Other problems provide even more striking demonstrations of how the choice of
algorithm can affect efficiency. One particularly good example —again from classical
mathematics—is the problem of finding a greatest common divisor. Given two numbers, x
and y, the greatest common divisor (or GCD fro short) is the largest number that divides
evenly into both. For example, the GCD of 49 and 35 is 7, the GCD of 6 and 18 is 6, and
the GCD of 32 and 33 is 1. Suppose that your task is to write a function that accepts the



integers x and y as input and returns their GCD. From the caller’s point of view, what you
want is a function that takes two integers and returns another integer that is their greatest
common divisor. The prototype for this function is therefore

int GCD (int x, int y);

As with the primality testing algorithm, several solution strategies are available for
this problem.

Brute-forceBrute-forceBrute-force

Brute-force

algorithmsalgorithmsalgorithms

algorithms

One simple approach to calculating the GCD is based on a more general strategy that
is often called the brute-forcebrute-forcebrute-force

brute-force

methodmethodmethod

method

. This method consists of trying every possibility. To
start, you simply “guess” that GCD (x, y) is x—it can’t be larger than x and still divide evenly
into x—and then check this supposition by dividing your guess into both x and y and seeing
if it works. If it does, you have the answer, if not, you subtract 1 from the guess and try
again.

A function that implements this strategy for calculating the GCD is shown in Figure 6-
4.
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Brute-force implementation of GCD

int GCD (int x, int y)
{

int g;
g = x;
while (x % g != 0 || y % g != 0) {

g--;
}
return (g);

}

Once again, you must ask yourself several questions about the implementation. Will
the brute-force implementation of GCD always give the correct answer? Will it always
terminate, or might the function continue forever?

To see that the program gives the correct answer, you need to look at the condition in
the while loop

x % g != 0 || y % g != 0

As always, the while condition indicates under what circumstances the loop with continue.
To find out what condition cause the loop to terminate, you have to negate the while

condition. Negating a condition involving && or || can be accomplished by applying De
Morgan’s law, which was introduced in the section on “Logical operators” in Chapter 4.
Def Morgan’s law indicates that the following condition must hold when the while loop exits :

x %g== 0 && y % g === 0

From this condition, you can see immediately that the final value of g is certainly a
common divisor. To recognize that it is in fact the greatest common divisor, you have to
think about the strategy embodied in the while loop. The critical factor to notice in the



strategy is that the program counts backward through all the possibilities. The GCD can
never be larger than x (or y, for that matter), and the brute-force search therefore begins with
that value. If the program ever gets out of the while loop, it must have already tried each
value between x and the current value of g. Thus, if there were a larger value that divided
evenly into both x and y, the program would already have found it in an earlier iteration of
the while loop.

To demonstrate that the function terminates, you must first recognize that the value of
g must eventually reach 1, even if no larger common divisor is found. At this point, the while

loop will surly terminate, because 1 will divide evenly into both x and y, no matter what
values those variables have.
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Brute force is not, however, the only effective strategy. In fact, the brute-force
algorithm used in the GCD implementation presented in the preceding section is a poor
choice if you are at all concerned with efficiency. Consider what happens, for example, if
you call the function with the number 1,000,005 and 1,000,000. The brute-force algorithm
will run through the body of the while loop one million times before it comes up with
5—an answer that you can easily determine just by thinking about the two numbers.

What you need to find is an algorithm that is guaranteed to terminate with the correct
answer but that requires fewer steps than the brute-force approach. This is where cleverness
and a clear understanding of the problem pay off. Fortunately, the necessary creative
insight has already been supplied by the Greek mathematician Euclid, whose Elements
(book 7, proposition II) contains an elegant solution to this problem. In modern English, we
can describe Euclid’s algorithm as follows:

1. Divide x by y and compute the remainder; call that remainder r.
2. If r is zero, the procedure is complete, and the answer is y.
3. If r is not zero, set x equal to the old value of y, set y equal to r, and repeat the

entire process.

You can translate this algorithm into an implementation of the GCD function, as shown in
Figure 6-5.
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int GCD (int x, int y)
{

int r;

while (TRUE) {
r= x % y;
if (r == 0) break;
x = y;
y = r;

}
return (y);

}



This implementation of the GCD function also correctly finds the greatest common
divisor of two numbers. It differs from the brut-force implementation in two respects. On
the one hand, it computes the result much more quickly. On the other, it is more difficult to
prove correct.
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Although it is difficult to present a formal proof of correctness for Euclid’s algorithm,
this section sketches the outline of such a proof by invoking the metal model of
mathematics the Greeks used. In Greek mathematics, geometry held center stage, and
numbers were thought of as distances. For example, when Euclid set out to find the greatest
common divisor of two numbers, such as 55 and 15, he framed the problem as one of
finding the longest measuring stick that could be used to mark off each of the two distances
involved. Thus, we can visualize the specific problem by starting out with two sticks, one
55 units long and one 15 units long, as follows:

x

y

The problem is to find a new measuring stick that you can lay end to end on top of each of
these sticks so that it precisely covers each of the distance, x and y.

Euclid’s algorithm begins by marking off the large stick in units of the shorter one:

x

y

Unless the smaller number is an exact divisor of the larger one, there is some remainder, as
indicated by the shaded section of the upper stick. In this case, 15 goes into 55 three times
with 10 left over, which means that the shaded region is 10 units long. The fundamental
insight that Euclid had is that the greatest common divisor for the original two distances
must also be the greatest common divisor of the length of the shorter stick and the distance
represented by the shaded region in the diagram.

Given this observation, you can solve the original problem by reducing it to a simpler
problem involving smaller numbers. Here, the new numbers are 15 and 10, and you can
find their GCD by reapplying Euclid’s algorithm. You start by representing the new values,
x’ and y’, as measuring sticks of the appropriate length. You then mark of the larger stick in
units of the smaller one.

x’

y’

Once again, this process results in a leftover region, which this time has length 5. If you



then repeat the process one more time, you discover that the shaded region of length 5 is
itself the common divisor of x’ and y’ and, therefore, by Euclid’s proposition, of the original
numbers x and y. That this new value is indeed a common divisor of the original numbers is
demonstrated by the following diagram:

x

y

Euclid supplies a complete proof of his proposition in the Elements. If you are intrigued by
how mathematicians thought about such problems over 2000 years ago, you may find it
interesting to look up this reference.
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To illustrate the difference in efficiency of the two algorithmic strategies, consider the
numbers 1,000,005 and 1,000,000. To find the GCD of these two numbers, the brute-force
algorithm requires a million steps; Euclid’s algorithm requires only two. At the beginning
of Euclid ’s algorithm, x is 1000005, y is 1000000, and r is set to 5 during the first cycle of
the loop. Since the value of r is not 0, the program sets x to 1000000, sets y to 5, and starts
again. On the second cycle, the new value of r is 0, so the program exits from the while loop
and reports that the answer is 5.

In each of the two examples presented so far in this chapter—testing primality and
calculating greatest common divisors—the choice of algorithm has a profound effect on the
efficiency of the solution. In Chapter 17, you will learn how to quantify differences in
algorithmic efficiency.
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In the modern world, computers are useful in a wide range of applications. As a result,
computer programmers are called on to write many different kinds of programs that involve
a variety of computational operations. Some programmers may have no use for anything as
mathematical as a square root and can therefore be content with knowing nothing at all
about the math library. Even for those programmers who do use square roots, most are
satisfied just to use the sqrt function without thinking about its internal operation. What
makes it possible for them to do so, however, is that, somewhere along the line, a
programmer took the time and trouble to write the sqrt function in the first place. The
techniques used by computers to implement mathematical functions like sqrt are called
numericalnumericalnumerical

numerical

algorithmsalgorithmsalgorithms

algorithms

and represent an important area of computer science.
Because square roots occur frequently in geometry, mathematicians have been

interested for over 2000 years in the problem of how to calculate them, and they have
developed a variety of algorithmic strategies for solving that problem. To illustrate those
solution techniques—and to consider more general properties of numerical algorithms at
the same time—the next section, on “Successive approximation,” and a later one, on



“Series expansion,” present two different approaches to the problem of calculating the
square root function,

SuccessiveSuccessiveSuccessive
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One of the most important general strategies for solving numerical problems is the
technique of successive approximation. SuccessiveSuccessiveSuccessive

Successive

approximationapproximationapproximation

approximation

is a general strategy
for finding an approximate answer that consists of the following steps:

1. Start by making a guess at the answer.
2. Once you have made a guess, you then use that guess to generate an even better

one. For example, suppose that you test your guess and discover it is too large. You
can make it a little smaller and use the smaller value as a new guess. Conversely,
if your original guess is too small, you can choose a larger value as the next guess.

3. If you can somehow guarantee that your guess is getting closer and closer to the
real answer on each cycle, repeating the process will eventually result in a guess
that is close enough to satisfy the needs of any application.

The difficult part of the successive approximation technique consists of choosing new
guesses in step 2 so that they satisfy the condition expressed at the beginning of step 3.
Your strategy for choosing new guesses must take into account some knowledge of the
problem. What you need to find is a sequence of guesses in which each guess is closer to the
actual answer than the preceding one, approaching it arbitrarily closely as the sequence
proceeds. Whenever a sequence of values approaches a limit as you calculate more and
more terms, the sequence is said to convergeconvergeconverge

converge

.
The strategy for using successive approximation to calculate the square root function

was devised in the seventeenth century by Isaac Newton. Newton’s method for calculating
a square root is best illustrated by an example. Suppose that you want to find the square root
of the number 16. You start by making a wild guess. The answer has to be less than 16. You
might start by trying 8. Is your guess too big or too small? Well, if 8 were the square root,
then 8 times 8 would have to 16. It’s not. Because 8 times 8 is 64, the value 8 is too large to
be the square root of 16. You need to try a smaller number. But how much smaller? Is there
any way to use the characteristics of the problem to select the next guess?

Newton’s insight was that the actual square root must lie between your current guess
and the value that results when you divide the original number by that guess. In this case,
your guess is 8, and 16 divided by 8 is 2. Just as 8 is too larger, 2 is too small. To generate a
more accurate guess, you can average those two values, which are known to lie on opposite
sides of the correct answer. The result will be closer to the square root of 16, although it is
still an approximation. In this example, averaging the values 8 and 2 gives 5 as your new
guess.

From this point, you simply repeat the process. Dividing 16 by 5 gives 3.2. Averaging
5 and 3.2 then produces the next guess, 4.1, which is much closer to the correct answer. If
you continue this process, the next two guesses are 4.001219512 and 4.000000018584. By
the fourth guess, Newton’s method has already produced a value that is extremely close to



right answer. This process will never generate the exact answer, but you can continue to
apply the technique until you get an approximation that is as close as you want it to be.

If you never get the exact answer, how do you know when to stop? The most
straightforward approach is to continue the process until the answer is “closer enough,” in
the sense that the difference between the computed result and the actual one becomes so
small that it is no longer considered meaningful. If you have been keeping up with the
exercises, this strategy has another significant advantage, because the solution to exercise
10 in Chapter 5 provides just the tool you need to determine whether the process is
complete. In that exercise, you implemented a function Apporx imatelyEqual that returns TRUE if
two floating-point numbers are equal within an accuracy specified by Epsilon, which is
defined as part of the program. If you copy the Approx imatelyEqual function into your square
root program, you can stop as soon as the square of you guess is approximately equal to the
original number.

This informal process can be restructured into a more formal English algorithm as
follows:

1. To compute the square root of a number x, begin by making an arbitrary guess g.
One possibility is just to start with g equal to x, although you can use any positive
value.

2. If the guess g is close enough to the actual square root, the algorithm is complete,
and function can return g as the result.

3. If g is not sufficiently accurate, generate a new guess by averaging the values g

and x / g. Because one of these values will be less than the actual square root and
the other will be larger, choosing the average allows you to pick a value that is
closer to the correct answer.

4. Store the new guess in the variable g, and repeat the process from step 2

A function that implements this algorithm is shown in Figure 6-6. In this
implementation, the function is called Sqrt with a upper case S to avoid interfering with the
sqrt function defined in the math library.

The first two statements in the implementation of Sqrt are included to account for two
important situations. The first statement

if (x == 0) return (0);

is necessary for the Sqrt function to compute correctly the square root of 0. If this statement
is not used, Newton’s method ends up trying to divide by 0 when it computes x / g in the first
cycle of the loop. Dividing by 0 is meaningless as a mathematical concept, and the behavior
of the program is unpredictable if you attempt to do so. Fortunately, it is a simple matter to
check for 0 first and return the correct answer immediately.
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double Sqrt (double x)
{

double g;

if (x == 0) return (0);



if (x < 0) Error (“Sqrt called with nega tive argumen t %g”, x);
g = x;
while (!Approx imatelyEqual (x, g * g)) {

g = (g + x / g) /2;
}
return (g);

}

The second statement in the function

if (x < 0) Error (“Sqrt called with nega tive argumen t %G”, x);

is used to handle the case in which the Sqrt function is passed a negative argument.
Although the square root function is undefined for negative values of x, the sqrt function
should be prepared for the possibility that someone might call it with a negative value. If
nothing else, the function must report the error so that its caller can know that it occurred.

ReportingReportingReporting

Reporting

errorserrorserrors

errors

There are many different ways in which a program can respond to error condition that
come up during its execution. The programs in this text use the Error function, which is
defined in the genlib library, to report error conditions to the user. The Error function takes a
control string followed by additional arguments, just as printf does. When Error is called, it
displays the string “Error: ” followed by the control string, substituting values in place of
format code in the same way that printf does. At the end of the line, Error automatically
includes a newline character to move the cursor to the beginning of the next line.

The main difference between Error and printf is that Error does not return to its caller.
Once the error message has been displayed, the entire program terminates, just as if it had
finished executing all the statements in the main program. Thus, if Sqrt were called on the
value –1, the following output would appear on the screen:

As soon as the error message appears, the program stops running without executing any
more statements.

The process of responding to an error within a program is called errorerrorerror

error

handlinghandlinghandling

handling

.
Having a program write out an error message and stop is not a particularly sophisticated
error-handling strategy. In the context of a library function such as sqrt , it would be much
better to provide some mechanism by which the caller could take corrective action.
Unfortunately, the best error handling strategies are beyond the scope of this text. It is
nevertheless critically important that the program do something when an error condition
occurs. If you do not check for the situation, the Sqrt function did not test for negative
arguments, the function would go into an infinite loop trying to approximate an answer that
does not exist. Having the program report the error and stop is a much more useful response
than having it run forever.

Error: Sqrt called with nega tive argumen t -1



1-41-41-4

1-4

SeriesSeriesSeries

Series

expansionexpansionexpansion

expansion

While Newton’s method is a reasonable approach to the problem of calculating square
roots, there are many alternative algorithms that are just as effective, some of which are
easier to apply in other contexts. One of the most widely used methods is seriesseriesseries

series

expansionexpansionexpansion

expansion

,
in which the value of a function is approximated by adding together terms in a
mathematical series. If the addition of each new term brings the total closer to the desired
value, the series converges, and you can use that series to approximate the result.
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To illustrate the idea of series expansion, the section once again explores a problem
arising from Greek mathematics. In the fifth century B.C., the philosopher Zeno of Elea
invented a paradox that seems to suggest that motion is impossible. Imagine that you are
trying to move across a room. To do so, you must first go halfway across it. From there, you
must go half of the remainder, which means covering another quarter of the original eighth
of the total, and so on. Since the remaining distance is always a quantity that can be halved,
Zeno argued, the process must continue on forever, and you can never actually reach your
goal. This argument is known as ZenoZenoZeno

Zeno
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.
In Zeno’s paradox, each step in the process of crossing the room consists of going half

the remaining distance. If you translate Zeno’s problem into a more mathematical form, the
total fraction of the distance covered can be expressed as the following sum:

+ + + + + + + …
2
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4
1
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1

16
1
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1

64
1

128
1

Zeno was correct in observing that there are an infinite number of terms in this series1. What
Zeno did not realize in the fifth century B.C. is that an infinite series can have a finite
sum—a fact that does, after all, seem somewhat paradoxical.

What is the sum of Zeno’s series? There are several ways to figure it out. From the
mathematical point of view, you can start by letting s be the unknown sum of the series:

s = + + + + + + + …
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If you then multiply each side of the equation by 2, the resulting equation is

2s = 1 + + + + + + + + …
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The right-hand side of the equation is interesting. After the first term, the infinite series
contains exactly the same terms as the original series does. You can therefore substitute s in
place of all those terms, which yields the much simpler equation

1 In a mathematical series, each value that is added to from the total is called a term. Since terms in
a series can themselves involve mathematical operations—such as the fraction bar in every term used to
represent Zeno’s calculation—the definition of term as it applies to a series is slightly different from the
one used in the discussion of expressions in Chapter 2.



2s = 1 + s

Subtracting s from each side gives you

s = 1

You could also write a program to compute an approximation to the series

+ + + + + + + …
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simply by adding up the terms. If you number each term starting from 2, the ith term is the
sum has the form

i2
1

A mathematical series in which the ith term involves raising some quantity to the ith power is
called a powerpowerpower

power

seriesseriesseries

series

. Power series calculations play an extremely important role in
computational mathematics.

Because you now have a formula that allows you to calculate the value of each term
from the term number, you can easily write a program that uses this formula to calculate
each term and then add that term to a running total. For most power series, however, there is
an even easier approach. Rather than calculate each term from scratch, calculating each
term from the previous one saves a lot of computation. In Zeno’s series, the first term is 1/2,
and every subsequent term is half of the previous one. Thus, if you keep track of the current
term as well as the sum, your program can use the following structure to find the sum of the
series:

sum == 0.0;
term = 0.5;
while (TRUE) {

sum += term; This program fragment
term /= 2; contains an infinite loop.

}

The only practical difficulty with this program is that it never stops. There is no exit
condition for the while statement, and the program is therefore caught in an infinite loop.
How can you change the program so as to avoid this problem?

When you write programs that perform series expansions, the fact that floating-point
numbers are only approximations of real numbers turns out to be extremely useful. As the
series expansion continues, the value of term becomes smaller and smaller. At some point,
the value of term will become so small that the exact value of sum + term can no longer be
represented with the limited precision used by the machine. Suppose, for example, that sum
has the value 2.3 and that term has the value 0.0000000000000000001. Mathematically, of
course, the value of sum + term should be 2.3000000000000000001, but the computer is
probably unable to represent floating-point numbers with 20 digits of accuracy. Using
floating-point arithmetic, the answer is probably just 2.3 .The fact that the value of term will
eventually become insignif icant leads to an effective strategy for stopping the while loop. If
you replace the while control line in the infinite loop with

while (sum!= sum + term)



the loop will continue as long as adding term to sum produces some noticeable effect.
A complete main program for calculating the sum of Zeno’s series is shown in Figure

6-7.
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main()
{

double sum, term;

sum = 0.0;
term = 0.5;
while (sum != sum + term) {

sum += term;
term /= 2;

}
printf(“The sum of Zeno ’s series is %g\n”, sum);

}
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Like many mathematical function, the square root function has an associated power
series that makes it possible to use the summation technique presented in the preceding
section to generate approximate results. Unfortunately, finding out what the power series is
requires some familiarity with calculus. Once the formula for the series has been derived,
writing the program isn’t all that difficult.

If you haven’t had any calculus, feel free to skip the entire next section and start again
with the section on “Implementing the Taylor series approximation.” If you take calculus
later, you then may want to read this section to see how computational mathematicians
come up with the techniques used to implement the function in the mathematical libraries.
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One of the most useful forms of power series is the Taylor series, which you would
ordinarily learn about at some point during the first year of college-level calculus. The
eighteenth-century mathematician Brook Taylor discovered that, at least for argument
values within a certain range, functions that can be repeatedly differentiated can be
approximated using the following formula:

f(x) f(a)+f’(a)(x–a)+f’’(a) + f ’’’(a) +…+ f(n)(a)
!2

)( 2ax 
!3

)( 3ax 
!

)(
n

ax n

In this formula, which is called TaylorTaylorTaylor

Taylor

’’’

’

sss
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after its discoverer, the symbol a
represents a constant, and the notations f’, f’’, and f ’’’ represent the first, second, and third
derivatives of the function f, and so on.

Consider the case in which f is the square root function. In mathematics, taking the



square root of a number x is the same as raising x to the power 1/2, so that f(x) is defined as

f(x) = 2
1

x

To find f ’, all you need to do is use the general formula that the derivative of xc for any
constant c is

cxc-1

In the case of the square root function, c is 1/2, so the first derivative is

f’(x) = 2
1

2
1 x

From this point, you apply the same rule to generate additional derivatives. In every case,
the previous coefficient gets multiplied by the previous exponent, and the exponent is
reduced by 1. Thus, the next few derivatives of the square root function are the following:

f’’(x) = 2
3

4
1 

 x

f’’’(x) = 2
5

8
3 

x

f’’’(x) = 2
7

16
15 

 x

In Taylor’s formula, these derivatives are evaluated only on the constant a, so it makes
sense to chose a value of a that makes these derivatives easy to calculate. If you let a be
equal to 1, for example, raising a to any power always gives the answer 1, leaving only the
coefficients, as follows:

f(1) = 1

f’(1) =
2
1

f’’(1) =
4
1



f’’’(1) =
8
3

f’’’’(1) =
16
15



By inserting these value s into Taylor’s formula, you discover that the following power
series gives an approximation to the square root function:

1 + (x –1) - + - +…x 
2
1

!2
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8
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As long as a simple condition applies—which we will get to in the section on “Staying
within the radius of convergence” later in this chapter—the more terms in this series you



evaluate, the closer the answer will be.
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At this point, you need to write a function that approximates the square root by
evaluating its power series expansion:

1 + (x –1) - + - +…x 
2
1
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As illustrated in the section on “Zeno’s paradox” earlier in this chapter, the most effective
strategy for computing the sum of a power series is to find a way to compute each new term
from the preceding term. To see how this principle applies to the Taylor series expansion for
approximating a square root, let’s start by numbering the terms as follows:
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How does each term differ from the preceding one? To answer this question, think of each
term as having these three separate components:

factorial
xpowercoeff

For example, for t3 , the coeff component is (x-1)3, and the factorial component is 3!. The
question then becomes how each of these components changes from term to term.

Consider the xpower component, for example. Starting with the current xpower

component, all you have to do to get the next one is multiply by x – 1. By storing the current
xpower value in a variable, you can make sure that it maintains the correct value with one
multiplication inside each loop cycle.

What about the factorial component? This component always has the value i! for term i .
Factorials have the useful property that the factorial of any number i is just i times the
factorial of the next smaller number. This property can be easily demonstrated by
expanding the computation of factorial by replacing (i + 1)! with its definition, as follows:

(i+ 1)! = (i + 1) × i × (i –1) × (i –2) × … × 2 × 1
= (i +1) × i!



Thus, to prepare for the (i +1)st cycle of the loop, all you need to do is multiply the current
factorial component by i +1.

The only component left to compute is coeff. It turns out to be a running product, just
like the others1. In general, to get the value of coeff for the (i +1)st cycle you simply multiply
the current value in the ith cycle by

i
2
1

You can use these formulas to compute the components for the next term by using the
components of the current one. If the variables coeff, xpower, and factorial contain the
components of the current term, all you have to do to calculate those components for the
next term is to execute the statements

coeff *= (0.5 – i);
xpower *= (x – 1);
factorial *= (i +1);

as the main loop within the function. Just as in the program to compute the sum of Zeno’s
series, the main loop must be executed until adding in the value of a term doesn’t change
the sum. Writing a loop that tests for this condition and initializing all the variables gives
rise to the function TSqrt shown in Figure 6-8.
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double TSqrt (double x)
{

double sum, factorial, coeff, term, xpower;
int i;

factorial = coeff = xpower = 1;
sum = 0;
term = 1;
for (i = 0; sum != sum +term; i++) {

sum += term;
coeff *= (0.5 – i);
xpower *= (x –1);
factorial *= (i =1);
term = coeff * xpower / factorial; This fun ction fails

} if x ≥ 2
return (sum);

}
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Unfortunately, the TSqrt function is not as general as it should be. As a Taylor series
expansion, the formula for the square root function is effective only when the argument
falls within a limited range that allows the calculation to converge. That range is called the
radiusradiusradius

radius

ofofof

of

convergenceconvergenceconvergence

convergence

. For the square root function calculated using a = 1, the Taylor series

1 Understanding in detail how the coefficient changes from term to term requires knowing how there
terms were originally computed using Taylor’s formula. If you read the preceding discussion on “The
Taylor Series expansion,” you know that the coefficients come from the derivatives of the square root
function. Even if you skipped that section, however, the formula is easy enough to apply.



formula requires that x be in the range

0 < x <2

If x falls outside of the radius of convergence, the terms in the expansion keep getting
bigger, and the Taylor series just gets farther and farther from the answer. This restriction
makes the TSqrt function less useful, although it is still effective insider that range.

When faced with restrictions of this sort, you should think about ways to transform the
general problem into a specific one that fits the requirements of the solution you have at
hand. Thus, you need to find a way to express the square root of a large number that falls
outside the legal range in terms of a square root that falls insider that range.

To accomplish this transformation of the problem, it is useful to remember that

xxx 244 

A factor of 4 inside the square root sign can be turned into a factor of 2 outside the square
root sign.

This observation provides you with the tools you need to complete the solution. If you
have a number that is too large, you can always divide it by 4, use TSqrt to take the square
root of what remains, and then multiply that result by 2. If a single division by 4 is not
sufficient to bring the number into the desired range, you can divide by 4 several times
before calling TSqrt, as long as you remember to multiply the result by 2 just as many times.

The easiest way to handle this new piece of the solution strategy is to separate the
square root function into two pieces. You already have a TSqrt that calculates square roots
within a limited range. Without changing that function, you can write a Sqrt function that
performs all the divisions necessary to bring the number within range and all the
multiplications necessary to fix up the answer at the end. The sqrt function is also an
appropriate place to include the special case checks for 0 and for negative values of x that
were used in the Sqrt implementation in Figure 6-6.

The complete implementation of Sqrt using the Taylor series formula, including both
the function Sqrt and TSqrt with their associated comments, is shown in Figure 6-9.

FIGUREFIGUREFIGURE

FIGURE

6-96-96-9

6-9

CCC

C

odeodeode

ode

forforfor

for

TaylorTaylorTaylor

Taylor

versionversionversion

version

ofofof

of

SqrtSqrtSqrt

Sqrt

/*
* Function: Sqrt
* Usage: root = Sqrt (x);
* ------------------------------
* Return the square root of x, calculated using a
* Taylor series expansion, as described in the text.
* The Sqrt fun ction is actually implemented as two
* functions. The job of the outer Sqrt fun ction is to
* div ide the argumen t repea tedly by 4 until it is in
* the range 0 < x < 2, where the Taylor series converges.
* It then calls TSqrt to perform the actual Taylor series
* calculation. When finished, Sqrt adjusts the answer by
* multiply ing the result by 2 for each time it needed to
* be div ided by 4 to bring it in range.
*/

double sqrt (double x)
{

double result, correction;



if (x == 0) return (0);
if (x < 0) Error (“Sqrt called with nega tive argumen t %g”, x);
correction = 1;
while (x >= 2) {

x /= 4;
correction *= 2;

}
return (TSqrt (x) * correction);

}

/*
* Function: TSqrt
* Usage: root = TSqrt (x);
* ------------------------------
* Returns the square root of x, calculated by expanding
* the Taylor series around a = 1, as described in the
* text. The function is effective only if x is in the
* range 0 < x < 2. Term i in the summation has the form
* xpower
* coff * ----------------
* factorial
* where coeff comes from ith derivative of the function,
* factorial is i!, and xpower is the ith power of (x –a).
* Each of these componen ts is computed from its prev ious
* value.
*/

double TSqrt (double x)
{

double sum, factorial, coeff, term, xpower;
int i;

factorial = coeff = xpower = 1;
sum = 1;
for (i = 0; sum != sum + term; i++) {

sum += term;
coeff *= (0.5 – i);
xpower *= (x –1);
factorial *= (i + 1);
term = coeff * xpower / factorial;

}
return (sum);

}
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When you are working on numerical applications such as those in this chapter, it is
often important to be able to exercise some control over the range and precision of the
numeric data types. To some extent, these characteristics are determined by the hardware,
since all data values within a computer are stored electronically in its memory system.
Depending on the type of computer, the individual units into which memory is divided can
be of different sizes. From the programmer’s point of view, the major impact of these
variations in internal structure is that the numeric data types may be subject to different
limitations on different machines, making it more difficult to write programs that are
portable. A portableportableportable

portable

program is one that can be run successfully on many different
computer systems in exactly the same from.

To make it easier for programs to write portable programs and to ensure that numerical
calculations are as precise as they need to be, ANSI C includes several distinct integer an



floating-point types. Although int and double are sufficient for a wide variety of applications
and are used throughout this text as the only numeric types, it is sometimes preferable to use
one of the other numeric types to make sure that the compiler will reserve enough space to
hold a certain piece of data on the widest possible variety of computer systems. The next
three sections describe the numeric types available in C other than int and double and give
some suggestions about when it is appropriate to use these types.

IntegerIntegerInteger

Integer

typestypestypes

types

Data values of type int are stored internally inside the computer’s memory in individual
storage units that have a limited capacity. They therefore have a maximum size, which
depends on the machine and the C compiler being used. On many personal computers, the
maximum value of type int is 32,767, which is rather small by computational standards. If
you wanted, for example, to perform a calculation involving the number of seconds in a
year, you could not use type int on those machines, because that value (31,536,000) is
considerably larger than the largest available value of type int .

To get around this problem, C defines several integer types, distinguished from each
other by the size of their domains. The three principal types are int, long and short, although
each of them can be modified by the keyword unsigned , as described in the next section.

The data type int represents the standard integer type for a particular machine. ANSI C
ensures that values of type int can always be at least as large as 32,767, but otherwise places
no restrictions on the compiler designers. On some computer systems, the type int may have
a considerably larger range, and it is common to find systems on which the upper limit for
type int is 2,147,483,6371.

The designers of ANSI C could have chosen to define the allowable range of type int

more precisely. For example, they could have declared that the maximum value of type int

would be 2,147,483,647 on every machine. Had they done so, it would be easier to move a
program from one system to another and have it behave it in the same way. The problem
with establishing such a rule for every machine is that doing so may force some machines
to sacrifice efficiency just to ensure that they are following the rule. If a particular computer
can implement small integers efficiently but must perform extra operations to work with
large integers, forcing that machine to use large integers has a cost. To avoid that cost, C
allows compliers to represent value of type int in the size that is most convenient for that
machine.

Because the only guarantee that C makes about values of type int is that they can be at
least as large as 32,767, you should use type int only if you are certain that the value of a
variable of expression can never exceed that limit. If a value might conceivably be larger
than 32,767, it is best to use the data type long, which indicates to the compiler that a larger
integer domain is required. ANSI C specifies that variables of type long must be able to hold
values at least as large as 2,147,483,647, but some compilers may allow even larger values.

The data type short is defined so that the programmer can explicitly choose to use less

1 The numbers used as the limits on integer sizes are not really as random as they appear to be.
Computers store numbers internally using the binary system, and each of these limits is one les than a
power of two.



storage for a particular variable than the compiler might reserve if that variable were
declared as an int. The type short is retained in the language mostly for historical reasons and
is not used much in modern programming.

If you combine integer data of different sizes in a single expression, the type of the
result will be that of the longest type involved in the calculation. For example, if you were
to add a variable of type int to one of type long, the result would be of type long . This rule
ensures that the result type has as large a domain as its operands do.

When using data of type short or long, you must use different printf format codes. To
display a value of type long , you must precede the letter d in the %d conversion specification
with the letter l (note that this is the letter ell and not the digit one) to specify that the value
is a long. Similarly, if you are printing a value of type short, you must precede the d with the
letter h for half because short integers were originally half the size of integers in the early
versions of C.

UnsignedUnsignedUnsigned
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In C, each of the integer types int , long, and short may be preceded by the keyword
unsigned . Adding unsigned specifies a new data type in which only non-negative values are
allowed. Because unsigned variables do not need to represent negative values, declaring a
variable to be one of the unsigned types allows it to hold twice as many positive values. For
example, if the maximum value of type int is 32,767, the maximum value of type unsigned
int will be 65,535. C allows the type unsigned int to abbreviated to unsigned , and most
programmers who use this type tend o follow this practice.

Values of type unsigned int can be displayed by specifying the %u conversion in a printf
call. To display values of type unsigned long or unsigned short, you must use the
specification %lu and %hu, respectively.

For the most part, you will not need to use unsigned types unless you are writing
programs that require you to maintain extremely tight control over the internal
representation used by the machine. Unsigned types are included in this text primarily for
completeness and are otherwise not used at all.

Floating-pointFloating-pointFloating-point
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types

Like integers, floating-point numbers are represented in a fixed amount of internal
memory and therefore have size limitations. For floating-point numbers, however, the
limitation on memory affects the precision of the data (how many significant digits are
available) as well as the range. Because precision is a function of the hardware, the
precision of a floating-point number may differ from machine to machine. On one machine,
for example, floating-point numbers might be limited to 10 significant digits. On that
machine, the values 1.0 and 1.00000000001 will appear to be the same because the
computer cannot represent the latter number exactly.

As with integers, C provides three types of floating-point numbers. The type floa t is the



least precise, but takes less memory than the type double. Over the last decade, however,
computer memory had gotten cheaper, and most C programmers now tend to use the more
precise type double for all floating-point data—a practice followed in this text. All
calculations involving values of type float or double are performed in C as if they had been
declared as type double ; the data type affects only how the values are stored.

For certain extremely exacting numerical computations, however, the type double may
not be sufficiently precise. For applications that require extremely high precision, the ANSI
standard also includes a type called long double , although this type is rarely necessary in
practice.

SUMMARYSUMMARYSUMMARY
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In this chapter, you learned several general strategies for designing algorithms. The
examples presented were chosen from classical mathematics, mostly because mathematics
provides an interesting set of problems that you can solve without knowing about data types
other than numbers. As you learn about other data types in later chapters, you will discover
that the algorithmic techniques presented here can be applied to other sorts of problems as
well.

Important points introduced in this chapter include:

 There are often many different algorithms that can solve a particular problem.
Choosing the algorithm that best fits the application is an important part of your task as
a programmer.

 When choosing between different algorithms, you need to consider many different
factors, including efficiency, maintainability, and clarity. Choosing a particular
algorithm will often involve evaluating tradeoffs between these qualities.

 You should never sacrifice correctness as you work to improve other aspects of your
program.

 Proving that a program is correct is an extremely difficult task. In most cases, through
testing is necessary to increase your confidence that a particular solution is correct.
Even with good testing, however, subtle errors may remain.

 Brute-force algorithms are those that check every possibility without trying to be
clever. Such algorithms are usually easy to understand but are likely to be extremely
inefficient.

 Successive approximation often provides a mechanism by which guesses can be
transformed into solutions by continually improving the accuracy of the guess.

 Error conditions that occur during a program can be reported to the user by calling the
Error function, which is defined in the genlib library.

 Many mathematical functions can be approximated using the technique of series
expansion.
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1. What are the three properties that are required for a strategy to be considered an
algorithm?

2. What is a loop invariant?
3. Explain in your own words why it is unnecessary to consider factors greater than

when you are testing to see if n is a prime.n

4. One of the common pitfalls boxes in this chapter makes a suggestion for improving the
efficiency of loops. What method does it suggest?

5. What are some of the factors you would consider in choosing between alternative
algorithms for solving a particular problem?

6. In the examples that used Euclid’s algorithm to calculate the GCD of x and y, x is
always larger than y. Does this matter? What happens if x is smaller than y?

7. When you have written a program that converges toward a solution, how do you know
when to stop?

8. In what ways does the Error function differ in its behavior from printf?
9. What is Zeno’s paradox?
10. I evaluating a power series, is it better to compute each new term directly or by using

the preceding term? Why?
11. The control line for the while loops used to calculate the sum of each power series looks

like this?

While (sum != sum + term)

At first glance, this test seems unusual. Mathematically, it should be possible by
simplify this test to

while (term != 0))

Programs that use this second test require much longer to run. Why?
12. Why is it necessary to include the special case test for 0 in the Taylor series

implementation of Sqrt?
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1. Although this chapter has focused on mathematical algorithms, the Greeks were
fascinated with algorithms of other kinds as well. In Greek mythology, for example,
Theseus of Athens escapes from the Minotaur’s labyrinth by taking in a ball of string,
unwinding it as he goes along , and then following thepath of string back to the exit.
Theseus’s strategy represents an algorithm for escaping from a maze, but it is not the
only algorithm he could have used to solve this problem. For example, if a maze has
no internal loops, you can always escape by following the right hand rule, in which
you always keep your right hand against the wall. This approach may lead you to



backtrack from time to time, but it does ensure that you will eventually find the
opening to the outside.

For example, imagine that Theseus is in the maze shown below at the position
marked by the Greek letter theta (Θ):

To get out, Theseus walks along the path shown by teh dotted line in the next
diagram, which he can do without taking his right hand off the wall.

Suppose you have been asked to write a program for a robot named Theseus to
implement the right-hand rule. You have access to a library the contains these
functions:

void MoveForward (void); /* Move forward to the next square */
void TurnRight (void); /* Turn right without moving */
void TurnLeft (void); /* Turn left without moving */
bool IfFacingWall (void); /* TRUE if Theseus is facing a wall */
bool IfOutside (void); /* TRUE if Theseus has escaped */

Use the functions to write a procedure EscapeFromMaze that implements the
algorithm suggested by the right-hand rule.

2. In many cases, it is not enough to know whether a number is prime; sometimes, you
need to know its factors. Every positive integer greater than 1 can be expressed as a
product of prime numbers. This factorization is unique and is called the primeprimeprime

prime

factorizationfactorizationfactorization

factorization

. For example, the number 60 can be decomposed into the factors
2×2×3×5, each of which is prime. Note that the same prime can appear more than once
in the factorization.

Write a program to display the prime factorization of a number n. The following

Θ

Θ

Enter number to be factored: 606060

60





2 * 2 * 3 * 5



is a sample run of the program:

3. Greek mathematicians took a special interest in numbers that are equal to the sum of
their proper divisors (a proper divisor of n is any divisor less than n itself). They called
such numbers perfectperfectperfect

perfect

numbersnumbersnumbers

numbers

. For example, 6 is a perfect number because it is the
sum of 1, 2, and 3, which are the integers less than 6 that divide evenly into 6.
Similarly, 28 is a perfect number because it is the sum of 1, 2, 4, 7,and 14.

Write a predicate function IsPerfect that takes an integer n and returns TRUE if n is
perfect, and FALSE otherwise. Test your implementation by writing a main program that
uses the IsPerfect function to check for perfect numbers in the range 1 to 9999 by testing
each number in turn. When a perfect number is found, your program should display it
on the screen. The first two lines of output should be 6 and 28. You program should
find two other perfect numbers in that range as well.

4. After you have gotten the perfect number program from exercise 3 to work, think
carefully about the algorithm you’ve used. Write a new version of the program that
improves the efficiency of the algorithm without sacrif icing its correctness.

5. Modify Newton’s algorithm as presented in the text so that it calculates cube roots
instead of square roots. Express the algorithm in the form of a function CubeRoot that
takes a double and returns another double , which is the cube root of the argument. The
creative part of this problem is figuring out what numbers you should average to obtain
a new guess on each cycle of the loop. If g, for example, lies to one side of the cube
root of n, what value can you compute using n and g that would be approximately as
close to the root but on the opposite side? If you can find such a value, averaging the
two will yield a result that is closer to the actual answer.

6. Mathematicians and other scientists sometimes find unexpected applications for power
series approximation. In 1772, the astronomer J.E. bode proposed a rule for
calculating the distance from the sun to each of the planets known at that time. To
apply that rule, which subsequently became known as Bode ’s law, you begin by
writing down the sequence

b1 = 1 b2 = 3 b3 = 6 b4 = 12 b5 = 24 b6 = 48

where each subsequent element in the sequence is twice the preceding one. It turns out
that an approximate distance to the ith planet can be computed from this series by
applying the formula

di =
10

4 1b

The distance is given in astronomical units; an astronomicalastronomicalastronomical

astronomical

unitunitunit

unit

(AU) is the average
distance from the sun to the earth, which is approximately 93,000,000 miles. Except
for a disconcerting gap between Mars and Jupiter, Bode ’s law gives reasonable
approximations for the distances to the seven planets known in Bode’s day:

Mercury 0.5 AU



Venus 0.7 AU
Earth 1.0 AU
Mars 1.6 AU
? 2.8 AU
Jupiter 5.2 AU
Saturn 10.0 AU
Uranus 19.6 AU

Concern about the gap in the sequence led astronomers to discover the asteroid belt,
which they decided was left over after the destruction of a planet that had once orbited
the sun at distance specified by the missing entry in Bode’s table.

Write a program to display the above table, using Bode ’s formula to calculate the
distances.

7. The technique of series approximation can be used to compute approximations of the
mathematical constantπ. One of the simplest series that involvesπis the following:
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Write a program that calculates an approximation ofπconsisting of the first 10,000
terms in the series above.

8. Unfortunately, the series used to approximate π in exercise 7 converges extremely
slowly. Even after 10,000 terms have been evaluated, the approximation is correct
only to four digits. Using this technique to compute πto the limit of floating-point
precision would be impractical. The following series converges much more quickly:
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Each term can be divided into three parts, as suggested by the parentheses in the
formula. Figure out how each part changes from term to term and use this information
to write a program that calculatesπ to the limit of floating-point accuracy. Display
your answer with 10 decimal places.

9. You can also approximate π by approximating the area bounded by a circular arc.
Consider the quarter circle

Which has a radius r equal to two inches. From the formula for he area of a circle, you
can easily determine that the area of the quarter circle should beπsquare inches. You
can also approximate the area computationally by adding up the areas of a series of
rectangles, where each rectangle has a fixed width and the height is chosen so that the



circle passes through the midpoint of the top of the rectangle. For example, if you
divide the area into 10 rectangles from left to right, you get the following diagram:

The sum of the areas of the rectangles provides an approximation to the area of the
quarter circle. The more rectangles there are, the closer the approximation.

For each rectangle, the width w is a constant derived by dividing the radius by the
number of rectangles. The height h, on the other hand, varies depending on the
position of the rectangle. If the midpoint of the rectangle in the horizontal direction is
given by x, the height of the rectangle can be computed using the distance formula

h = 22 xr 

The area of each rectangle is then simply h × w.
Write a program to compute the area of the quarter circle by dividing it into 100

rectangles.

10. The mathematical constant e can be computed by expanding the following power
series:
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Write a program that computes the value of e by adding the terms in this series until
the program reaches the limit of floating-point precision. Display your answer with 10
significant digits after the decimal point.



ChapterChapterChapter

Chapter

111

1

LibrariesLibrariesLibraries

Libraries

andandand

and

Interfaces:Interfaces:Interfaces:

Interfaces:

AAA

A

simplesimplesimple

simple

GraphicsGraphicsGraphics

Graphics

LibraryLibraryLibrary

Library

Art, it seems to me, should simplify. That, indeed, is very nearly the whole
of the higher artistic process; finding what conventions of from and what
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To understand the meaning of the terms interface, package, abstraction, implementor,
and client as they apply to libraries.

 To recognize that interfaces are represented in C using header files.
 To be able to read the graphics.h interface, which provides access to a library for

drawing simple pictures on the screen, and to understand the conceptual abstraction
used by the graphics library.

 To learn how to draw lines using Movepen and DrawLine and to draw arcs using DrawArc.
 To learn how to extend the basic capabilities of the graphics library by defining new

higher-level functions.
 To practice writing large programs using the graphics package.
 To appreciate the importance of general tools and the associated strategy of bottom-

up implementation.

EEE

E

very program you have seen or written in this text has called at least one library

function. Even the one-line program hello.c calls printf to display its message on the screen.
In modern programming, it is impossible to write interesting programs without calling
library functions, and by this point, you should be reasonably adept at calling them.

So far, the functions you have written have all been part of a single program. You can
call them from the main program or from other functions that are part of the same program
file, but you have not been ably to take your own functions and put them into a library that
you can then use for any number of later programs. Before you can do so, you need to
learn more about what a library is and how it works. Enormous power comes from being
able to design good libraries and use them well. A key part of that power comes from
understanding the concept of an interface, which is the main topic not only of this chapter
but of the next several chapters as well.

To give you a sense of what an interface is and how it works, this chapter
concentrates on having you read through an existing interface rather than having you
design one from scratch. Before attempting to write novels, authors usually spend many
years reading them. In doing so, they learn about the form of the novel and develop their
own appreciation of what makes a particular novel good. Here, your job is to learn the



basic structure of interfaces, and the best way to do that is to study existing examples. You
will have the chance to write your own interfaces beginning in Chapter 8.

This chapter begins by outlining the conceptual structure of interfaces and defining
several terms that make it easier to talk about them. It then introduces a simple graphics
library that enables you to draw pictures on the screen. That library will make it possible
for you to write programs that are much more exciting than those you have seen in the
preceding chapters, which makes the graphics library interesting in its own right. As you
use the graphics library, however, it’s important to keep in mind such issues as how
libraries work, what they contain, and how interfaces are used to describe them.
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In English, the word interface means a common boundary between two distinct
entities. The surface of a pond, for example, is the interface between the water and the air.
In programming, an interface constitutes a conceptual boundary rather than a physical one:
an interfaceinterfaceinterface

interface

is the boundary between the implementation of a library and programs that
use that library. Information passes across that boundary whenever functions in that library
are called. The interface mediates and gives structure to the exchange of information
between the library and its users. Conceptually, a programming interface also represents a
shared understanding about the nature of that boundary, providing both creators and users
of a library with the critical information they need to know.

Consider, for example, the math library introduced in Chapter 5. The math library
defines several functions, such as sqrt. Programs that sue the math library can call sqrt to
calculate a square root without having to specify the actual steps involved. Those steps are
part of the implementation of the square root function, which was written by the
programmers who created the math library itself . Chapter 6 presented two possible
strategies—Newton’s method and Taylor series expansion—for implementing the sqrt

function. The library implementors might have sued one of those strategies or any other
algorithm that computes the correct result.

Knowing how to call the sqrt function and knowing how to implement it are both
important skills. It is critical to realize, however, that those two skills—calling a function
and implementing one—are to a large extent unrelated. Successful programmers often use
functions that they wouldn’t know how to write. Conversely, programmers who implement
a library function cannot anticipate all the potential uses for that function.

To emphasize the difference in perspective between programmers who implement a
library and those who use it, computer scientists have adopted specific terms to refer to
programmers working in each of these capacities. Naturally enough, a programmer who
implements a library is called an implementorimplementorimplementor

implementor

. Because the word user means someone
who runs a program rather than someone who writes part of one, a programmer who calls
functions provided by a library is called a clientclientclient

client

of that library1.

1 In computer science, the term client sometimes refers to code that uses a library and sometimes to
the programmer who writes that code. If there is a possibility for confusion, I will refer to code that sues a
library as client code, although I will also follow the standard convention and use client in such case, as
long as the intent is clear.



Even though clients and implementors have different perspectives on the library, both
must understand certain aspects of that library’s design. As a client, you don’t need to
know the details of its operation, but you do need to know exactly how to call it. As an
implementor, on the other hand, you are not directly make it possible for them to do so by
providing the information they need to call the functions it contains. For each function in
the library, the client must know the following:

 Its name
 The arguments it requires and the types of those arguments
 The type of result it returns

That this information is precisely what a function prototype provides is by no means a
coincidence. In C, the prototype for a function and its implementation are separated
because they convey information to different audiences. The client and the implementor
must agree on the function prototype, which means that it is part of the interface. By
contrast, only the implementor is concerned with the function implementation. The act of
making a function available to clients by including its prototype in the interface is called
exportingexportingexporting

exporting

that function.
The relationship between the client and implementor is illustrated in the following

diagram:
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In computer science, an interface is a conceptual entity. It consists of an
understanding between the programmer who implements a library and the programmer
standing between the programmer who implements a library and the programmer who uses
it, spelling out the information that is required by both sides. When you write a C program,
however, you must have some way to represent the conceptual interface as part of the
actual program. In C, an interface is traditionally represented by a header file. You have
worked with header files ever since Chapter 2 and have encountered several different ones,
including stdio.h , math.h, and genlb.h . Each of these header files specifies the interface to the
underlying library.

The distinction between the abstract concept of an interface and the actual header file
that represents it may seem subtle at first. In many ways, the distinction is the same as that
between an algorithm and a program that implements it. The algorithm is an abstract
strategy; the program is the concrete realization of that algorithm. Similarly, C uses header
files to provide a concrete realization of an interface.

client Interface Implementation

Responsible for:
 how a function is

used

Both sides agree on:
 the function

prototype

Responsible for:
 how a function

work



The same distinction between a general concept and its programming manifestation
also comes up in the definition of two other terms that are often used in discussions of
interfaces. In computer science, you will often hear the term package used to describe the
software that defines a library. If you were assigned to develop a library, part of your job
would consist of producing a .h file to serve as the library interface and one or more .c files
that together provide an implementation. Those files constitute the packagepackagepackage

package

. To get a full
understanding of a library, however, you must look beyond the software. Libraries embody
a specific conceptual approach that transcends the package itself. The conceptual basis of a
library is called an abstractionabstractionabstraction

abstraction

.
The relationship between an abstraction and a package is best illustrated by an

example. When you write your programs, you use the printf function in the stdio.h interface
for all output operations. For input, you use functions like GetInteger , GetReal , and GerLine ,
which are made available through the simpio.h interface. The stdio.h interface provides
functions for accepting user input, but they turn out to be more difficult for beginning
programmers to use. The two libraries embody different approaches to input operation: the
stdio.h interface emphasizes power and flexibility while the simpio.h interface emphasizes
simplicity of structure and ease of use. The approach used in each of these interfaces is part
of the abstraction. The associated packages implement those abstractions and make them
real, in the sense that they can then be used by programmers.

The contents of header files are discussed in detail in Chapter 8. The best way to get a
general impression of how header files are sued to represent an interface, however, is to
look at an example. The following section walks you through the graphics.h header file,
which specifies the interface to a simple abstraction for drawing pictures on the screen.
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Compared with computer games or commercial word-processing systems, the
programs you have worked with so far seem relatively tame. Until now, all programs in
this text have displayed their output on the computer screen as numbers and strings
formatted by the printf function. Modern computer programs typically use the screen in a
much more creative way that involves pictures and fancy graphical displays—features that
make using the computer both easier and more exciting.

Although graphical displays may make life easier for the user, incorporating them into
a program usually makes life more difficult for the programmer. Considered in its entirety,
generating even a simple line drawing on the screen is an enormously complex
programming problem—well beyond the scope of this text. Luckily, there is no need to
look at the problem in its entirety. If you have access to a graphics library, you can ignore
the underlying complexity and concentrate instead on high-level operations that cause lines
and other graphical features to appear on the screen. The details are hidden on the
implementation side of the interface boundary.

To use the graphics library, you must specify its interface by writing the appropriate
#include line at the top of your program, which in this case is

#include “graphics.h ”
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Before you can appreciate the procedures and functions available in the graphics.h

interface, you first need to understand the underlying abstraction. How do you specify
positions on the screen? What units should you use for length? These questions are
important for understanding the graphical model, which is a central part of the conceptual
abstraction.

The graphical capabilities of the display screen you are using depend on the
computing hardware you have available. The graphics.h interface was designed to be as
general as possible, and this generality makes it difficult to describe precisely how the
graphical display will be presented on any given system. Typically, when you start up the
graphics package, a new rectangular window called the graphicsgraphicsgraphics

graphics

windowwindowwindow

window

is created on the
screen and used as the drawing surface. Whenever you call procedures and functions in the
graphics library, the results are displayed in the graphics window.

To specify points within the graphics windows, the graphics library uses an approach
that should be familiar from high-school geometry or algebra. All drawing in the graphics
window takes place on a conceptual grid as illustrated in Figure 7-1. As in traditional
geometry, points are identif ied by specifying their position relative to the originoriginorigin

origin

, which is
the point at the lower left corner of the graphics window. The horizontal and vertical lines
that emanate from the origin along the edges of the graphics window are called the axesaxesaxes

axes

;
the x-axis runs along the bottom of the window and the y-axis runs up the left side. Every
point within the graphics window is identified by a pair of values, usually written as (x, y),
that specifies the position of that point along the x and y axes. These values are called the

coordinatescoordinatescoordinates

coordinates

of the point. Coordinates are measured in inches relative to the origin, which
is the point (0,0). Form there, x values increase as you move to the right, and y values
increase as you move up.
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Coordinates in the graphics library come in two forms:

 AbsoluteAbsoluteAbsolute

Absolute

coordinatescoordinatescoordinates

coordinates

specify a point in the window by giving its coordinates
absolute coordinates (2.0, 1.5).

 RelativeRelativeRelative

Relative

coordinatescoordinatescoordinates

coordinates

specify a position in the window by indicating how far that
point is along each axis from the last position specified. For example, the open
dot in Figure 7-1 has absolute coordinates (2.5, 1.5). If, however, you express its
coordinates relative to the solid dot, this point is shif ted by the relative
coordinates (0.5, 0.0). If you wanted to connect these dots with a line, the
standard approach would be to specify the first point in absolute coordinates, but
then to specify the connecting line in the relative mode.

The best mental model to use for the drawing process is to think of a pen positioned over a
piece of transparent graph paper covering the screen. You can move the pen to any location
on the screen by specifying the absolute coordinates. Once there, you can draw a straight
line by moving the pen relative to its current location with the pen continuously touching
the graph paper. From there, you can draw another line beginning from where the last one
ended1.
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The graphics.h interface exports only a small number of functions and procedures for
drawing. To draw complicated pictures, you would certainly want more capabilities, but
the simplicity of this interface makes it possible to present the entire graphics package in
one chapter. You can easily understand it all. The graphics library contains the following
functions:

InitGraphics() Initializes the graphics package
MovePen (x, y) Moves the pen to an absolute position
DrawLine (dx, dy) Draws a line using relative coordinates
DrawArc (r, start, sweep) Draws an arc specified by a radius and two angles
GetWindowWid th () Returns the width of the graphics window
GetWindowsHeight () Returns the height of the graphics window
GetCurren tX () Returns the current x-coordinate of the pen
GetCurrectY () Returns the current y-coordinate of the pen

These functions provide the capabilities you need to begin drawing simple pictures in the
graphics window. To understand how to use them, however, you need to read the
documentation for each, which is provided by the interface.

1 My friends who are artists tell me that they tend to think of a figure like

as a single line, because it is unbroken. In this text, we will always use the term line to
 mean a segment of a straight line. Thus, the figure in the preceding diagram is actually composed of three
lines connected end to end.



The interface for the graphics library is contained in the header file graphics.h , shown in
Figure 7-2. The header file runs on for several pages, and it is important that you not try to
understand it thoroughly all at once. You can read through the initial comments and peruse
the file to get a sense of its structure, but it is usually best to use the interface mainly as a
reference guide. As new functions are introduced in the text, you should look up the
corresponding entries in the interface to see if they make sense.
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/*
* File: graphics.h
* --------------------
* This interface prov ides access to a simple library of
* functions that make it possible to draw lines and arcs
* on the screen. This interface presen ts a portable
* abstraction that can be used with a variety of window
* system implemented on differen t hardware platforms.
*/

#ifnde f _graphics_h
#define graphicsh

/*
* Overview
* -------------
* This library prov ides several functions fro drawing lines
* and circular arcs in a region of the screen that is
* defined as the “graphics window. ” Once drawn, these
* line and arcs stay in their position, whichmeans that
* the package can only be used for static pictures and not
* for anima tion
*
* indiv idual points within the window are specified by
* giv ing their x and y coordinates. These coordinates are
* real numbers measured in inches, with the origin in the
* lower left corner, as it is in tradi tional mathema tics.
*
* The calls available in the package are listed below. More
* complete description are included with each function
* description.
*
* InitGraphics ();
* MovePen (x, y);
* DrawLine (dx, dy);
* DrawArc (r, start, sweep);
* width = GetWindowWid th ();
* heigh t = GetWindowHeight ();
* x = GetCurren tX ();
* y = GetCurren tY ();
*/

/*
* Function: InitGraphics
* Usage: InitGraphics ();
* ------------------------------
* This procedure creates the graphics window on the screen.
* The call to IniGraphics must precede any calls to other
* functions in this package and must also precede any printf
* output. In most cases, the InitGraphics call is the firs t
* statemen t in the function main.
*/

void InitGraphics (void);



/*
* Function: MovePen
* Usage: MovePen(x, y);
* ------------------------------
* This procedure moves the curren t point to the position
* (x, y), without drawing a line. The model is that of
* the pen being lifted off the graphics window surface
* and then moved to its new position.
*/

void MovePen(x, y);

/*
* Function: DrawLine
* Usage: DrawLine (dx, dy);
* ----------------------------------
* This procedure draws a line extending from the curren t
* point by moving the pen dx inches in the x direction
* and dy inches in the y direction. The final position
* becomes the new curren t point.
*/

void DrawLine (double dx, double dy);

/*
* Function: DrawArc
* Usage: DrawArc (r, start, sweep);
* --------------------------------------------
* This procedure draws a circular arc, which always begins
* at the curren t point. The arc itself ahs radius r, and
* starts at the angle specified by the parameter start,
* relative to the center of the circle. This angle is
* measured in degrees counterclockwise from the 3 o’clock
* position along the x-ax is, as in tradi tional mathema tics.
* For example, if start is 0, the arc begins at teh 3 o’clock
* position; if start is 90, the arc begins at the 12 o’clock
* position; and so on. The fraction of the circle drawn is
* specified by the parameter sweep, which is also measured in
* degrees. If sweep is 360, DrawArc draws a complete circle;
* if sweep is 90, it draws a quarter of a circle. If the value
* of sweep is positive , the arc is drawn counterclockwise from
* the curren t point. If sweep is nega tive, the arc is drawn
* clockwise from the curren t point. The curren t point at the
* end of the DrawArc operation is the final position of the pen
* along the arc.
*
* Examples:
* DrawArc (r, 0, 360) Draws a circle to the left of the curren t point.
* DrawArc (r, 90, 180) Draws the left half of a semicircle starting from the 12 o’clock position.
* DrawArc (r, 0, 90) Draws a quarter circle from the 3 o’clock to the 12 o’clock position .
* DrawArc (r, 0, -90) Draws a quarter circle from the 3 o’clock to the 6 o’clock position.
* DrawArc (r, -90, -90) Draws a quarter circle from the 6 o’clock to the 9 o’clock position.
*
*/

void DrawArc (double r, double start, double sweep);

/*
* Funcion: GetWindowWid th, GetWindowHeight
* Usage: width = GetWindowWid th ();
* heigh t = GetWindowHeight ();
* --------------------------------------------------
* These functions return the width and heigh t of the graphics
* window, in inches.
*/



double GetWindowWid th (void);
double GetWindowHeight (void);

/*
* Function: GetCurren tX, GetCurren tY
* Usage: x = GetCurren tX ();
* y = GetCurren tY ();
* ------------------------------------
* These functions return the curren t x and y positions.
*/

double GetCurren tX (void);
double GetCurren tY (void);

#endif

The graphics.h interface contains a few stylized lines that are part of every interface.
After the initial comments are the lines

#ifnde f _graphics_h
#define _graphics_h

The very last line in the interface is

#endif

The purpose of these lines is discussed in Chapter 8, which explains how to write an
interface. For the moment, however, you can ignore these lines. Although they turn out to
be important to the compiler, they are not at all important to you understanding of how the
interface works.

The remainder of the interface consisits only of comments and function prototypes.
Of these, the comments account for more that 90 percent of the header file. Even though
the compiler ignores the comments, they are in many ways the most important part of the
interface. The real audience for the interface is not the compiler but the programmer who is
trying to write client code. The purpose of the comments is to help programmers
understand the abstraction as a whole and use the facilities provided by the interface.
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The first procedure in the graphics.h interface is InitGraphics . As the comments in the
interface indicate, this procedure initializes the graphics library and must be called before
any other function in eh package and before printf is used to display any output on the
screen. It is common for a library package to require some initialization. When you use an
interface, it is a good policy to red through it to see if it requires any initializing operations.
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The function MovePen and DrawLine are the principal line-drawing tools the graphics
library offers. As a first illustration, let’s draw a single straight line that extends one inch
upward from the point (0.5, 0.5). The first step in any main program that uses the graphics
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Make sure the firs t line in
any program that uses the
graphics library is a call to
the func tion InitGraphics.
As a more general rule,
you should remember that
libraries of ten need
initializa tion of some sort.
You should therefore
check each interface to
see whether any
initializa tion is required.



library is always

InitGrarphics ();

To draw the line, you start by moving the pen to the point (0.5, 0.5):

MovePen (0.5, 1.0);

From there, all you have to do is draw a line in which the x-coordinate does not change at
all and the y-coordinate moves one inch up the screen:

DrawLine (0.0, 1.0);

The complete program is shown in Figure 7-3
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oneline.c

/*
* File: oneline.c
* -----------------
* This program draws a single straight line.
*/

#include <stdio.h>
#include “genlib.h ”
#include “graphics.h ”

main()
{

InitGraphics ();
MovePen (0.5, 0.5);
DrawLine (0.0, 1.0);

}

Running the program draws the following picture in the graphics window:

If you want to draw a square instead of a straight line, you can simple add three more calls
to DrawLine to the program, so that the main program looks like this:

main()
{

InitGraphics ();
MovePen (0.5, 0.5);
DrawLine (0.0, 1.0);
DrawLine (1.0, 0.0);
DrawLine (0.0, -1.0);
DrawLine (-1.0, 0.0);

}

which results in picture:



Note that each line begins where the last line ended. This behavior is consistent with the
conceptual abstraction of a pen moving around on the surface of the graphics window.
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The only other drawing function the graphics library provides is DrawArc, which you
use to create an arc consisting of some fraction of a circle. The proto type for DrawArc is

void DrawArc (double r, double start, double sweep);

Unlike many of the procedure prototypes you have encountered so far, however, the
prototype alone is not sufficient for you to understand exactly what this function does. For
a complete understanding, you need to look at the comments in the interface as well, which
appear in Figure 7-4.
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/*
* Function: DrawArc
* Usage: DrawArc (r, start, sweep);
* --------------------------------------------
* This procedure draws a circular arc, which always begins
* at the curren t point. The arc itself has radius r, and
* starts at the angle specified by the parameter start,
* relative to the center of the circle. This angle is
* measured in degrees counterclockwise from the 3 o’clock
* position along the x-ax is, as in tradi tional mathema tics.
*For example, if start is 0, the arc begins at the 3 o’clock
* position; if start is 90, the arc begins at the 12 o’clock
* position; and so on. The fraction of the circle drawn is
* specified by the parameter sweep, which is also measured in
* degrees. If sweep is 360, DrawArc draws a complete circle;
* if sweep is 90, it draws a quarter of a circle. If the value
* of sweep is positive, the arc is drawn counterclockwise from
* the curren t point. If sweep is nega tive, the arc is drawn
* clockwise form the curren t point. The curren t point at the
* end of the DrawArc operation is the final position of the pen
* along the arc.
*
* Examples:
* DrawArc (r, 0, 360) Draws a circle to the left of the curren t point.
* DrawArc (r, 90, 180) Draws the left half of a semicircle starting from the 12 o’clock position.
* DrawArc (r, 0, 990) Draws a quarter circle from the 3 o’clock to the 12 o’clock position.
* DrawArc (r, 0, -90) Draws a quarter circle from the 3 o’clock to the 6 o’clock position.
* DrawArc (r, -90, -90) Draws a quarter circle from the 6 o’clock to the 9 o’clock position.
*/

void DrawArc (double r, double start, double sweep);

The first sentence in the comments for DrawArc reveals an important piece of
information: the arc begins at the current position of the pen. This fact means you have to
call MovePen to position the pen at the beginning of the arc you wish to draw, just as you do
when you begin drawing a line. The comments also give critically important information
about what the angels mean and how they are measured. As a client, you need to know this
information to use the function successfully. The comments end by offering five examples



that illustrate the use of DrawArc. Such examples can e extremely helpful because it is almost
always easier ot call a function when you have an example to use as a model.

Here, for instance, the documentation suggests that you should be able to draw a
complete circle to the left of the current point by using the call

DrawArc (r, 0, 360);

The arc has radius r and begins at the angle represented by 0 degrees, which is the 3
o’clock position. It extends for 260 degrees, thus creating a complete circle. The starting
position on the arc is the current position of the pen when the call is made. Relative to the
circle that is drawn, this position is the rightmost point, and the entire circle lies to the left.

Based on this discussion, you should easily be able to write a program that draws a
circle with a half-inch radius, centered at the point (1,1). All you have to do is move the pen
to the starting point at the right edge of the circle and then can DrawArc. The main
program is

main()
{

initGraphics ();
MovePen (1.5, 1.0);
DrawArc (0.5, 0, 360);

}

which produces the following display:

To get more of a feeling for how DrawArc works, you can try the other examples given in the
documentation. For example, replacing the DrawArc call in the program by the statement

DrawArc *0.5, 90, 180);

produces this figure:
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The last four functions exported by the graphics.h interface do not actually affect the
graphics window but instead return information about it. The functions GetWindowWid the and



GetWindowHeight return the dimensions of the graphics window, measured in inches. For
example, using the statements

MovePen (0, 0);
DrawLine (GetWindowWidth (), GetWindowHeigh ());

resutls in a diagonal line the extends across the entire graphics window.
These functions also enable you can use to center a drawing. The x-coordinate of the

center is half of the screen width and the y-coordinate is half of the screen height. You can
therefore move the pen to the center of the screen by using the statement

MovePen (GetWindowWidth () / 2, GetWindowHeight () /2);

The function GetCurren tX and GetCurrrentY return the x- and y-coordinates of the current pen
position. These functions are used primarily in writing higher-level functions and are
discussed further in the section on “Switching between absolute and relative coordinates”
later in this chapter.
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The tools introduced in the last section are more useful than you might at first realize.
Not only do you have some experience in drawing lines and arcs; you also have begun to
put those tools together into program fragments that perform more sophisticated functions.
For example, you learned how to put four lines together to make a rectangular box and how
to use the DrawArc function to make complete circles. But because drawing boxes and circles
are common operations, it would be tedious if you had to go through all the steps involved
for each box or circle you wanted to draw. It would be more convenient if the designers of
the library had simply given you additional tools for drawing boxes and circles. However,
whether such functions are explicitly part of the graphics.h interface doesn’t actually matter.
Because C gives you the ability to define your own functions, you can create these tools
yourself.
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To illustrate this process, suppose you want to define a procedure DrawBox that draws a
rectangle oriented along the coordinate axes. The first step in the process of writing DrawBox

is to define its prototype. Doing so is an exercise in design. You know the name of the
procedure, but you also have to think about what arguments to include. A useful strategy
for figuring out what arguments are required is simply to ask yourself what information the
implementation needs. You can’t just give it the programming equivalent of the English
command:" Draw a rectangle." The implementation needs to know how big a rectangle
and where to put it on the screen. The traditional way for the implementation to get this
information is to have the client supply it in the form of arguments.

Even so, there is more than one way to design the DrawBox procedure. One possible
design for DrawBox would be to use only two arguments—width and heigh t—to specify the



dimensions of the box. To indicate the position of the box you would call MovePen, after
which the box would be drawn relative to that position. Thus, to draw a box at position (x,
y), you would write

MovePen(x, y); This example is not the final design .
DrawBox (width, heigh t);

Another alternative would be to design DrawBox to take four arguments—x, y, width, and
heigh t—thereby combining the act of setting the position and that of setting the dimensions,
as follows:

DrawBox (x, y, width, heigh t);

Because the second form is usually more convenient for the caller, it probably makes more
sense to adopt the second approach, but either design would certainly work.

In addition to determining how many arguments are required, you must also specify
the interpretation of the first two arguments. What does it mean to draw a point (x, y)? A
box does not have an obvious starting point. Where is the point (x, y) relative to the
rectangle? One possibility that is convenient for some applications is to implement DrawBox
so that the point (x, y) specifies the center of the box. A more traditional strategy, however,
is to define the origin of the box to be its lower left corner, just as the lower left corner of
the graphics window is the origin of the entire coordinate system. The point (x, y) then
indicates the position of the origin. No matter how you choose to define the position (x, y)
in relation to the box, the main thing you need to do is make sure that the documentation
for the function makes your design decision clear.

Thus one possibility for the DrawBox prototype is

void Drawbox (double x, double y, double width, double heigh t);

where x and y specify the origin of the box and width and heigh t specify its dimensions. Since
this procedure is one of your creations and not part of a library, you need to define the
implementation as well. The implementation consists simple of the steps necessary to draw
the four lines of the figure, expressed in terms of the parameter values. You have already
drawn one box in this chapter; all you need to do now is convert the explicit coordinates to
the more general, parameter-based form

void DrawBox (double x, double y, double width, double heigh t)
{

MovePen (x, y);
DrawLine (0, heigh t);
DrawLine (width, 0);
DrawLine (0, -width);
DrawLine (-width, 0);

}

The implementation moves to the origin point for the box and then draws the four line
segments necessary to complete the box.

Now that you have this procedure, you can change the implementation of the program
to draw a box on the screen so that it uses your new tool. The resulting program, drawbox.c,
appears in Figure 7-5.
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drawbox.c

/*
* File: drawbox.c
* --------------------
* This program draws a box on the screen.
*/

#include <stdio.h>

#include “genlib.h ”
#include “graphics.h ”

/* Function prototypes */

void DrawBox (double x, double y, double width, double heigh t);

/* Main program */

main()
{

InitGraphics ();
DrawBox (0.5, 0.5, 1.0, 1/0);

}

/*
* Function: DrawBox
* Usage: DrawBox (x, y, width, heigh t)
* ------------------------------------------------
* This function draws a rectangle of the given width and
* heigh t with its lower left corner at (x, y).
*/

void DrawBox (double x, double y, double width, double heigh t
{

MovePen (x, y);
DrawLine (0, heigh t);
DrawLine (with, 0);
DrawLine (0, -heigh t);
DrawLine (-height, 0);

}

The design decision to use the lower left corner as the origin for DrawBox does not
prevent you form writing other functions that use a different origin. For example, you
could also define a function DrawCenteredBox whose first two arguments specified the center
of the box rather than its corner. If you have already defined DrawBox, this new
implementation is quite simple to write:

void DrawCenteredBox (double x, double y, double width, double heigh t)
{

DrawBox (x – width / 2, y – heigh t / 2, width, heigh t);
}

It is important, however, to be as consistent as you can in your design choices. Using a
single model makes it much easier for you, or for anyone else reading your programs, to
understand exactly what is going on. In this chapter, functions that draw a figure with
respect to some position other than the lower left corner specifically indicate the new origin
in the function name, as in DrawCenteredBox .
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It would also be useful to define a new function to draw complete circles. Because
circles have no corners, it makes the most sense to define a function DrawCenteredCircle, which
draws the circle relative to its center. This function needs three arguments: the x- and y-
coordinates of the center and the radius r. The prototype for DrawCenteredCircle is therefore

void DrawCenteredCircle (double x, double y, double r)
{

MovePen (x + r, y);
DrawArc (r, 0, 360);

}

Although you could use DrawArc directly, it is likely that DrawCenteredCircle is better tailored to
your needs. For one thing, complete circles are quite common in graphical figures and
occur more often than partial arcs. For another, using a higher-level function frees you from
having to remember exactly how DrawArc interprets angles, which you don’t have to think
about when drawing a complete circle. DrawCenteredCircle provides convenience and
simplif ication, both of which are valuable commodities in programming.
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The MovePen procedure uses absolute coordinates to specify the beginning of a line,
which is then drawn by DrawLine Using relative coordinates. For some applications, it helps
to be able to move the pen to a new position relative to its previous position without
drawing a line. Conversely, it is sometimes useful to be able to draw a line to a particular
absolute coordinate.

The functions GetCurren tX and GetCurren tY make it easy to write a relative version of
MovePen and an absolute version of DrawLine . The new functions are called AdjustPen and
DrawLineTo, and their implementations are shown in Figure 7-6.
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/*
* Function: AdjustPen
* Usage: AdjustPen (dx, dy);
* --------------------------------
* This procedure adjusts the curren t point by moving it
* dx inches from its curren t x coordinate and dy inches
* from its curren t y coordina te. As with MovePen, no
* line is actually drawn.
*/

void AdjustPen (double dx, double dy)
{

MovePen (GetCuren tX () + dx, GetCurrntY () + dy);
}

/*
* Function: DrawLineTo



* Usage: DrawLineTo (x, y);
* -----------------------------------
* This function is like DrawLine, except that it uses the
* absolu te coordinates of the endpoin t rather than the relative
* displacemen t from the curren t point.
*/

void DrawLineTo (double x, double y)
{

DrawLine (x – GetCurren tX (), y – GetCurren tY ());
}

Like drawBox and DrawCenteredCircle , these functions are not actually part of the graphics
library. If you want to use them in your program, you must copy their definitions.
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As is always the case with procedures, the real advantage of such higher-level tools as
DrawBox and DrawCenteredCircle is not that you can use them is a single instance. The big
payoff comes from the fact that, once you have defined a new procedure, you can use it
over and over again. It is this ability to reuse steps you have written that makes procedures
so useful. For example, suppose that you wanted to draw a line of squares across the
graphics window, and not just the single square generated by the drawbox.c program. You
could call DrawBox several times in a row, or even put it inside a for loop that drew one box
each cycle.
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To develop your understanding of the functions in the graphics library, you need to
focus your attention on a larger problem. Suppose you have decided to draw a picture of
your dream house, using a level of detail that one might find in an elementary-school art
class. A house you might draw is shown in the following diagram:



Although the picture has many individual parts, it consists of only two fundamental
graphical elements: (1) the straight line, used for the house frame, the door, and the window
panes and (2) the circle, used only for the doorknob. If you put these lines and circles
together in the right sizes and positions, you can create the complete picture. Moreover,
almost all the straight lines are arranged to form boxes, so you can make the most of your
new set of tools.

Before you start writing the actual program, however, notice that this specific house
has many attributes that define its shape. For example, the house is 3.0 inches wide. The
distance from the ground to the attic is 2.0 inches, with another 0.7 inches to the peak of
the roof. The door is a rectangle measuring 0.4 inches by 0.7 inches. Each window panes is
also a rectangle with dimensions 0.2 by 0.25 inches. Rather than clutter your program with
all these numbers, it is useful to give these quantities names, which you can then use in the
program. The house diagram shown in the text uses the following constants:

#define HouseHeight 2.0
#define HouseWidth 3.0
#define AtticHeigh t 0.7

#define DoorWidth 0.4
#define DoorHeigh t 0.7
#define DoorknobRadius 0.04
#define DoorknobInse t 0.07

#define PaneHeight 0.25
#define PaneWid th 0.2

#define FirstFloorWindows 0.3
#define SecondFloorWindows 1.25

The values are real numbers representing inches, and the names describe their physical
meaning in the context of the picture. In the program, the fact that these values are
represented using symbolic names makes it easy to change the dimensions if, for example,
you wanted a house that was a little wider or had larger windows.
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You are now ready to start the implementation. As discussed in Chapter 5, the best
way to approach a large programming problem is to use the strategy of stepwise refinement
to break the entire problem down into a set of simpler ones. To apply that strategy to the
problem of diagramming the house, you start at the most general level of detail: you want
to draw a house. You give that operation a name, such as DrawHouse, and define it as a
procedure. Implementing the DrawHouse procedure becomes your first subproblem. To
complete the implementation, you then decompose the entire problem into smaller pieces:
drawing the outline, the door, and the windows. Each of these operations then becomes a
subproblem at the next level in the decomposition. You carry on this strategy until all the
subproblems are reduced to simple operations that fit the tools you have.

As with the DrawBox procedure, however, you need to determine whether the DrawHouse

procedure requires any arguments. The dimensions of the house were specified as



constants in the preceding section. You also need to say where to put the house, so it seems
appropriate for the DrawHouse procedure to take an x- and a y-coordinate, specifying at what
position in the graphics window you want the house to appear. For consistency with
DrawBox, it makes sense for these values to specify the coordinates of the lower left corner of
the house. Thus the prototype for the DrawHouse procedure would be

void DrawHouse (double x, double y);

Calling this procedure instructs the computer to draw a house whose lower left corner is
the point (x, y).

Having defined the prototype, you can now go back and complete the main program.
All you really need to do is figure out where the picture of the house should appear on the
screen. For example, suppose that you want the hose to be centered in the graphics window.
As discussed in the section on “Obtaining information about the graphics window” earlier
in this chapter, you can use the functions GetWindowsWidth and GetWIndowHeigh t to find the
coordinates of the window’s center. For example, if you declare the variables cx and cy, you
can set them to the coordinates of the center by writing

cx = GetWindowWid th () / 2;
cy = GetWindowHeight () / 2;

As you have defined DrawHouse, however, the diagram it self is drawn relative to the lower
left corner and not the center. How can you relate these tow positions?

You know that the house is HouseWidth inches wide. Thus the left edge of thee house
must be half that distance from the center. It follows that if you position the left edge of the
house at the coordinate

cx – HouseWidth / 2

the center of the house will end up at the center of the screen. You can repeat the same
argument for the y-coordinate. The only difference is that the total height of the house is the
sum of the heights of the rectangular structure and the roof. The lower left corner of the
house must therefore have the y-coordinate

cy – (HouseHeight + AtticHeigh t) /2

Now that you have the coordinates of the lower left corner of the house, you can finish the
implementation of main as follows:

main()
{

double cx, cy:

InitGraphics ();
cx = GetWindowWid th () / 2;
cy = GetWindowHeight () / 2;
DrawHouse (cx – HouseWidh t / 2, cy – (HouseHeight + AttricHeigh t) / 2);

}

This definition completes the highest level of the decomposition.

ImplementationImplementationImplementation

Implementation

thethethe

the

DrawHouse procedureprocedureprocedure

procedure



At this point, you need to turn your attention to the implementation of DrawHouse.
Thinking in terms of stepwise refinement, you should already have an idea of what the
fundamental operations are. In skeletal form, the DrawHouse procedure looks like this:

void DrawHouse (double x, double y)
{

DrawOutline (…);
DrawDoor (…);
DrawWindows (…);

}

You simple need to fill in the arguments. The procedures DrawOutline , DrawDoor, DrawHouse
cannot access the values of the local variables x and y in DrawHouse, so you must pass the
coordinate information along to each of the procedures. Choosing exactly what values to
pass, however, requires some thought. The outline starts at the same corner as the house, so
the x and y values there are probably the same. For the door, you might want to computer
the coordinates of the door itself and then pass these coordinates to DrawDoor . Because there
are several windows drawn relative to the house frame, the DrawWindows function should
probably take the house coordinates as arguments, although it will compute more specific
coordinates for each of the windows as part of its implementation. If you implement the
DrawHouse procedure as suggested, it will come out looking like this;

void DrawHouse (double x, double y)
{

DrawOutline (x, y);
DrawDoor (x + (HouseWidth – DoorWidth) / 2, y);
DrawWindows (x, y);

}
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When you approach large problems, stepwise refinement is only one of several
strategies you can use to your advantage. Another extremely useful strategy involves trying
to find common elements within the different parts of a large problem so that you can apply
a single solution technique to all of them. In essence, this approach consists of determining
what tools would be best for the job. For example, if you could solve several parts of a
problem easily using one procedure that performed a particular operation, it might be
worth creating that procedure.

If you think about the problem of framing the house form this perspective, there are
several tools you might want, some of which you have already written. For example, the
outline of the of the house is a box, as are the door frame and the windows, so the DrawBox

tool should prove very handy. The doorknob is a circle, which suggests the use of
DrawCenteredCircle . But you should also think about other tools that would help. The roof of
the house is a triangle. Even though there is only one triangle in the picture, writing a
DarsTriangle procedure might be worthwhile, particularly since you would then have it
available for use in other programs. It is even more important, however, to notice the
regular structure of the windows and consider the possibility of writing a more general
procedure that can draw each of the different sets of windows.



To design a tool that is appropriate for the windows, it pays to generalize the problem
as much as you can. The more general your tools are, the easier it is to apply them to a wide
variety of circumstances. One way to ensure that the tools you build are widely applicable
is to step back from the specific characteristics of the current problem and try to visualize
the necessary operations at a higher, more abstract level. In the context of the house, the
picture

depicts a windows with several panes. When you focus on this figure by itself, however,
what you see is simple a rectangular rid composed of two tows, each of which contains
three boxes. If you had a procedure DrawGrid that drew a rectangular grid, you could use that
procedure to draw each set of windows.

What arguments does DrawGrid require? To achieve the necessary generality, you have
to make sure that the DrawGrid procedure does not refer to the particular context of the house.
Because using the constants PaneWid th and PaneHeight would make the procedure specific to

the house picture, it is better to have the caller pass the width and height of each box within
the grid as arguments. The caller knows that it is drawing a window and can supply
PaneWid th and PaneHeight for this specific application. The procedure itself is just drawing
boxes. Besides the height and width of each box within the grid, DrawGrid also needs to
know the coordinate position of the grid as a whole. To be consistent with the other tools,
DrawGrid should interpret these coordinates as representing the lower left corner of the grid.
Finally, the procedure must know the number of columns and rows in the grid. Thus, the
prototype for DrawGrid should look like this:

void DrawGrid (double x, double y, double width , double heigh t, int columns, int rows);

Give that you already have the function DrawBox, the implementation of DrawGrid is
reasonably straightforward. The implementation consists of a pair of nested for loops that
calls DrawBox for each column within each row, as follows:

/*
* Function: DrawGrid
* Usage: DrawGrid (x, y, width, heigh t, columns, rows);
* ----------------------------------------------------------------------
* DrawGrid draws rectangles arranged in a two-dimensional
* grid. As always, (x, y) specifies the lower left corner
* of the figur e.
*/

void DrawGrid (double x, double y, double width, double heigh t, int columns, int rows)
{

int i, j;

for (i = 0; i < columns; i++) {
for (j = 0; j < rows; j++) {

DrawBox (x + i * width, y + j * heigh t, width, heigh t);
}

}
}



Given the implementation of DrawGrid, you can construct each of the widow patterns just by
calling DrawGrid with the appropriate arguments.

Even though it is usually best to design a problem form the top down, it is often best
to implement it from the bottom up. Implementing the low-level tools first makes it much
easier to debug the individual pieces of your program, which is usually easier than tiring to
debug all of it at once. This strategy is called bottom-upbottom-upbottom-up

bottom-up
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Given the new DrawGrid tool, the rest of the program to draw the house is
straightforward example of stepwise refinement. The complete program, house.c appears in
Figure 7-7.
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house.c

/*
* File: house.c
* -----------------
* This program draws a simple frame house.
*/

#include <stdio.h>

#include “genlib.h ”
#include “graphics.h ”

/*
* Constants
* --------------
* The following constants control the sizes of the
* various elemen ts in the display.
*/

#define HouseHeight 2.0
#define HouseWidth 3.0
#define AtticHeigh t 0.7

#define DoorWidth 0.4
#define DoorHeigh t 0.7
#define DoorknobRadius 0.04
#define DoorknobInse t 0.07

#define PaneHeight 0.25
#define PaneWid th 0.2

#define FirstFloorWindows 0.3
#define SecondFloorWindows 1.25

/* Function prototypes */

void DrawHouse (double x, double y);
void Drawouline (double x, double y);
void DrawWindows (double x, double y);
void DrawDoor (double x, double y);
void DrawBox (double x, double y, double width, double heigh t);
void DrawCenteredCircle (double x, double y, double r);
void DrawGrid (double x, double y, double width , double heigh t, int columns, int rows);



/* Main program */

main()
{

double cx, cy:

InitGraphics ();
cx = GetWindowWid th () / 2;
cy = GetWindowHeight () / 2;
DrawHouse (cx – HouseWidh t / 2, cy – (HouseHeight + AttricHeigh t) / 2);

}

/*
* Function: DrawHouse
* Usage: DrawHouse (x, y);
* ----------------------------------
* This function draws a house diagram with the lower left corner
* at (x, y). This level of the function merely div ides up
* the work.
*/

void DrawHouse (double x, double y)
{

DrawOutline (x, y);
DrawDoor (x + (HouseWidth – DoorWidth) / 2, y);
DrawWindows (x, y);

}

/*
* Function: DrawOutline
* Usage: DrawOutline (x, y);
* -----------------------------------
* This function draws the outline for the house, using (x, y)
* as the origin. The outline consis ts of a box with a triangle
* on top
*/

void DrawOutline (double x, doubble y)
{

DrawBox (x, y, HouseWidth, HouseHeight);
DrawTriangle (x, y + HouseHeight, HouseWidth, AtticHeigh t);

}

/*
* Function: DrawDoor
* Usage: DrawDoor (x, y);
* --------------------------------
* This function draws a door, with its doorknob. As usual,
* (x, y) specifies the lower left corner of the door.
*/

void DrawDoor (double x, double y)
{

DrawBox (x, y, DoorWidth, DoorHeigh t);
DrawCenteredCircle (x + DoorWidth – DoorknobInse t, y + DoorHeigh t / 2, DoorknobRadius);

}

/*
* Function: DrawWindows
* Usage: DrawWindows (x, y);
* --------------------------------------
* This function draws all the windows for the house,
* taking advantage of the fact that the windows are all
* arranged in two-dimensional grids of equal-sized panes.
* By calling the function DrawGrid, this implementation



* can create all of the window structures using a single
* tool.
*/

void DrawWindows (double x, double y)
{

Double xleft, xright;

xleft = x + HouseWidth * 0.25;
xright = x + House Width * 0.75;
DrawGrid (xleft – PaneWid th * 1.5, y + FirstFloorWindows, paneWid th, PaneHeight, 3, 2);
DrawGrid (xright – PaneWid th *1.5, y + FirstFloorWindows, PaneWid th, PaneHeight, 3, 2);
DrawGrid (xleft – PaneWid th, y + SecondFloorWindows, PaneWid th, PaneHeight, 2, 2);
DrawGrid (xright – PaneWid th, y + SecondFloorWindows, paneWid th, PaneHeight, 2, 2);

}

/*
* Function: DrawBox
* Usage: DrawBox 9x, y, width, heigh t)
* -------------------------------------------------
* This function draws a rectangle of the given width and
* heigh t with its lower left corner at (x, y).
*/

void DrawBox (double x, double y, double width, double heigh t)
{

MovePen (x, y);
DrawLine (0, heigh t);
DrawLine (width, 0);
DrawLine (0, -heigh t);
DrawLine (-width, 0);

}

/*
* Function: DtawTriangle
* Usage: DrawTriangle (x, y, base, heigh t)
* ------------------------------------------------------
* This function draws an isosceles triangle (i.e., one with
* two equal sides) with a horizon tal base. The coordinate of
* the left endpoin t of the base is (x, y), and the triangle
* has the indicated base length and heigh t. If heigh t is
* positive, the triangle points upward. If heigh t is nega tive,
* the triangle points downward.
*/

void DrawTriangle (double x, double y, double base, double heigh t)
{

MovePen (x, y);
DrawLine (base, 0);
DrawLine (-base / 2, heigh t);
DrawLine (-base / 2, -heigh t);

}

/*
* Function: DrawCenteredCircle
* Usage: DrawCenteredCircle (x, y, r);
* ------------------------------------------------
* This function draws a circle of radius r with its
* center at (x, y).
*/

void DrawCenteredCircle (double x, double y, double r)
{

MovePen(x = r, y);
DrawArc (r, 0, 360);

}



/*
* Function: DrawGrid
* Usage: DrawGrid (x, y, width, heigh t, columns, rows);
* ----------------------------------------------------------------------
* DrawGrid draws rectangles arranged in a two-dimensional
* grid. As always, (x, y) specifies the lower left corner
* of the figur e.
*/

void DrawGrid (double x, double y, double width, double heigh t, int columns, int rows)
{

int i, j;

for (i = 0; i < columns; i++) {
for (j = 0; j < rows; j++) {

DrawBox (x + i * width, y + j * heigh t, width, heigh t);
}

}
}
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In this chapter, you have started to explore the concept of an interface, which is one of
the most powerful ideas in modern programming. An interface is the point of connection
between the implementor of a library abstraction and its clients. The interface specifies the
information that both sides need to know. You will learn more about interface—along with
strategies for designing them—in Chapter 8.

This chapter also presents a particular interface—graphics.h—to serve as a general
example of how interfaces work. The graphics.h interface makes it possible for you to draw
simple picture by positioning lines and arcs on the screen Along with the functions
provided by the interface itself, you have also learned how to write additional high-level
tools, such as DrawBox, DrawCenteredCircle , and DrawGrid, that extend the power of the graphics
library.

Important points introduced in this chapter include:

 The code used to represent a library is collectively called a package. The package is
the programming manifestation of an abstraction, which is the underlying conceptual
basis for the library.

 The functions in a library are written by implementors and are called by clients. The
point at which clients and implementors come together is called the interface.

 Interfaces in C are represented using header files. Header files used as interfaces
contain extensive documentation as well as the prototypes for the functions exported
by the library.

 The graphics library makes it possible for you to draw pictures on the screen. The
facilities in the library are described in the graphics.h interface, which appears in Figure
7-2.

 Pictures drawn using the graphics library consist of lines and arcs that appear in the
graphics window. Coordinates in the library are specified in inches relative to the
origin, which is the lower left corner of the graphics window. The model used for the



library is that of a pen moving across the screen.
 Before using any of the other functions in the graphics library, you must first call

InitGraphics to initialize the package.
 To draw a line segment, you first call MovePen to position the pen at the starting point

and then call DrawLine to draw the actual line. The arguments to MovePen are specified as
absolute coordinates, indicating a particular position in the graphics window. The
arguments to DrawLine are relative coordinates, which indicate how far the pen moves
from its previous position. Once you have drawn one line, you then can draw
additional lines, each of which begins where the last one ended. To draw a line in a
new position, you must again call MovePen to position the pen at the new starting point.

 To draw a circular arc, you first call Move pen to position the pen at a point on the
circle and then call DrawArc. The arguments to DrawArc are the radius of the circle, the
angle at which the arc begins, and the number of degrees in the arc.

 You can extend the capabilities of the library be defining new functions, such as
DrawBOx and DrawCenteredCircle .

 Stepwise refinement is a critically important tool for solving large graphics programs,
just as it is for other types of programming.

 Another useful strategy for working with large programs is to think about general
tools that would be applicable to the current problem. If you then build those tools,
you can more easily solve the current problem as well as others that involve similar
operations. When you write the program itself, it is usually best to build these tools
first so that you can test your program in pieces as you go. This approach is called
bottom-up implementation.

REVIEWREVIEWREVIEW
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QUESTIONS

1. True or false: Everything you need to know about interfaces has been covered in this
chapter.

2. Define the following terms: interface, package, abstraction , implementor, client.
3. What is the difference in perspective between the implementor and the client?
4. How are interfaces represented in C?
5. What goes into a C header file?
6. Why are comments particularly important in header files?
7. How are coordinates measured in the graphics library? What is meant by the term

origin, and where is it in the graphics window?
8. Describe the difference between absolute and relative coordinates.
9. What are the eight functions exported by the graphics library?
10. When you use the graphics library, what statement should appear at the beginning of

the main program?
11. What function in the graphics library do you use to change the position of the pen?
12. What statements would you write to draw a line from the origin to the point (2,1)?
13. What does it mean if the third argument to DrawArc is negative?
14. Describe the arcs produced by each of the following calls to DrawArc:



a. DrawArc (1.0, 0, 270);
b. DrawArc (1.0, 135, -90);
c. DrawArc (1.0, 180, -45);
d. DrawArc (1.0, -90, 180);

15. On a piece of graph paper, sketch an approximation of the shape that would be
produced by the following statements:

MovePen (1.0, 1.0);
DrawArc (4.0, -15, 2 * 15);
DrawArc (4.0, 180 – 15, 2 * 15);

16. How do you obtain the coordinates of the center of the graphics window?
17. What are the advantages of implementing new procedures like DrawBox and

DrawCenteredCircle?
18. When you design a function for use as a tool, why is it useful to step outside the

specific problem domain and consider the problem more abstractly?
19. What is meant by bottom-up implementation? What are its advantages?
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EXERCISES

1. Write a function DrawCrossedBox that takes the same arguments as DrawBox but also draws
lines along the diagonals of the rectangle. For example, the call

DrawCrossedBox (0.5, 0.5, 1.0, 0.5);

should produce the figure with the lower left corner of the rectangle at the point (0.5,
0.5).

2. Write a program that draws a pyramid consisting of bricks arranged in horizontal rows,
so that the number of bricks in each row decreases by one as you move up the pyramid,
as shown in the following diagram:

Your implementation should use the constant NBricksInBase to specify the number of
bricks in the bottom row and the constants BrickWidth and BrickHeight to specify the
dimensions of each brick.



One way to draw a heart-shaped figure is by drawing two semicircles on to of a square
that is positioned so that its sides run diagonally, all illustrated by the following

diagram:

Write a program that uses this construction to draw a heart on the screen. Your program
should display the heart without drawing the interior lines that form the top of the square,
so the output looks like this:

4. In the 1960s , this symbol

Became universally identif ied as the peace symbol, and it still shows up from time to
time as a motif for T-shirts or jewelry. The peace symbol took its from the letters N and
D—the initial letters in nuclear disarmament—as expressed in the international

semaphore code:

The peace symbol is formed by superimposing the lines in these two diagrams (without
the flags) and enclosing them in a circle.

Implement a function DrawPeaceSymbol with the prototype

void DrawPeaceSymbol (double x, double y, double r);



that draws a peace symbol centered at the point (x, y) with a circle of radius r. Write a
main program to test your function.

5. The sample runs in this text are represented by enclosing the output from the computer
inside a box with rounded corners. Implement a function DrawRoundedBox to draw such
boxes using the graphics library. The function should take exactly the same arguments
as DrawBox but should replace the corners with quarter circles of a constant radius given
by

#define CornerRadius 0.2

for example, calling DrawRoundedBox with a width of 1.0 inch and a height of 0.6 inch
should produce this figure:

Make certain that your function behaves in a reasonable way if the height or width is
less than CornerRadius .

6. Write a program to draw your initials on the graphics window. For example, if I wrote
this program, I would want the output to be

You’ll need to think about the best decomposition to use in writing the program.
Imagine that you’ve been asked to design a more general letter-drawing library. How
would you want the functions in that library to behave in order to make using them as
simple as possible for your clients?

7. Write a program that draws a picture of the Halloween pumpkin shown in the following

diagram:

As in the house.c program shown in Figure 7-7, your picture should be controlled by



several constants:

#define HeadRadius 1.0
#define StemWid th 0.1
#define stemHeigh t 0.15
#define EyeWidth 0.3
#define EyeHeight 0.2
#define Noseidth 0.2
#deinfe NoseHeight 0.2
#define NTeethPerRow 7
#define Too thWidth 0.083333
#define Too thHeigh t 0.15

These values are the ones used to produce the pumpkin shown in the diagram, and you
should be able to figure out what each constant means by looking at the picture. Your
program must be written so that changing any of these constants changes the picture in
the appropriate way. For example, if you change NTeethPerRow to 4, the new diagram
should have only four teeth in each row, but the mouth should still be centered
horizontally. The two eyes and the mouth of the pumpkin face should be drawn halfway
from the center to the edge of the circle in the appropriate direction, so that changing
HeadRadius also changes the positions at which these features are drawn.The center of the
circle representing the pumpkin should appear at the center of the screen.

8. If you wanted a house to go along with the Halloween pumpkin you designed in
exercise 7, you might want to draw a diagram of the House of Usher, which Edgar Allen
Poe describes as follows:

I looked upon the scene before me…upon the bleak walls—upon the vacant eye-
like windows…with an utter desperation of soul…

From Poe’s description, you might image a house that looks something like this:

Write a program that draws the house illustrated in the diagram, using the following
constants to specify the various dimensions:

#define HouseWidth 1.5
#deinfe HouseHeight 2.0



#define HouseArch 1.0

#define TwoerWidth 0.4
#deinfe TowerHeigh t 2.3
#deinfe TowerArch 0.6

#define DoorWidth 0.3
#define DoorHeigh t 0.5
#define DoorArch 0.25

#define WindowLevel 1.4
#define WindowSize 0.3

The constants whose names end in Arch specify the height of the triangular portion on
top of the rectangular base, the windows are assumed to be square and therefore have
only the single dimension WindowSizze.

9. Write a program that draws the following stylized picture of the Lincoln Memorial in
Washington, D.C.:

As in exercises 7 and 8, your program should use the following constants to define the
characteristics of the picture:

#define MemorialWidth 4.0
#define Pedestalheigh t 0.3

#define NumberOfColumns 12
#define ColumnWid th 0.14
#define ColumnHeight 1.0
#define ColumnCircleRadius 0.05

#define LowerRoo fHeight 0.3
#define UpperRoo fWidth 3.5
#define UpperRoo fHeight 0.3

#define StatueEidth 0.1
#define StatueHeigh t 0.2

Note that NumberOfColumns is one of the constants that define the picture. In designing
your program, you should be sure that it is possible to change the value of
NumberOfColumns and still have the columns come out equally spaced across the width of
the memorial.

10. Write a function DrawShadedBox that draws a box whose interior is shaded by closely
spaced diagonal lines throughout the entire figure. The function should take a fifth



parameter (after the four used in DrawBox) that specifies the distance between each of the
shading line, measured along the edges of the box rather than diagonally,. The shading
separation parameter should be an integer measured in pointspointspoints

points

, a unit of measure favored
by printers and typesetters that is equal to 1/72 of an inch. For example, the function call

DrawShadeBox (1.0, 1.0, 2.0, 0.75, 5);

should produce the following output:

11. Use the DrawShadedBox function from exercise 10 as part of a main program to draw a
checkerboard, for which the edge length of each square is 0.25 inches and the sanding
separation for the dark squares is 3 points. The program should result in the following
figure:



ChapterChapterChapter

Chapter

111

1

DesigningDesigningDesigning

Designing

Interfaces:Interfaces:Interfaces:

Interfaces:

AAA

A

RandomRandomRandom

Random

NumberNumberNumber

Number

LibraryLibraryLibrary

Library

ANDANDAND

AND

SUCHSUCHSUCH

SUCH

AAA

A

WALLWALLWALL

WALL

ASASAS

AS

III

I

WOULDWOULDWOULD

WOULD

HAVEHAVEHAVE

HAVE

YOUYOUYOU

YOU

THINKTHINKTHINK

THINK

THATTHATTHAT

THAT

HADHADHAD

HAD

INININ

IN

ITITIT

IT

AAA

A

CRANNIEDCRANNIEDCRANNIED

CRANNIED

HOLE,HOLE,HOLE,

HOLE,

OROROR

OR

CHINKCHINKCHINK

CHINK

THROUGHTHROUGHTHROUGH

THROUGH

WHICHWHICHWHICH

WHICH

THETHETHE

THE

LOVERS,LOVERS,LOVERS,

LOVERS,

PYRAMUSPYRAMUSPYRAMUS

PYRAMUS

ANDANDAND

AND

THISBETHISBETHISBE

THISBE

DIDDIDDID

DID

WHISPERWHISPERWHISPER

WHISPER

OFTEN,OFTEN,OFTEN,

OFTEN,

VERYVERYVERY

VERY

SECRETLYSECRETLYSECRETLY

SECRETLY





Shakespeare,Shakespeare,Shakespeare,

Shakespeare,

AAA

A

MidsummerMidsummerMidsummer

Midsummer

NightNightNight

Night

’’’

’

sss

s

Dream,Dream,Dream,

Dream,

1595-15961595-15961595-1596

1595-1596

OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate the principal criteria used to evaluate the design of an interface.
 To discover how paograms can simulate random behavior through the use of pseudo-

random
 To understand the behavior of the library function rand.
 To learn how you can use arithmetic operations to change the range of the pseudo-

random number sequence.
 To recognize the common types of interface entries.
 To learn the syntactic rules and conventions required to write an interface header file.
 To be able to use the facilities provided by the random.h interface.

III

I

n Chapter 7, you introduced to the concept of an interface. Moreover, working with

the graphics.h interface gave you a chance to think about what goes into an interface and
how to use one in your programming. But to understand interfaces fully, you must also
learn how to implement them. This chapter gives you a chance to design a new interface
together with its underlying implementation.

Depending on how broadly you view the problem, writing an interface can be either
very simple or extremely challenging. If you consider only C’s syntax and structure, there
are not many new rules to learn. You already know how to write comments and function
prototypes, which are the principal components of an interface. As is true with algorithms,
however, the challenge comes not in coding the interface but in designing it. The important
question is not so much how to write an interface but rather how to write a good one.

Designing a good interface is a subtle problem that requires you to balance many
competing design criteria. This chapter examines those criteria and illustrates their
application. To make the illustrations concrete, this chapter also walks you through the
development of a library package that provides access to a simple random number
abstraction.
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Programming is hard because programs reflect the complexity of the problems they
solve. As long as we use computers to solve problems of ever-increasing sophistication, the
process of programming will need to become more sophisticated as well.

Writing a program to solve a large or difficult problem forces you to manage an
enormous amount of complexity. There algorithms to design, special cases to consider,
user requirements to meet, and innumerable details to get right. To make programming
manageable, you must reduce the complexity of the programming process as much as
possible.

In Chapter 5, you learned how to use functions and procedures to reduce some of the
complexity. Interfaces offer a similar reduction in programming complexity but at a higher
level of detail. A function gives its caller access to a set of steps that together implement a
single operation. An interface gives its client access to a set of functions that together
implement a programming abstraction. The extent to which the interface simplifies the
programming process, however, depends largely on how well it is designed.

To design an effective interface, you must balance several criteria. In general, you
should try to develop interfaces that are

 Unified. A single interface should define a consistent abstraction with a clear unifying
theme. If a function does not fit within that theme, it should be defined in a separate
interface.

 Simple. To the extent that the underlying implementation is itself complex, the
interface must seek to hide that complexity from the client.

 Sufficient. When clients use an abstraction, the interface must provide sufficient
functionality to meet their needs. If some critical operation is missing from an
interface, clients may decide to abandon it and develop their own, more powerful
abstraction. As important as simplicity is, the designer must avoid simplifying an
interface to the point that it becomes useless.

 General . A well-designed interface to should be flexible enough to meet the needs of
many different clients. An interface that performs a narrowly defined set of operations
for one client is not as useful as one that can be used in many different situations .

 Stable. The functions defined in an interface should continue to have precisely the
same structure and effect, even if the underlying implementation changes. Making
changes in the behavior of an interface forces clients to change their programs, which
compromises the value of interface.

The sections that follow discuss each of these criteria in detail.
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A central feature of a well-designed interface is that it presents a unif ied and
consistent abstraction. In part, this criterion implies that the functions within a library
should be chosen so that they reflect a coherent theme. For example, the math library
consists of mathematical functions, the standard I/O library provides functions to perform
input and output, and the graphics library provides functions for drawing pictures on the
screen. Each function exported by these interfaces fits the purpose of that interface. For
example, you would not expect to find sqrt in the graphics.h interface, even though graphical
applications will often call sqrt to compute the length of a diagonal line. The sqrt function
fits much more naturally into the framework of the math library.

The principle of a unifying theme also influences the design of the functions within a
library interface. The functions within an interface should behave in as consistent a way as
possible. Differences in the ways its functions work make using an interface much harder
for the client. For example , all the functions in the graphics library use coordinates
specified in inches and angles specified in degrees. If the implementor of the library had
decided to add a function that required a different unit of measurement, clients would have
to remember what units to use for each function. Similarly, the functions DrawLine and
DrawArc in the graphics library were each designed so that drawing begins at the current
position of the pen. Doing so means that the underlying conceptual model has a consistent
structure that makes it easier to understand the library and its operation.
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Because a primary goal of using interfaces is to reduce the complexity of the
programming process, it makes sense that simplicity is a desirable criterion in the design of
an interface of an interface. In general, an interface should be as easy to use as possible.
The underlying implementation may perform extremely intricate operations, but the client
should nonetheless be able to think about those operations in a simple, more abstract way.

To a certain extent, an interface acts as a reference guide to a particular library
abstraction. When you want to know how to use the math library, you go to the math.h

interface to find out how to do so. The interface contains precisely the information that you,
as a client, need to know—and no more. For clients, getting too much information can be

as bad as getting to little, because additional detail is likely to make the interface more
difficult to understand. Often, the real value of an interface lies not in the information it
reveals but rather in the information it hides.

When you design an interface, you should try to protect the client from as many of the
complicating details of the implementation as possible. In that respect, it is perhaps best to
think of an interface not primarily as a communication channel between the client and the
implementation, but instead as a wall that divides them.



Like the wall that divided the lovers Pyramus and Thisbe in Greek mythology, the
wall representing an interface has a small chink that allows the client and the
implementation th communicate. The main purpose of the wall, however, is to keep the two
sides apart. Because we conceive of it as lying at the border of the abstraction represented
by the library, an interface is sometimes called an abstractionabstractionabstraction

abstraction

boundaryboundaryboundary

boundary

. Ideally, all the
complexity involved in the realization of a library lies on the implementation side of the
wall. The interface is successful if it keeps that complexity away from the client side.
Keeping details confined to the implementation domain is called informationinformationinformation

information

hidinghidinghiding

hiding

.
The principle of information hiding has important practical implications for interface

design. When you write an interface, you should be sure you don’t reveal details of the
implementation, even in the commentary. Especially if you are writing an interface and an
implementation at the same time, you may be tempted to document in your interface all the
clever ideas you used to write the implementation. Try to resist that temptation. The
interface is written for the benefit of the client and should contain only what the client
needs to know.

Similarly, you should design the functions in an interface so that they are as simple as
possible. If you can reduce the number of arguments or find a way to eliminate confusing
special cases, it will be easier for the client to understand how to use those functions.
Moreover, it is usually good practice to limit the total number of functions exported by
interface, so that the client does not become lost in a mass of functions, unable to make
sense of the whole.

MeetingMeetingMeeting

Meeting

thethethe

the

needsneedsneeds

needs

ofofof

of

youryouryour

your

clientsclientsclients

clients

Everything should be as simple as possible, but no simpler.





attributedattributedattributed

attributed

tototo

to

AlbertAlbertAlbert

Albert

EinsteinEinsteinEinstein

Einstein

Simplicity is only part of the story. You can easily make an interface simple just by
throwing away any parts of it that are hard or complicated. There is a good chance you will
also make the interface useless. Sometimes clients need to perform tasks that have some
inherent complexity. Denying your clients the tools they require just to make the interface
simpler is not an effective strategy. Your interface must provide sufficient functionality to
serve the clients ’ needs. Learning to strike the right balance between simplicity and
completeness in interface design is one of the fundamental challenges in programming.

In many case, the clients of an interface are concerned not only with whether a

interface

client implementation



particular function is available but also with the efficiency of the underlying
implementation. For example, if a programmer is developing a system for air-traffic
control and needs to call functions provided by a library interface, those functions must
return the correct answer quickly. Late answers may be just as devastating as wrong
answers.

For the most part, efficiency is a concern for the implementation rather than the
interface. Even so, you will often find it valuable to think about implementation strategies
while you are designing the interface itself. Suppose, for example, that you are faced with a
choice of two designs. If you determine that one of them would be much easier to
implement efficiency, it makes sense—assuming there are no compelling reasons to the
contrary—to choose that design.
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An interface that is perfectly adapted to a particular clients ’s needs may not be useful
to others. A good library abstraction serves the needs of many different clients. To do so, it
must be general enough to solve a wide range of problems and not be limited to one highly
specific purpose. By choosing a design that offers your clients flexibility in how they use
the abstraction, you can create interfaces that are widely used.

The desire to ensure that an interface remains general has an important practical
implication. When you are writing a program, you will often discover that you need a
particular tool. If you decide that the tool is important enough to go into a library, you then
need to change your mode of thought. When you design the interface for that library, you
have to forget about the application that cause you to want the tool in the first place and
instead design such a tool for the most general possible audience.

You encountered the need for this shif t in perspective in the section on “Looking for
common patterns” in Chapter 7. From the perspective of a client, you needed a function to
draw windows for a house. To build the tool, however, you had to think more generally.
The result was the function DrawGrid, which can be used in many deferent situations.

TheTheThe

The

valuevaluevalue

value

ofofof

of

stabilitystabilitystability

stability

People change and forget to tell each other. Too bad—causes so many
mistakes





LillianLillianLillian

Lillian

Hellman,Hellman,Hellman,

Hellman,

ToysToysToys

Toys

ininin

in

thethethe

the

Attic,Attic,Attic,

Attic,

195919591959

1959

Interfaces have another property that makes them critically important to programming:
they tend to be stable over long periods of time. Stable interfaces can dramatically simplify

the problem of maintaining large programming systems by establishing clear boundaries of



responsibility. As long as the interface does not change, both implementors and clients are
relative ly free to make changes on their own side of the abstraction boundary.

For example, suppose that you are the implementor of the math library. In the course
of your work, you discover a clever new algorithm for calculating the sqrt function that cuts
in half the time required to calculate a square root .If you can say to your clients that you
have a new implementation of sqrt that works just as it did before, only faster, they will
probably be pleased. If, on the other hand, you were to say that the name of the function
had changed or that its use involved certain new restrictions, your clients would be
justif iably annoyed. To use your “improved” implementation of square root, they would be
forced to change their programs. Changing programs is a time-consuming, error-prone
activity, and many clients would happily give up the extra efficiency for the convenience of
being able to leave their programs alone.

Interface, however, simplify the task of program maintenance only if they remain
stable. Programs change frequently as new algorithms are discovered or as the
requirements of applications change. Throughout such evolution, however, the interfaces
must remain as constant as possible. In a well-designed system, changing the details of an
implementation is a straightforward process. The complexity involved in making that
change is localized on the implementation side of the abstraction boundary. On the other
hand, changing an interface often produces a global upheaval that requires changing every
program that depends on it. Thus, interface changes should be undertaken very rarely and
then only with the active participation of clients.

Some interface changes, however, are more drastic than others. For example, adding
an entirely new function to an interface is usually a relative ly straightforward process, since
no clients already depend on that function. Changing an interface in such a way that
existing programs will continue to run without modification is called extendingextendingextending

extending

the
interface. If you find that you need to make evolutionary changes over the lifetime of an
interface, it is usually best to make those changes by extension.
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To illustrate the foregoing principles of interface design, the rest of this chapter
focuses on the problem of how to write programs that make seemingly random choices.
Being able to simulate random behavior is necessary, for example, if you want to write a
computer game that involves flipping a coin or rolling a die, but is also useful in more
practical contexts.

Getting programs to behave in a random way involves a certain amount of complexity.
For the benefit of client programmers, you want to hide that complexity behind an interface.
In this chapter, you will have the opportunity to focus your attention on that interface from

each of the possible perspectives—those of the interface designer, the implementor, and the
client.
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Until now, all programs described in this text have behaved deterministicallydeterministicallydeterministically

deterministically

, which
means that their actions are completely predictable given any set of input values. The
behavior of such programs is repeatable. If a program produces one result when you run it
today, it will produce the same result tomorrow.

In some programming applications, such as games or simulations, it is important that
the behavior of your programs not be so predictable. For example, a computer game that
always had the same outcome would be boring. In order to build a program that behaves
randomly, you need some mechanism for representing a random process, such as flipping a
coin or tossing a die, in the context of your programs. Programs that simulate such random
events are called nondeterministicnondeterministicnondeterministic

nondeterministic

programs.
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Partly because early computers were used primarily for numerical applications, the
idea of generating randomness using a computer is often expressed in terms of being able
to generate a randomrandomrandom

random

numbernumbernumber

number

in a particular range. From a theoretical perspective, a
number is random if there is no way to determine in advance what value it will have among
a set of equally probable possibilities. For example, rolling a die generates a random
number between 1 and 6. If the die is fair, there is no way to predict which number will
come up. The six possible values are equally likely.

Although the idea of a random number makes intuitive sense, it is a difficult notion to
represent inside a computer. Computers operate by following a sequence of instructions in
memory and therefore function in a deterministic mode. How is it possible to generate
unpredictable results by following a deterministic set of rules? If a number is generated by
a deterministic process, any user should be able to work through that same set of rules and
anticipate the computer’s response.

Yet computers do in fact use a deterministic procedure to generate what we call
random numbers. This strategy works because, even though the user could, in theory,
follow the same set of rules and anticipate the computer’s response, no one actually bothers
to do so. In most practical applications, it doesn’t matter if the numbers are truly random;
all that matters is that the numbers appear to be random. For numbers to appear random,
they should (1) behave like random numbers form a statistical point of view and (2) be
sufficiently difficult to predict in advance that no user would bother. “Random” numbers
generated by an algorithmic process inside a computer are referred to as pseudo-randompseudo-randompseudo-random

pseudo-random

numbersnumbersnumbers

numbers

to underscore the fact that no truly random activity is involved.
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The ANSI C library includes a function rand that produces pseudo-random numbers as
part of the stdlib.h interface. The prototype for rand as given in the interface is

int rand (void)

which indicates that rand takes no arguments and returns an integer that is a pseudo-random



value—a different result is returned on each call to rand . The result of rand is guaranteed to
be nonnegative and no larger than the constant RAND-MAX, which is also defined in the stdlib.h

interface. Thus each time rand is called, it returns a different integer between 0 and
RAND_MAX, inclusive.

The value of RAND_MAX, depends on the computer system. In the typical Macintosh
environment, RAND_MAX is 32,767. On a typical Unix workstation, it is 2,147,483,647.
When you write programs that work with random numbers, you should not make any
assumptions about the precise value of RAND_MAX. Instead, your programs should be
prepared to use whatever value of RAND_MAX the system defines. If you are careful in doing
so, you can take a program that works on one system and recompile it so that it works on
another.

Running the program randtest.c given in Figure 8-1 shown how rand behaves.
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randtest.c

/*
* File: randtest.c
* -------------------
* This program tests the ANSI rand function.
*/

#include <stdio.h>
#include <stdlib.h>
#include “genlib.h ”

/*
* Constants
* -------------
* Ntrials – Number of trials
*/

#define NTrials 10

/* Main program */

main ()
{

int i, r;
printf(“On this computer, RAND_MAX= %d.\n”, RAND_MAX);
printf(“Here are the results of %dcalls to rand:\n” , NTrials);
for (i = 0; i < NTrials; i++) {

r = rand ();
printf (“%10d\n”, r);

}
}



On the computer in my office, randtest.c generates the following output:

You can see that the program is generating numbers, all of which are positive and
none of which is greater than 32,767, which the sample run shows as the value of RAND_MAX

for this computer system. Because these are pseudo-random numbers, you know that there
must be some pattern, but it is unlike ly that you can discern one. From your point of view,
the numbers appear to be random, because you don’t know what the underlying pattern is.
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The rand library function gives you a mechanism for generating pseudo-random
numbers, but it rarely gives you precisely the range of values you need to fit a particular
application. It generates numbers that are uniformly distributed over the range between 0
and RAND_MAX. Depending on your application, you are like ly to want is a number that falls
in some other range, usually much smaller. For example, if you are trying to simulate
flipping a coin, you need to convert this large range of random number possibilities into a
range containing only two outcomes: heads and tails. Similarly, if you are trying to
represent rolling a die, then you need to convert the pseudo-random number returned by
rand into numbers between 1 and 6, inclusive.

To make this sort of conversion, you need to reinterpret each random number
produced by rand so that it covers a different range. The rand function generates numbers
that lie somewhere on the number line between 0 and RAND_MAX:

If you want to simulate a coin toss, you can divide this line up so that half of it represents
heeds and the other half represents tails:

You could easily use this insight to develop the cointest.c program shown in Figure 8-2,
which simulates tossing a coin.

FIGUREFIGUREFIGURE

FIGURE

8-28-28-2

8-2

cointest.ccointest.ccointest.c

cointest.c

/*

On this computer, RAND_MAX = 32767.
Here are the results of 10 calls to rand:

346
130

10982
1090

11656
7117

17595
6415

22948
31126

０ RAND_MAX
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When converting the
result of rand to a more
restric ted range of
integers, do not try to
use the remainder
operator. The only
random property that
you are allowed to
count on when using
rand is the position of
the result along the
number line.

* File: cointest.c
* -------------------
* This program simulates flipping a coin.
*/

#include <stdio.h>
#include <stdlib.h>
#include “genlib.h ”

/*
* Constants
* -------------
* Ntrials – Number of trials
*/

#define NTrials 10

/* Main program */

main ()
{

int i;

for (i = 0; i < NTrials; i++) {
if (rand () <= RAND_MAX / 2) {

printf (“Heads\n");
} else {

printf (“Tails\n”);
}

}
}

This program prints out either the string “Heads” or the string “Tails”, with each
outcome occurring approximately 50 percent of the time,. If you test the program, you get
the following sample run:

There is a reasonable mixture of heads and tails, and you can discern no easily detectable
pattern.

In thinking about how to convert the result of rand into two possibilities, many new
programmers may be tempted to adopt what seems initially like a simpler approach—using
the remainder operator. If you divide the result of rand by 2 and take the remainder, the
result is either 0 or 1. In a program, you could define 0 to be heads and 1 to be tails. This
strategy is dangerous because there is no guarantee that the result of rand will be randomly
distributed between even and odd numbers. The only guarantee is that the magnitude of the
result will be randomly distributed along the number line between 0 and RAND-MAX.

One common implementation of rand provides a vivid illustration of how serious an
error this approach to generating random numbers can be. On many computer systems, the
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Heads

Heads

Heads

Tails
Heads

Tails
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rand function is implemented in such a way that the result alternates between even and odd
values. The results are still randomly scattered on the number line in terms of how far along
the line they fall. Even so, a program that uses the remainder operator to simulate a coin
flip ends up generating heads and tails in a strictly alternating pattern.

What about simulating a die roll? If you use the strategy of the cointest.c example, all
you need to do is overlay the outcomes

on the number line

Suppose you tried to handle this task in a brute-force way be following the structure of the
cointest.c example. The result of doing so is shown in Figure 8-3.
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int RollDie (void)
{

if (rand () < RAND_MAX / 6) {
return (1);

} else if (rand () < RAND_MAX* 2 / 6) {
return (2);

} else if (rand () < RAND_MAX* 3 / 6) { ThisThisThis

This

implementationimplementationimplementation

implementation

return (3); containscontainscontains

contains

severalseveralseveral

several

errorserrorserrors

errors

} else if (rand () < RAND_MAX* 4 / 6) {
return (4);

} else if (rand () < RAND_MAX* 5 / 6) {
return (5);

} else {
return (6);

}
}

Unfortunately, this implementation of the RollDie function has a few serious problems.
Because they are the sort of problems you might run into in your own coding, they are
worth considering closely.

The first problem in the code is that you have made an assumption that was easy and
natural to make although nonetheless unwarranted in the context1. The program was
supposed to express the following English idea:

 If the random number generated is less than 1/6 of the maximum, return the
value1.

 Otherwise, if the number is less than 2/6 of the maximum, return the value 2.
 Otherwise, if the number is less than 3/6 of the maximum, return the value 3, and

so on.

1 In his book, Zen and the Art of Motorcycle Maintenance, Robert Pirsig calls this sort of error—one
in which a seemingly reasonable assumption leads to false conclusions—a gumption trap. Gumption traps
come up often in programming, and Pirsig’s book offers at least as many useful insights to debugging
programs as it does to repairing motorcycles.

０ RAND_MAX
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When you call a func tion
that produces a pseudo-
random number, it is
impor tan t to remember
that the func tion will
generate a different value
each time it is called. If
you want to keep track of
a particular value, you
mus t store the result of
the func tion in a variable.

The problem is that your code doesn’t quite capture this idea. By repeatedly calling the
function rand, you will generate a new random number in each of the if statements. The
structure of the function depends on the assumption that the random number remains the
same each time. To see that this is in fact the case, look at the buggy implementation of
RollDie and try to understand under what conditions it will rerun the answer 2. In order for
the function to return 2, the first if statement must come out FALSE and the second one must
come out TRUE. The condition in the first if statement is FALSE five times out of six. The
second if statement is written so that it returns TRUE one third of the time, because the call to
rand returns an entirely new random value. In statistics, the probability of two independent
events occurring is the product of the individual probabilities, so the probability that RollDie
returns 2 is

18
5

3
1

6
5



Five chances out of 18 is almost twice as large as one chance in six, meaning that the RollDie

function is much more like ly to return 2 than it should be. To solve at least this one problem ,
you need to declare a variable to hold the result of the call to rand and then test that variable

in each line, as shown in Figure 8-4.
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int RollDie (void)
{

int r;

if (r < RAND_MAX / 6) {
return (1);

} else if (r < RAND_MAX* 2 / 6) {
return (2);

} else if (r < RAND_MAX* 3 / 6) {
return (3);

} else if (r < RAND_MAX* 4 / 6) { ThisThisThis

This

implementationimplementationimplementation

implementation

return (4); isisis

is

stillstillstill

still

incorrect.incorrect.incorrect.

incorrect.

} else if (r < RAND_MAX* 5 / 6) {
return (5);

} else {
return (6);

}
}

Unfortunately, this implementation is still buggy. The second problem, however, is
more subtle. On most systems, RAND_MAX is given the value it has for a reason. The usual
value chosen for RAND_MAX is not merely the maximum possible result for the rand function,
but also the largest positive value that the system can represent using type int. This
limitation causes a serious problem in the proposed implementation of RollDie , because the
program is written in such a way that intermediate results may be larger than the maximum
integer size. Even though the final result of

RAND_MAX

fits in a value of type int, C’s rules of precedence indicate that RAND_MAX is first multiplied
by 2 and then divided by 6. Generating an integer outside of the allowable range is called



an arithmeticarithmeticarithmetic

arithmetic

overflowoverflowoverflow

overflow

. If such an overflow occurs, the program will not produce the
intended answer. You can fix this problem by writing

RAND_MAX / 6 * 2

There is, however, a better approach.
The real problem with the RollDie implementation is that the procedure is much too

complicated. The code tests for each of the six possible outcomes as a separate case. What
you need is some mathematical insight that will allow you to eliminate the special cause
altogether.

Look once more at the geometric problem. What you need to do is to convent the
number line

into the discrete intervals

This time, rather than using if statements, it makes more sense to use arithmetic operations
to accomplish the task. Before deciding how arithmetic operations apply o this situation,
however, it is useful to generalize the problem so that your solution technique can serve a
wider variety of applications.
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To simulate rolling a die, you generate a random integer between 1 and 6. If you want
a program to “pick a card, and card” you want it to choose a number between 1 and 52. To
model a European roulette wheel, you would want it to pick a number between 0 and 36. In
general, what you need is not a function that chooses a number between 0 and RAND_MAX

but one that chooses a random integer between two limits that you supply. The function you
need might be defined using the following prototype:

int RandomIn teger (int low, int high)

In other words, if you give this function two integers, it will return a random integer that
lies between those endpoints, including each endpoint in the range. Thus, to simulate a roll
of a die, you would call

RandomIn teger (1, 6)

and , for a spin of the European roulette wheel, you would call

RandomIn teger (0, 36)

Such a general tool has many uses, and it will be to your advantage to put this tool in a
library so that you can use it again and again.

You already know how to generate a random number in the interval 0 to RAND_MAX. To

０ RAND_MAX
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convert this to a random number in a more restricted range, you can use the following four-
step process:

1. Normalize the integer result from rand by converting it into a floating-point
number d in the range 0≤d<1.

2. Scale the value d by multiplying it by the size of the desired range, so that it
spans the correct number of integers.

3. Truncate the number back to an integer by throwing away any fraction. This step
gives you a random integer with a lower bound of 0.

4. Translate the integer so that the range begins at the desired lower bound.

To normalize the value, you first need to convert your result to a double and then divide it
by the number of elements in the range. The numbers run from 0 to RAND_MAX, inclusive, so
that the number of possible outcomes is RAND_MAX plus 1 (there are RAND_MAX values
between 1 and RAND_MAX, and you also need to account for the value 0).

As noted in the section on “Assignment statements” in Chapter 2, you can use a type
cast to specify an explicit conversion from one type to another. Type casts are written by
enclosing the name of the desired new type in parentheses and writing it before the value to
be converted .In this case, for example, you can convert the result of rand into a number d

between 0 and 1 by writing:

d = (double) rand () / ((double) RAND_MAX+ 1);

The numerator in this fraction must be less than the denominator so that the end result will
always be strictly less than 1. Therefore, at the end of this process, you have a random real
number that is at least 0 but always strictly less than 1. In mathematics, a range of real
numbers that can be equal to one endpoint but not he other is called a half-openhalf-openhalf-open

half-open

intervalintervalinterval

interval

.
In diagrams, the endpoint that is not included in the range is indicated using an open circle.
Thus the range of possibilities for the variable d is diagrammed as follows:

The next step is to scale this value so that the range stretches to cover the correct number of
integers. For example, to simulate the die roll, you need to multiply the value by 6, so that
the new scaled range looks like this:

Note that here are six integers covered by the range: the integers 0, 1, 2, 3, 4, and 5. The
value 6 itself lies outside of the range of possibilities, since the value d can never be as large
as 1.

In the general case, you wan to multiply the normalized random number by the
number of elements in the range, which is given by the expression

(high – low + 1)

The “extra” 1 in this expression is necessary because the range is inclusive and therefore

０ 1
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contains both endpoints. Subtraction gives the distance between two integers, which is one
less than the number of integers contained in the inclusive range. There are six outcomes
for a die roll—1, 2, 3, 4, 5, and 5—but 6 minus 1 is only 5. To compute the number of
outcomes, you need to subtract the smallest value from the largest and then add 1.

Next, you truncate the real number black to an integer. In C, if you convert a double to
an int using a type cast, the conversion is done by throwing away any fractional part. Thus,
if you take a real number that you know to be greater than or equal to 0 but strictly less than
6, you will get one of the integers 0, 1, 2, 3, 4, or 5.

The last step in the process is to translate the result so that it lies in the desired range.
You have the correct number of integer outcomes; the only problem is than they start at 0.
To obtain the correct set of possibilities, you simply add the value of the lower bound.

You can put all of these steps together and write the implementation o the function
RandomIn teger as follows:

int RandomIn teger (int low, int high)
{

int k;
double d;

d = (double) rand () / ((double) RAND_MAX+ 1);
k = (int) (d * (high – low + 1);
return (low + k);

}
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The ReandomInteger function is useful enough that you should put it in a library. The first
step in this process is to create an interface. Once you complete the interface, you then
write a corresponding implementation in a separate file. In most cases, the files used for an
interface and its implementation have the same name except for the file type. Thus, if the
interface is named random.h , you would ordinarily use random.h as the name of the
implementation file.
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The basic structure of an interface is illustrated by the graphics.h example introduced in
Chapter 7. Like all the interfaces introduced in this text, graphics.h consists primarily of
comments written for the benefit of clients who use that library. These comments are a
critical part of the interface and should never be neglected when you are designing one.

A single definition exported by an interface to its clients is called an interfaceinterfaceinterface

interface

entryentryentry

entry

.
Interface entries come in several different forms, of which the following are the most
common:

 Function prototypes. As interface must contain the prototype of every function it
makes available to the client.

 Constant definitions. As interface will often use #define to define a constant that



the clients will need to know. For example, the stdlib.h interface defines the
constant RAND_MAX to tell its clients the maximum value returned by the rand

function.
 Type definitions. Although you do not yet know how to define new types

yourself, it is useful to know that interfaces often define new types for use by
clients. For example, the genlib.h interface defines the types bool and string . Defining
types in an interface is an extremely important technique in modern programming.
You will see several examples of interfaces that export types beginning in
Chapter 9.

In addition to these entries and their associated comments, every interface you write should
contain three lines that are used to help the compiler keep track of the interfaces it has read.
After the initial comments, but before any of the actual entries, every interface should
contain the lines

#ifnde f _name_h
#define _neme_h

where name is the name of the interface file. The last line
of the interface must be

#endif

In complicated programs, a single interface may be
included many times through a variety of paths. So that the
complier will not read through the same interface each time,
the line

#ifnde f _name_H

cause the compiler to skip all of the text up to the #endif line
if the symbol _name_h has been previously defined. On the
first time through the interface it hasn’t, so the compiler
goes on reading. Immediately thereafter, however, the
compiler encounters the line

#define _name_h

which defines the symbol _name_h. if the compiler should later start to read the same
interface, _name_h will already have been defined, and the compiler knows that it can ignore
the entire contents of the interface.

Whether or not you understand precisely how this technique works, the rule is clear.
Whenever you write an interface, you must include the #ifndef , #define , and #endif lines, as
shown in the syntax box. This sort of stylized pattern that is included every time you write
a particular type of file is often called boilerplateboilerplateboilerplate

boilerplate

. These lines are the boilerplate for
interfaces. You don’t really need to understand them; you just need to make sure that they
are always there.

In addition to the boilerplate, a interface will sometimes need to include other
interfaces using thee same #include lines that you have already used in your own programs,

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for
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interfaceinterfaceinterface

interface

filefilefile

file

#ifnde f _name_h
#define _name_h
any required #include lines
interface entries
#endif

Where:
name is the name of the library.
the #include lines section is used only if the interface

itself requir es other libraries and consis ts of
standard #include lines

interface entries represen ts the function prototypes,
constants, and types exported by the library

Comments should appear throughou t the interface to
prov ide clients with the informa tion they need to use the
library .



The rules for when such lines are required are discussed in the section on “Including header
files in an interface” late in this chapter.
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If you apply the rules from the preceding section to the problem of writing the random.h

interface, you should realize that your first responsibility is to write an initial comment
explaining what the library provides and who might use it. After the comment, you must
include the boilerplate for interfaces, which in this case is

#ifnde f _random_h
#define _random_h

The next thing to write in the random.h interface is a comment about the RandomIn teger

procedure:

/*
* Function: RandomIn teger
* Usage: n = RandomIn teger (low, high);
* ---------------------------------------------------
* This function returns a random integer in the range
* low to high, inclusive.
*/

This comment provides the client with the information necessary to use the function. The
usage line, for example, illustrates a sample call to the function, which is often particularly
helpful to the client. The comment also contains an English description of what the function
does but no discussion of how the function does it.

The next component of the interface is the prototype for the function itself :

int RandomIn teger (int low, int high);

This line is the only one in the interface that has any real signif icance to the compiler; the
others are either comments or boilerplate.

The last line in the interface is simple the #endif line that is part of the boilerplate for
interface.

The portion of the random.h interface discussed so far appears in Figure 8-5. As noted in
the caption, the interface in Figure 8-5 is only a preliminary version. Later in the chapter,
new functions are added to this interface that extend its capabilities.
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random.h

/*
* File: random.h
* -------------------
* This file contains a preliminary version of a library
* interface to produce pseudo-random numbers.
*/

#ifnde f _random_h
#define _random_h



/*
* Function: RandomIn teger
* Usage: n = RandomIn teger (low, high);
*----------------------------------------------------
* This function returns a random integer in the range
* low to high, inclusive.
*/

int RandomIn teger (int low, int high);

#endif
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implementation

The implementation for the ranndom.h interface goes in a separate file, random.c . For the
interface as it now exists, the corresponding implementation file is shown in Figure 8-6.
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random.c

/*
* File: random.c
* -------------------
* This file implements the preliminary random.h interface.
*/

#include <stdio.h>
#inlcude <stdlib.h>

#include “genlib.h ”
#include “random.h”

/*
* Function: RandomIn teger
* ----------------------------------
* This function firs t obtains a random integer in
* the range [0…RAND_MAX] by applying four steps:
* (1) Generate a real number between 0 and 1.
* (2) Scale it to the appropriate range size.
* (3) Truncate the value to an integer.
* (4) Transla te it to the appropriate starting point.
*/

int RandomIn teger (int low, int high)
{

int k;
double d;

d = (double) rand () / ((double) RAND_MAX+1);
k = (int) (d * (high –low + 1);
return (low + k);

}

The implementation begins with an initial comment, which is simply a reference to the
interface. The next section lists the #include files required for the compilation. You always
want stdio.h and genlib.h , and you need stdlib.h so that you have access to the function rand .
Finally, every implementation needs to include its own interface so the compiler can check
the prototypes against the actual definitions.



After the #include lines, the next section consists of the implementations of the
functions exported by the interface, along with any comments that would be useful to the
programmers who may need to maintain this program in the future.

Like all other forms of expository writing, comments must be written so that they take
account of their audience. When you write comments, you must put yourself in the role of
the reader so that you can understand what information that reader will want to see.
Comments in the .c file have a different audience than their counterparts in the .h file. The
comments in the implementation are written for another implementor who may have to
modify the implementation in some way. They therefore must explain how the
implementation works and provide any details that late maintainers would want to know.
Comments in the interface, on the other hand, are written for the client. A client should
never have to read the comments inside the implementation. The comments in the interface
should be sufficient.
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programprogramprogram

program

You can test the random.c implementation by writing the program dicetest.c shown in
Figure 8-7. The main program makes use of your new random number library, so you need
to include the line

#include “random.h”

in the dicetest.c file so that it can use the RandomIn teger function.
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/*
* File: dicetest.c
* ----------------------
* This program simulates rolling a die.
*/

#include <stdio.h>
#include “genlib.h ”
#include “random.h”

/*
* Constants
* -------------
* Ntrials – Number of trials
*/

#define Ntrials 10

/* Function prototypes */

int RollDie (void);

/* Main programm */

main ()
{

int i;



for (i = 0; i <NTrials; i++) {
printf (“%d\n”, RollDie ());

}
}

/*
* Function: RollDie
* Usage: die = RollDie ();
* ------------------------------
* This function gener ates and returns a random integer in the
* range 1 to 6, represen ting the roll of a six-sided die.
*/

int RollDie (void)
{

return (RandomInteger (1, 6);
}

Let’s quickly test the program to make sure that it works. Running the program gives
the following result:

Once again, the numbers are all in the correct range and appear random. The number 2
comes up more often than the others, but it is statistically possible that the number 2 will
come up four times by pure chance. Even so, you might want to investigate by running the
pogrom again. This time it gives:

The disturbing observation is not simple that the number 2 came up just as many times on
this second run. The entire result is exactly the same. In fact, every time you run this
program, you get precisely the same result. This behavior on the part of your test program
does not bode well for the prospect of writing interesting computer games.
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The fact that the dicetest.c program produces the same sequence of numbers each time
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is not because of any bug in the implementation of RandomIn teger . This behavior comes
instead from the definition of the rand function in the standard ANSI libraries. Unless the
caller takes specific action to change the standard mode of operation, the rand function
always returns the same sequence of values on every execution of a program that calls it.
Thus, every program presented so far in this chapter will have exactly the same effect each
time it is run.

At first glance, you may find it hard to see any reason why rand might behave as it does,
particularly since the rand function exists to simulate a nondeterministic process. As the
stdlib.h interface is defined, the behavior of rand is entirely deterministic. There is, however,
an extremely good reason to define rand in this way: Programs that behave deterministically
are easier to debug.

To illustrate this fact, suppose you have just written a program to play an intricate
game, such as Monopoly. As is always the case with newly written programs, the odds are
good your program has a few bugs. In a complex program, bugs can be relative ly obscure,
in the sense that they only occur in rare situations. Suppose that you’ve been playing the
game and find that the program starts behaving in a bizarre way, but you weren’t alert
enough to pay attention to all the relevant symptoms. You would like to run the program
again and watch more carefully this time.

If the program is running in a nondeterministic way, a second run of the program will
behave differently from the first. Bugs that showed up the first time may not occur on the
second pass. In general, it is extremely difficult to reproduce the conditions that cause a
program to fail if the program is behaving in a truly random fashion. If, on the other hand,
the program is operating deterministically, it will do the same thing each time it is run. This
behavior makes it possible for you to recreate a problem. During the debugging phase, the
rand function is doing the right thing by returning the same sequence of values every time.

Even if the system definition of rand has advantages for debugging, it is still important
to be able to change that behavior once the program is working. Understanding how to
make this change, however, requires knowing a little more about the implementation of rand .

The ANSI libraries generate pseudo-random numbers by keeping track of the last
number generated. Each time random is called, it takes the last number and performs a
series of calculations using that number to produce the next one. Because you don’t know
what those calculations are, it is best to think of the entire operation as a black box where
old numbers go in on one side and new pseudo-random numbers pop out on the other.

The randtest.c program described in the section on “Generating pseudo-random numbers
in ANSI C” earlier in this chapter provides an illustration of the internal operation of rand .
On the computer in my office, the first 10 calls to rand generate the numbers shown in this
sample run:

On this computer, RAND_MAX = 32767.
Here are the results of 10 calls to rand:
16838
5758
10113
17515
31051
5627
23010
7419
16212
4086
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The first call to rand produces the number 16838. The next call corresponds to putting
16838 into one end of the black box representing the internal implementation and having
5758 pop out on the side:

Similarly, on the next call to rand , the implementation puts 5758 into the black box,
which returns 10113:

This same process is repeated on each call to rand . The computation inside the black box is
designed so that (1) the numbers are uniformly distributed over the legal range, and (2)
the sequence goes on for a long time before it begins to repeat.

But what about the first call to rand—the one that returns 16838? The implementation
must have a starting point. There must be an integer, s, that goes into the black box and
produces 16838:

This initial value—the value that is used to get the entire process started—is called a seedseedseed

seed

for the random number generator. The ANSI library implementation sets the initial seed to
a constant value every time a program is started so that it always produces the same
sequence. You can change the sequence by setting the seed to a different value. To do so,
you need to call the function srand , which takes the new seed as an argument. To make sure
the value of the new seed changes for each run of the program, the standard approach is to
sue the value of the internal system clock as the initial seed. Because the time keeps
changing, the random number sequence will change as well.

You can retriever the current value of the system clock by calling the function time,
which is defined in the ANSI library interface time.h , and then converting the result to an
integer. This technique allows you to write the following statement, which has the effect of
initializing the pseudo-random number generator to some unpredictable point:

srand ((int) time (NULL));

Although it requires only a single line, the operation to set the random seed to an
unpredictable value based on the system clock is relative ly obscure. If this line were to
appear in the client program, the client would have to understand the concept of a random
number seed, the time function, and the meaning of the mysterious constant NULL. To make
things simpler for the client, it would be much better to give this operation a simple name
like Randomize and add it to the random number library. If you make this change, all the
client needs to do is call

Randomize ();

which is certainly easier to explain.
The implementation of Randomize is simply
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void Randomize (void)
{

srand ((int) time (NULL));
}
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As part of the process of designing an interface, you should keep in mind the general
principles guiding such design. In the case of the evolving random.h interface, for example, it
is important to consider how well the current interface meets the five basic criteria outlined
earlier in this chapter:

 Is it unified? The two functions, RandomIn teger and Randomize, both fit under the unifying
theme of providing access to a random number abstraction. Thus, the interface is unif ied.

 Is it simple? Although you have not had much opportunity to use the functions and see if
they are in fact simple to use, the dicetest.c program gives some evidence that they are.
Moreover, it is clear that the interface hides considerable complexity. Calling RandomIn teger

frees the client form having to worry about the internal steps of normalization, scaling,
truncation and translation, since all those operations are performed by the implementation.
Similarly, the Randomize function protects the client form all the internal details of seeding
the random number generator. Thus, the interface certainly provides some measure of
simplif ication.

 Is it sufficient? This question is always difficult to answer because it raises the companion
question: sufficient for what? Though you probably cannot anticipate the needs for all
clients, it is a good idea to try. The current version of the package is useful of clients who
need random integers, but some clients would require other operations, such as some
means of simulating random real numbers over a continuous range. The possibility
suggests that some further design work may be required to meet this need.

 Is it general? The issue of generality is closely linked with that of sufficiency, but also
includes the question of whether the interface design unconsciously incorporates any
assumptions that are really in the domain of a particular client, thereby reducing its utility
to others. For example, if the interface were defined to include functions that simulated a
die roll, as opposed to allowing the client to build such functions on top of RandomIn teger ,
that interface would like ly be too narrow in its design. As it stands, however, the functions
in the interface seem to meet the criterion of generality.

 Is it stable? The issue of stability is not so much a question for the design phase as for the
long-term maintenance cycle of the package as a whole. The important question at this
point is whether the interface design promotes long-term stability in some way. In general,
an interface that satisfies the other requirements can probably remain stable, although
preserving such stability requires good discipline on the part of those who are in charge of
maintaining the library.

Thus, the only pending concern is that the random.h interface does not provide and the
functions that clients are likely to need. In particular, the analysis of the design in the
preceding section suggests that providing random real numbers would increase the utility



of the random number library for some clients. It is therefore worth defining an additional
function, presumable called RandomR eal to go along with RandomIn teger, that provides the
necessary capability.
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As it happens, you have already used the rand function to generate a random real
number as part of the implementation of RandomIn teger . The first step in the process of
generating a random integer was to generate a random floating-point number between 0
and 1. To implement the RandomR eal function, one approach would be to do the same
calculation and return the result. Such a design, however, violates to some extent the
unifying principles that give the library consistency. Designed with that approach,
RandomR eal would take no arguments and return a floating-point value in a preset range. The
RandomIn teger function behaves differently. It takes two arguments and returns a value in the
range defined by those inputs. For consistency, it is probably best that RandomR eal have the
same basic design. If it does, clients who know how RandomIn teger works can correctly
predict the structure of RandomR eal. Thus, RandomR eal should have the following prototype:

double RandomR eal (double low, double high);

The implementation essentially consists of the first two lines of the implementation of
RandomIn teger , except that the scaling factor is now the actual distance between the endpoints
instead of the number of integers contained in the at range. Thus the implementation of
RandomR eal is

double RandomR eal (double low, double high)
{

double d;

d= (double) rand () / ((double) RAND_MAX+ 1);
return (low + d * (high – low));

}
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In addition to random real numbers, there is another type of random variable that
might be useful to include in a general abstraction for simulating random behavior.
Suppose you are writing a program in which you want a certain ever to occur with random
probability. For example, suppose that your program is intended to model an assembly line
on which there is a defect that occurs, on average, in 1 out of every 1000 parts that travel
down the line. In terms of the simulation, another way to think about this situation is that
each part has a 1 in 1000 chance of being defective. In mathematics and statistics,
probabilities are represented as numbers between 0 and 1, so the probability of a defect in
this example is .001 (1/1000).

In this example, the outcome has only two possibilities: either there is a defect or there
isn’t. The fact that there are two outcomes that represent the presence or absence of a
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condition suggests that it would be appropriate to represent the situation using a Boolean
value. The value TRUE is used to signify that a defect has been detected, which should occur
with probability .001.

In situations of this sort, it is helpful to have a predicate function that returns TRUE

with some specified probability. If you had access to such a function, which might be
named RandomChance , you could represent the assembly line example using the following
code:

if (RandomChace (.001)) {
printf (“A defect has occurred.\n”);

}

The advanta   ge of this implementation over the one presented in the section on “Changing
the range of random numbers” earlier in this chapter is that this one does not require the
client to understand the operation of the rand function itself. The client can instead rely only
on the functions defined in the higher-level random.h interface. The existence of the rand

function can then be considered as a detail of concern only in the implementation.
The prototype and implementation for the RandomChance function are each very simple.

The prototype, which becomes part of the interface, is

bool RandomChance (doulbe p);

You can easily write the implementation in terms of RandomR eal like this:

bool RandomChance (double p);
{

return (RandomReal (0, 1) < p);
}
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Adding RandomChance to the random.h interface, however, brings up an important issue.
Randomchance is a predicate function and therefore returns a result of type bool. As noted in
the section on “Boolean data” in Chapter 4, the type bool is not actually a part of C but is
instead defined in the genlib.h interface. For the compiler to interpret correctly the prototype
for RandomChance when it reads through the random.h interface, it needs access to the
definition of bool in genlib.h .

To provide the compiler with the information it requires you need to include the genlib.h
header file as part of the interface. Thus, right after the boilerplate lines

#ifnde f _random_h
#define _random_h

the random.h header file must include the line

#include “genlib.h ”

which instructs the compiler to read the definitions in genlib.h . The compiler will therefore
have read the definition for bool by the time it reaches the prototype for RandomChance later
in the file.



Each interface must include only those header files that are required to compile the
interface itself and not the corresponding implementation. For example, the
implementation file random.c needs access to stdlib.h and time.h in order to use functions like
rand , srand, and time . These functions, however, appear only in the implementation, not in the
interface. Thus, the random.h interface does not need to include these header files ever
though the random.c implementation does. By contrast, the type bool appears explicitly in the
random.h interface, which means that the interface must include genlib.h.
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All that remains to complete the definition of the random.h interface and the
corresponding random.c implementation is to add the new functions defined in the last few
sections to the preliminary versions of these files given in Figure 8-5 and 8-6, along with
enough commentary to allow clients to understand the interface. Because all the sections of
code have been shown individually, the complete versions of the interface and
implementation do not appear in this chapter but in Appendix B.
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Now that you have a random-number package, you can use it as often as you want.
Whenever you decide to write a new computer game or any other application that involves
random numbers, you’ll have a set of tools you can use without having to remember the
underlying details. All you need to do to use the random number library is to include the
header file random.h in you program and make sure the library is available when you compile
and run the program.
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/*
* File: craps.c
* -----------------
* This program plays the dice game called craps. For a discussion
* of the rules of carps, please see the GiveInstructions function.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”
#include “strlib.h ”

/* Function prototypes */

void GiveInstructions (void);
void playCrapsGame (void);
int RollTwoDice (void);
bool GetYesOrNo (string promp t);



/* Main program */

main ()
{

Randomize ();
if (GetYesOrNo (“Would you like instructions? “)) {

GiveInstructions ();
}
while (TRUE) {

playCrapsGame ();
if (!GetYesOrNO (“Would you like to play again? “)) break;

}
}

/*
* Function: GiveInstructions
* Usage: GiveInstructions ();
* -----------------------------------
* This function welcomes the player to the game and gives
* instructions on the rules to craps.
*/

void GiveInstructions (void)
{

printf (“Welcome to the craps table!\n\n ”);
printf (“To play craps, you start by rolling a pair of dice\n”);
printf (“ and looking at the total. If the total is 2, 3, or\n”);
printf (“12, that’s called ‘crapping out’ and you lose. If\n”);
printf (“you roll a 7 or an 11, that’s called a ‘natural’ an\n”);
printf (“you win. If you roll any other number, that number\n”);
printf (“becomes your ‘point’ and you keep on rolling until\n”);
printf (“you roll your point again (in which case you win”);
printf (“or a 7 (in which case you lose).\n”);

}

/*
* Function: playCrapsGame
* Usage: playCrapsGame ();
* -----------------------------------
* This function plays one game of craps.
*/

void playCrapsGame (void)
{

int total, point;

printf (“\nHere we go!\n”);
total = RollTwoDice ();
if (total == 7 || total == 11) {

printf (“Tha t’s a natural. You win.\n”);
} else if (total == 2 || total == 3 || total == 12) {

printf (“ Tha t’s craps. You lose.\n”);
} else {

point = total;
printf (“Your point is %d.\n”, point);
while (TRUE) {

total = RollTwoDice ();
if (total == point) {

printf (“You made your point. You win.\n”);
break;

} else if (total == 7) {
printf (“Tha t’s a seven. You lose. \n”);
break;

}
}

}



}

/*
* Function: RollTwoDice
* Usage: total = RollTwoDice ();
* ---------------------------------------
* This function rolls two dice and returns their sum. As part
* Of the implementation, the result is displayed on the screen.
*/

int RollTwoDice (void)
{

int d1, d2, total;

printf (Rolling the dice…\n”);
d1 = RandomIn teger (1, 6);
d2 = RandomIn teger (1, 6);
total = d1 + d2;
printf (“You rolled %dand %d -- that ‘s %d.\n”, d1, d2, total);
return (total);

}

/*
* Function: GetYesOrNo
* Usage: if (GetYesOrNo (promp t))…
* -----------------------------------------------
* This function asks the user the question indicated by promp t
* and waits for a yes/no response. If the use answers “yes”
* or “no” , the program returns TRUE or FALSE accordingly .
* If the user gives any other response, the program asks
* the question again.
*/

bool GetYesOrNo (string promp t)
{

string answer;

while (TRUE) {
printf (%s”, promp t);
answer = GetLine ();
if (StringEqual (answer, “yew”)) return (TRUE);
if (StringEqual (answer, “no”)) return (FALSE);
printf (“Please answer yes or no.\n”);

}
}

To illustrate the use of the package, a program called craps.c is shown in Figure 8-8.
This program simulates the casino game of craps, which is played as follows. You start by
rolling two six-sided dice and looking at the total. The game then breaks down into the
following cases based on that first roll:

 You roiled a 2, 3, or 12. Rolling these numbers on your first roll is called crapping out
and means theta you lose.

 You roiled a 7 or an 11. When either of these numbers comes up on your first roll, it is
called a natural, and you win.

 You rolled one of the other numbers (4, 5, 6, 8, 9, or 10). In this case, the number you
rolled is called you point, and you continue to roll the dice until either you roll your
point a second time, in which case you win, or you roll a 7, in which case you lose. If
you roll any other number (including 2, 3, 11, and 12, which are no longer treated



specially), you just keep on rolling until your point or a 7 appears.

The program itself is a straightforward translation of the English rules into C code. As
you look through the raps.c program, you should notice the following features:

 The program includes the interface random.h so it can use the functions in that library.
Moreover, the program uses only the functions in that library and never calls rand (or
srand or time ) directly. The random number sequence is initialized by calling Randomize ,
and each die roll is generated by a call to RandomIn teger .

 The program is broken up into units that successively indicate greater detail. This
decomposition helps to highlight the program structure and makes it possible for you
to understand how the pieces fit together.

 The problem of rolling two dice comes up at several points in the program, so the
combined action of simulating the roll of two dice, displaying the result, and
remembering the total is encapsulated into the function RollTwoDice, which can be used
in other contexts as well.
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In this chapter, you have had the chance to consider the process of writing an interface
and its corresponding implementation. At one level, you have learned about the syntactic
structure of an interface and the components it contains. You have also learned several
more general principles of interface design—principles that will prove extremely important
as you begin to solve larger tasks. Finally, you had the opportunity to see those design
principles as they were applied to the construction of the random.h interface.

Important points introduced in this chapter include:

 The challenge of constructing an interface lies in the design of hte interface rather than
its coding.

 A well-designed interface must be unified, simple, sufficient , general, and stable.
Since these criteria sometimes conflict with each other, you must learn to strike an
appropriate balance in your interface design.

 All the functions defined in an interface should fit a unifying theme and be as
consistent as possible in their behavior.

 A main purpose of an interface is to keep the complexity of the implementation away
from its clients. This principle is called information hiding.

 The abstraction represented by an interface must be powerful enough to satisfy the
needs of its clients.

 An interface that is designed to be general enables many different clients to use the
same library package.

 Clients must be able to rely on the stability of the interfaces they use. Changing an
interface is a serious matter and not one to be undertaken lightly. On the other hand,
maintaining a stable interface allows the implementor considerable freedom to change
the underlying implementation.



 Programs can simulate random behavior by using an algorithmic process to generate a
sequence of numbers that appears to be random. The numbers in such a sequence are
called pseudo-random numbers .

 The ANSI library defines a function rand that returns a pseudo-random number
between 0 and RAND_MAX.

 You can change the range of the pseudo-random numbers by applying simple
arithmetic operations.

 The definitions exported by an interface are called interface entries. The most
common interface entries are function prototype, constant definitions, and type
definitions. The interface should also contain comments for each entry so the client
can understand how to use that entry.

 To ensure that the compiler reads an interface only once, every interface should
include these lines before the first interface entry:

#ifnde f _name_h
#define _name_h

and this line at the end of the interface file:

#endif

 Unless you take special action, the rand function generates the same sequence of
random numbers every time the program is run. To generate an unpredictable
sequence, you must change the initial random-number seed. When you are using the
random.h interface, the easiest way to set the seed is by calling the function Randomize .

 Each interface must include any header files that are necessary for the compiler to
understand the interface itself . An interface should not include header files that are
required only by the underlying implementation.

 If you want to work with pseudo-random numbers in your programs, you should use
the random.h interface, which exports the functions Randomize, RandomIn teger , RandomR eal ,
and RandomChance . Using this interface is much simpler than working directly with rand.
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1. True or false: The hardest thing about writing an interface is following all of C’s
syntactic rules.

2. What are the five criteria for good interface design listed in this chapter?
3. What is an abstraction boundary?
4. Why is it important for an interface to be stable?
5. What is meant by the term pseudo-random number?
6. On most computers, how is the value of RAND_MAX chosen?
7. What four steps are necessary to convert the result of rand into an integer value with a

different range?
8. How would you use RandomIn teger to generate a pseudo-random number between 1 and

100?
9. By executing each of the statements by hand, determine whether RandomIn teger works



with negative arguments. What are the possible results of calling the function
RandomIn teger (-5, 5)?

10. Could you use the multiple assignment statement

d1 = d2 = RandomIn teger (1, 6);

to simulate the process of rolling two dice?
11. What are the three most common interface entries?
12. If you were defining an interface named magic.h, what would the interface boilerplate

look like? What is the purpose of these lines?
13. True or false: the rand function ordinarily generates the same sequence of random

numbers every time a program is run.
14. What is meant by the term seed in the context of random numbers?
15. What suggestion does this chapter offer for debugging a program involving random

numbers?
16. What functions are defined in the final version of the random.h interface? In what

context would you use each function?

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. Run the randtest.c program on your computer system. What is the value of RAND_MAX on
your machine?

2. Write a program that displays a random even number between 2 and 100.

3. Write a program that displays a random seven-digit phone number. The output should
adhere to the following rules, which apply in the United States:

 The output contains a hyphen between the third and fourth digit, as in 555-1968.
 Neither of the first two digits is 0 or 1. This rule has actually been dropped in

many parts of the United States, but you should nevertheless apply it for the
purpose of this problem. Thus your program might generate the number 781-
9902 but not the number 718-9902.

4. Write a program that displays the name of a card randomly chose from a complete
deck of 52 playing cards. Each card consists of a rand (ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack,
queen, king) and a suit (clubs, diamonds, hearts, spades). Your program should

display the complete name of the card, as shown in the following sample run:

5. Heads…
Heads…
Heads…
A weaker man might be moved to re-examine his faith, if in nothing else at least in the

Queen of Spades



law of probability.
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Write a program that simulates flipping a coin repeatedly and continues until three
consecutive heads are tossed. At that point, your program should display the total number
of coin flips that were made. The following is one possible sample run of the program:

6. Although it is often easiest to think of random numbers in the context of games of
chance, they have other, more practical uses in computer science and mathematics. For
example, you can use random numbers to generate a rough approximation of the
constantлby writing a simple program that simulates a dart board. Imagine that you
have a dart board hanging on your wall. It consists of a circle painted on a square
backdrop, as in the following diagram:

What happens if you throw a whole bunch of darts completely randomly, ignoring any
darts that miss the board altogether? Some of the darts will fall inside the painted
circle, but some will be outside the circle in the white corners of the square. Because
you threw the darts randomly, the ratio of the number of darts that landed inside the
circle to the total number of darts hitting the sequare should be approximately equal to
the ratio between the two areas. The ratio of the areas is independent of the actual size
of the dart board, as illustrated by the following formula:

To simulate this process in a program, imagine that the dart board is drawn on the
standard coordinate plane introduced in the section on “The underlying model for
graphics.h” in Chapter 7, with its center at the origin and a radius of 1 unit. The process
of throwing a dart randomly at the square can be modeled by generating two random
number, x and y, each of which lies between –1 and 1. This (x, y) point always lies
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It took 10 flips to get heads 3 consecutive times.

darts falling inside the circle
darts falling inside the circle

 area of the circle
area of the square 44 2

2 


r
r

122  yx



somewhere inside the square. The point (x, y) lies inside the circle if

This condition, however, can be simplif ied considerably by squaring each side of the

inequality, which gives the following more efficient test:

If you perform this simulation many times and compute the fraction of darts that fall
within the circle, The result will be somewhere in the neighborhood ofл/4.

Write a program that simulates throwing 10,000 darts and then uses the
simulation technique described in this exercise to generate and display an approximate
value ofл . Don’t worry if your answer is correct only in the first few digits. The
strategy used in this problem is not particularly accurate, even through it occasionally
proves useful as a technique for making rough approximations. In mathematics, this
technique is called Monte Carlo integration, after the capital city of Monaco.

7. Albert Einstein said that “I shall never believe that God plays dice with the world.”
Despite Einstein’s metaphysical objections, the current models of physics, and
particularly of quantum theory, are based on the idea that nature does indeed involve
random processes. A radioactive atom, for example, does not decay for any specific
reason that we mortals understand. Instead, that atom has a random probability of
decaying within a period of time. Sometimes it does, sometimes it doesn’t, and there
is no way to know for sure.

Because physicists consider radioactive decay a random process, it is not
surprising that random numbers can be used to simulate that process. Suppose you
start with a collection of atoms, each of which has a certain probability of decaying in
any unit of time. You can then approximate the decay process by taking each atom in
turn and deciding randomly whether it decays, considering the probability.

Write a program that simulates the decay of a sample that contains 10,000 atoms
of radioactive material, where each atom has a 50 percent chance of decaying in a year.
The output of your program should be a table showing the year and the number of
atoms remaining, such as the table shown in this sample run:

As the numbers indicate, roughly half the atoms in the sample decay each year. In

122  yx

Year Atoms left
------ -------------

0 10000
1 4969
2 2464
3 1207
4 627
5 311
6 166
7 89
8 40
9 21
10 8
11 4
12 1
13 0



physics, the conventional way to express this observation is to say that the sample has
a half-lifeof one year.

8. As computers become more common in schools, it is important to find way to use the
machines to aid in the teaching process. This need has led to the development of an
educational software industry that has produced many programs that help teach
concepts to children.

As an example of an educational application, write a program that poses a series
of simple arithmetic problems for a student to answer, as illustrated by the following
sample run:

Your program should meet these requirements:

 It should ask a series of five questions. As with any such limit, the number of
questions should be coded as a #define constant so that it can easily be changed.

 Each question should consist of a single addition or subtraction problem
involving just two numbers, such as “What is 2 + 3?” or “What is 11 – 7?”. The
type of problem—addition or subtraction—should be chosen randomly for each
question.

 To make sure the problems are appropriate for students in the first or second
grade, none of the numbers involved, including the answer, should be less than 1
or greater than 20. This restriction means that your program should never ask
questions like “What is 11 + 13?” or “What is 4 – 7?” because the answers are
outside the legal range. Within these constraints, your program should choose the
numbers randomly.

 The program should give the student three chances to answer each question. If
the student gives the correct answer, your program should indicate that fact in
some properly congratulatory way and go on to the next question. If the student
does not get the answer in three tries, the program should give the answer and go
on to another problem.

9. Even though the program in exercise 8 was designed to offer encouragement when the
student responds correctly, the monotonous repetition of a sentence like “That’s the
answer!” has the opposite effect after a while. To add variety to the interaction,
modify your solution to exercise 8 so that it randomly chooses among four or five

Welcome to Math Quiz!
What is 14 + 2? 161616

16





Tha t’s the answer!
What is 17 – 15? 171717

17





Tha t’s incorrect. Try a differen t answer: 151515

15





Tha t’s incorrect. Try a differen t answer: 333

3





No, the answer is 2.
What is 20 – 16? 444

4





Tha t ‘s the answer!
What is 9 + 4? 111111

11





Tha t’s incorrect. Try a differen t answer: 131313

13





Tha t ‘s the answer!
What is 11 – 1? 101010

10





Tha t’s the answer!



different messages when the student gets the right answer, as illustrated in this sample

run:

10. Using the graphics library presented in Chapter 7, write a program that draws a set of
10 circles with different sizes and positions. Each circles should have a randomly
chose radius between 0.05 and 0.5 inches and should be positioned at a random
location in the drawing window, subject to the condition that the entire circle must fit
inside the window without extending past the edge. The following sample run shows
one possible outcome:

11. Imagine that you live in a well-planned city laid out so that its streets and avenues
form blocks that are precisely square, as in this diagram:

Suppose your office is located at the northeast corner of the map and you want to walk
to your home in the southwest corner. Even if you don’t want to back track or go out of
your way, there are still many possible routes for getting home. At each intersection,
you can choose randomly to go west or south. When you reach the southern or western
edge of the map, you can just head home along that roadway. For example, the colored

Welcome to Math Quiz!
What is 14 + 2? 161616

16





Correct!
What is 17 – 15? 222

2





You got it. The answer is 2.
What is 20 – 16? 444

4





You got it. The answer is 4.
What is 9 + 4? 131313

13





Tha t’s incorrect. Try a differen t answer: 131313

13





Correct!
What is 11 – 1? 101010

10





Tha t’s the answer!



line in the following diagram shows one random route:

Write a program that uses the graphics library to trace out a random path through the
city. You should start by moving the pen to the intersection in the upper right corner.
From there, you draw a line either horizontally or vertically to get yourself to the next
intersection, choosing the direction at random. Continue this process until you get
home, making sure you don’t run off the map.

Your program should not try to draw the entire map; it is enough just to show the
path. If you want more practice using the graphics library, however, you could try to
draw the entire figure shown in the example showing the random path. The make the
heavy line for the random path, you need to draw two straight lines, one of each side
of the actual grid lines.

12. In casinos from Monte Carlo to Las Vegas, one of the most common gambling devices
is the slot machine —the “one-armed bandit.” A typical slot machine has three wheels
that spin around behind a narrow window. Each wheel is marked with the following
symbols: CHERRY, LEMON, ORANGE, PLUM, BELL, and BAR. The window, however, allows
you to see only one symbol on each wheel at a time. For example, the window might
show the following configuration:

If you put a silver dollar into a slot machine and pull the handle on its side, the wheels
spin around and eventually come to rest in some new configuration. If the
configuration matches one of a set of winning patterns printed on the front of the slot
machine, you get back some money. If not, you’re out a dollar. The following table
shows a typical set of winning patterns, along with their associated payoffs:

BAR BAR BAR pays $250
BELL BELL BELL/BAR pays $20
PLLUM PLUM PLUM/BAR pays $14
ORANGE ORANGE ORANGE/BAR pays $10

BELL ORANG
E

BAR



CHERRY CHERRY CHERRY pays $7
CHERRY CHERRY - pays $5
CHERRY - - pays $2

The notation BELL/BAR means that either a BELL or a BAR can appear in that position, and
the dash means that any symbol at all can appear. Thus, getting a CHERRY in the first
position is automatically good for two dollars, no matter what appears on the other
wheels. Note that there is never any payoff for the LEMON symbol, even if you happen
to line them up three of them.

Write a program that simulates playing a slot machine. Your program should
provide the user with an initial stake of $50 and then let the user play until either the
money runs out or the user decides to quit. During each round, your program should
take away a dollar, simulate the spinning of the wheels, evaluate the result, and pay
the user any appropriate winnings. For example, a user might be lucky enough to see
the following sample run:

Even though doing so is not realistic (and would make the slot machine unprofitable
for the casino), you should assume that each of the six symbols is equally likely on
each wheel.

13. Chapter 7 defined several general functions for creating graphical figures that are
useful enough to put into a separate library. These include DrawBox, DrawCenteredBOx,
DrawCenteredCircle , DrawTriangle , and DrawGrid. Define a new interface gfigures.h that exports
those five functions, and write the corresponding gfigures.h file to implement that
interface. Rewrite the house.c program (Figure 7-7) so that it uses your new interface.

14. The calendar.c program in Chapter 5 includes several functions that are general enough
to consider including in a library. It is easy to imagine, for example, that clients other

Would you like instructions? no
You have $50. Would you like to play? yesyesyes

yes





PLUM LEMON LEMON -- you lose
You have $49. Would you like to play? yesyesyes

yes





PLUM BAR LEMON -- you lose
You have $48. Would you like to play? yesyesyes

yes





BELL LEMON ORANGE -- you lose
You have $47. Would you like to play? yesyesyes

yes





CHERRY CHERRY ORANGE -- you win $5
You have $51. Would you like to play? yesyesyes

yes





LEMON ORANGE BAR -- you lose
You have $50. Would you like to play? yesyesyes

yes





PLUM BELL PLUM -- you lose
You have $49. Would you like to play? yesyesyes

yes





BELL BELL BELL -- you win $20
You have $68. Would you like to play? yesyesyes

yes





CHERRY PLUM LEMON -- you win $2
You have $69. Would you like to play? yesyesyes

yes





ORANGE BAR PLUM -- you lose
You have $68. Would you like to play? yesyesyes

yes





ORANGE PLUM BELL -- you lose
You have $67. Would you like to play? yesyesyes

yes





BAR BAR BAR -- you win $250
You have $316. Would you like to play? nonono

no







than the calendar program itself would want to call the functions MonthName, MonthDays,
FirstDayOfMonth, and IsLeapYear. Create a new interface caltools.h that exports those four
functions along with the constant names for the days of the week. Then create a
separate file caltools.c that contains the implementations of those functions. Rewrite the
calendar.c program (Figure 5-6) so that it uses your new interface.



ChapterChapterChapter

Chapter

111

1

StringsStringsStrings

Strings

andandand

and

CharactersCharactersCharacters

Characters

SURELYSURELYSURELY

SURELY

YOUYOUYOU

YOU

DONDONDON

DON

’’’

’

TTT

T

THINKTHINKTHINK

THINK

NUMBERSNUMBERSNUMBERS

NUMBERS

AREAREARE

ARE

ASASAS

AS

IMPORTANTIMPORTANTIMPORTANT

IMPORTANT

ASASAS

AS

WORDS.WORDS.WORDS.

WORDS.





KingKingKing

King

AzazAzazAzaz

Azaz

tototo

to

thethethe

the

Mathemagician,Mathemagician,Mathemagician,

Mathemagician,

TheTheThe

The

PhantomPhantomPhantom

Phantom

Tollbooth,Tollbooth,Tollbooth,

Tollbooth,

NortonNortonNorton

Norton

Juster,Juster,Juster,

Juster,

1961.1961.1961.

1961.

OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To understand the principles of enumeration and integer encoding as strategies for
defining new data types.

 To be able to define and manipulate enumeration types in C.
 To understand how computer systems represent the data types in C.
 To understand how computer systems represent the data type char and how to

manipulate objects of that type.
 To learn how to use the functions in the ctype.h interface
 To understand the concept of an abstract type.
 To be able to use the functions in the strlib.h interface to perform string operations.

UUU

U

ntil now, most of the programming examples yon have seen in this book have

used numbers as their basic data type. As Juster’s Mathemagician would insist, numbers are
certainly important, but there are many other kinds of data in the world. These days,
computers work less with numeric data than with texttexttext

text

datadatadata

data

, that is, any information
composed of individual characters that appear on the keyboard and the screen. The ability
of modern computers to process text data has led to the development of word processing
systems, on-line reference libraries, electronic mail, and a wide variety of other useful
applications.

The concept of text data was introduced informally in Chapter 2, beginning with the
first line of code in this book, which includes the string

“Hello, world.\n”

Since then, you have learn how to read a string value using GetLine, display a string using
printf, and compare two strings using StringEqual . These Operations, however, represent only a
tiny fraction of for you can perform on strings. To unlock the full power of text data, you
need to know how to manipulate the strings in more sophisticated ways. In this chapter,
you’ll learn how to use a library of string operations that will enable you to write creative
and exciting programs involving text data.

Because a string is composed of individual characters, it is important for you to
understand how characters work and how they are represented inside the computer. Thus,
this chapter focuses on the data type char as well as the data type string . Before examining the
details of either type, however, you need to understand data representation form a more



general perspective.
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As the use for computing technology grows, more and more information is stored
electronically. To store information within a computer, it is necessary to represent the data
in a form the machine can use. The representation of a particular item depends on its data
type. Integers have one representation inside the computer; floating-point numbers have a
different one. Even though you do not know exactly what those representations look like,
you have relied on the fact that the computer is able to store numbers in its internal memory.
There are, however, many types of useful data other than numbers, so computers must be
able to represent nonnumeric data as well.

To gain insight into the nature of nonnumeric data, than for a moment about the
information that you yourself provide to institutions and agencies over the course of a year.
For example, if you live in the United States, you supply data to the Internal Revenue
Service with your annual tax return. Much of that information is numeric—your salary,
deductions, taxes, withholdings, and the like. Some consists of text data, such as your name,
address, and occupation. But other items on your tax return cannot easily be classified into
either of these forms. For example, one of the questions is

Filling status (check one):
 single
 married filing separate return
 head of household
 qualifying widow(er)

As with every other entry on the form, your answer represents data. Your response,
however, is neither numeric data nor text data. The best way to describe the data type
would be simply to call it filing status data—an entirely new data type whose domain
consists of five values: single, married filing joint return , married filing separate return ,
head of household, and qualifying widow(er) .

You can easily imagine many other data types that have a similar structure. For
example, other forms might ask you for your sex, ethnicity, or status as a student. In each
case, you would choose a response from a list of possibilities that constitutes the domain of
a distinct conceptual type. The process of listing all the elements in the domain of a type is
called enumerationenumerationenumeration

enumeration

. A type defined by listing all of its elements is called an enumerationenumerationenumeration

enumeration

typetypetype

type

.
Because the title of this chapter is “Strings and Characters,” discussing enumeration

types might seem like a digression. As it happens, though, characters are similar in structure
to enumeration types. Understanding how enumeration types work will help you appreciate
how characters work.

At this point, however, enumeration types are an abstract concept. To understand how
they apply to programming, you need to learn how the computer represents such values
internally. You must also learn how to use enumeration types in the context of a C program.



The next two sections address these issues.
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types

insideinsideinside
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thethethe
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machinemachinemachine

machine

If the Internal Revenue Service decides to review your tax return, the first step in the
process is to enter the data from your return into a computer system. To store that data, the
computer must have a way of representing each of the different data items, including your
filing status. If you weredeveloping a strategy for recording a taxpayer’s filing status, what
would you do?

The insight you need to solve this problem comes form building on the capabilities
you know computers have. Computers are good at working with numbers. That ‘s how
they’re built. As part of their basic hardware operation, they can store, add, subtract,
compare, and do all sorts of other things with numbers. The fact that computers are good at
manipulating numbs suggests a solution to the problem of representing an enumeration
type. To represent a finite set of values of any type, all you have to do is give each value a
number. For example, given the list of allowable filing status values, you could simply
count them off, letting single be 1, married filing joint return be 2, married filling separate
return be 3, and so on. (In fact, these numeric codes are listed directly on the tax form.)
Assigning an integer to each of the different possibilities means that you can use hat integer
to represent the corresponding filing status.

Thus, all you have to do to define a representation for any enumeration type is to
number its elements. The process of assigning an integer to each element of an enumeration
type is called integerintegerinteger

integer

encodingencodingencoding

encoding

—the integer acts as a coded representation of the original
value.

RepresentingRepresentingRepresenting
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C programmers use several strategies to represent enumeration types in C. One
approach is to use the type int explicitly and then to use the #define facility to introduce new
constant names. In fact, you have already seen an example of using integers to represent an
enumeration type. The calendar.c program in Figure 5-6 keeps track of the days of the week.
To define each weekday, the program assigns a numbers are then defined as constant using
C’s #define facility, as follows:

#define Sunday 0
#define Monday 1
#define Tuesday 2
#define Wednesday 3
#define Thursday 4
#define Friday 5
#define Saturday 6

To use this strategy to represent enumeration types, you must specify the integer encoding
explicitly. If you want to introduce a variable to store a value of that type, you simply
declare it to be of type int .



You can apply this strategy to the problem of representing the filing status on a tax
return by defining the following constant:

#define Single 1
#define MarriedFilingJoin tReturn 2
#deinfe MarriedFilikngSepar ateReturn 3
#define HeadOfHousehold 4
#deinfe Qualify ingSurv ivingSpouse 5

The name of the last constant has changed from what appears on the tax form to conform to
C’s rules for names, which disallow parentheses.

Once you have defined the constants, you can declare a variable of type int to represent
the filing status:

int filingS tatus;

DefiningDefiningDefining

Defining

newnewnew

new

enumerationenumerationenumeration

enumeration

typestypestypes

types

While the approach described in the preceding section is coming in C program, it
does not take full advantage of the facilities the language offers. Instead of using the type int

to represent nonnumeric values, it is possible in C to define an actual type name to
represent an enumeration type. Inside the machine, the two strategies produce exactly the
same result: every element of the enumeration type is represented by an integer code. From
the programmer’s point of view, however, defining separate enumeration types has these
advantages:

 The complier is able to choose the integer
codes, thereby freeing the programmer
from this responsibility.

 The fact that there is a separate type amen
often makes the program easier to read
because declarations can use a meaningful
type name instead of the general-purpose
designation int.

 On many computer systems, programs that
use explicitly defined enumeration types
are easier to debug because the compiler
can provide the debugging system with
additional information about how that type
behaves.

C provides more than one syntactic form for
introducing a new enumeration type. In this text, all new enumeration types are defined
using the syntax shown in the box on the right. The definition starts with the keyword
typedef, which is used to introduce new type names. In this context, the keyword typedef is
followed by the keyword enum , which indicates that the new type is an enumeration type.
The names for each of the elements of the enumeration are then listed inside a pair of curly

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for

definingdefiningdefining

defining

ananan

an

enumerationenumerationenumeration

enumeration

typetypetype

type

typedef enum {
listlistlist

list

ofofof

of

elementselementselements

elements

} typetypetype

type

namenamename

name

;

Where:
listlistlist

list

ofofof

of

elementselementselements

elements

is a list of names used to refer
to the individual values that comprise the
enumeration type. The elements in the list
are separated by commas. Each element may
also be followed by and equal sign and an
integer constant that specifies a particular
internal representation.

typetypetype

type

namenamename

name

indicates the name of new
enumerated type



braces, followed by the name of the type and a semicolon. (The typedef keyword is used in
other type definitions as well as illustrated in Chapter 16.)

Using this method, you can define the weekday names in the calendar.c program by
introducing the following enumeration type:

typedef enum {
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

} weekdayT;

This definition introduces a new type named weekdayT that joins the other types available in
the language, such as int and bool. The capital T at the end of the name emphasizes that the
name weekdayT refers to a type and not a variable. In this text, the names of all defined
types—other than bool and string , which are considered part of the fundamental collection of
types—will end with a capital T. This stylistic convention helps make programs readable.

The declarations of variables used to refer to days of the week in the calendar.c program
need to be changed so that they use the type weekdayT instead of the type int. (You have the
opportunity to do so in exercise 2.) As mentioned earlier in this section, an advantage of
using enumeration types in a program is that the type names can convey useful information.
Declaring a variable to be type int leads anyone reading the program to believer that the
variable is going to hold integers; the fact that the integer corresponds to some day of the
week is completely lost. Declaring a variable to be of type weekdayT immediately tells the
reader the type of value that variable contains.

The definition of weekdayT also defines the seven constants that correspond to the days
of the week. These constants are similar to those that were introduced using #define and in
face have the same internal representations. Whenever you define a new enumeration type,
the elements are assigned consecutive integer values staring with 0. Thus, in the weekdayT

ensample, Sunday still has the value 0, Monday the value 11, and so forth, just as before.
The C compiler also allows you to specify explicitly the internal representation for the

elements of an enumeration type as part of the definition. For example, it might be essential
to the Internal Revenue Service that the internal codes used to represent filing status have
precisely the values that are printed on the tax form. After all, they presumably have years
of data in storage for which the filling status is encoded with single equal to 1, and so on. In
defining the filing status type, you would need to specify the values of the constants, as
follows:

typedef enum {
Single = 1,
MarriedFilingJoin tReturn = 2,
MarriedFilingSepar arteReturn = 3,
HeadOfHousehold = 4,
Qualify ingSurv ivingspouse = 5

} filingS tatusT;

You can, however, shorten this definition somewhat. If no equal sign appears, the C
compiler assigns consecutive values to each element in turn. Thus writing

typedef enum {
Single = 1,
MarriedFilingJoin tReturn,
MarriedFilingSepar arteReturn,



HeadOfHousehold,
Qualify ingSurv ivingspouse

} filingS tatusT;

has precisely the same effect as the preceding definition. The name Single is explicitly
assigned the value 1, and the rest of the names are numbered consecutively from there.

You can sue enumerations for all sorts of values. For example, you can define the
colors of the rainbow by writing

typedef enum {Red, Orange, Yellow, Green, Blue, Violet} colorT;

or the four principal directions on a compass with

typedef enum {North, Ease, South, West} directionT;

Each of these definitions introduces a new type name and a set of constants that are
elements of that type.

In fact, the definition of bool in genlib.h is simply an enumeration type:1

typedef enum {FALSE, TRUE} bool;

OperationsOperationsOperations

Operations
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C compilers automatically convert values belonging to an enumeration type to integers
whenever the values are used in an expression. Because every enumeration constant is
represented by an integer value, all computation involving enumeration types simply uses
the underlying integer codes. For example, if you declare the variable weekday to be of
type weekdayT, you can still write the expression

weekday = (weekday + 1) % 7;

just as it appears in the calendar.c program. The variable weekday has some internal integer
value between 0 and 6. This statement adds 1 to that integer and then ensures that the result
stays between 0 and 6 by dividing by 7 and taking the remainder. All arithmetic for
enumeration types works the same way it does for integers.

In C, however, you need to be careful when working with enumeration types, because
the compiler does not check to see that the result of a computation is a valid member of a
particular enumeration type. For example, if you had erroneously written the statement

weekday = weekday + 1;

you would run into trouble if weekday happened to have the value Saturday. The computer
would take the value 6 representing Saturday, add 1 to it, and store the value 7 back in the
variable weekday, even though 7 is not a legal element of the type weekdayT. Compilers
could generate extra code to check for this condition and report the error, but very few do.
Of course, if you represent weekday as an integer instead, leaving out the remainder

1 In a C expression representing a Boolean condition, the integer 0 indicates that the condition is
false, and any nonzero value is interpreted to mean that the condition is true, although the integer 1 is
designated as the “official ” value of the constant TRUE. C programmers often rely on the fact that C
interprets nonzero integers as true conditions, although the programs in this text do not. By limiting
yourself to using explicit Boolean value in conditional contexts, you will develop good programming
habits that will make your programs easier to read and debug.



operator would still be an error, so choosing to use an enumeration type is not the cause of
the problem.

ScalarScalarScalar
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Types, such as enumeration types, that behave lie integers are called scalarscalarscalar

scalar

typestypestypes

types

. In
C, scalar types are automatically converted to integers whenever you use them in an
expression. Moreover, you can use scalar types in any context in which an integer might
appear. For example, a variable of an enumeration type can be used as the control
expression in a switch statement. Assuming that directionT is defined as

typedef enum {North, East, South, West} directionT;

the following function returns the direction opposite to that indicated by its argument:

directionT OppositeDireec tion (directionT dir)
{

switch (dir) {
case North: return (South);
case East: return (West);
case South: return (North);
case West: return (East);
defaul t: Error (“Illegal direction value ”);

}
}

Thus, calling OppositeDirection (North) returns South.

1-21-21-2

1-2

CharactersCharactersCharacters

Characters

Characters form the basis for all text data processing. Although strings certainly occur
more often in programs than single characters, characters are the fundamental type—the
“atoms” used to construct all other forms of text data. Understanding how characters work
is therefore critical to understanding all other aspects of text processing. In a sense,
characters constitute a built-in enumeration type, although the term enumeration type is
usually reserved for types specified using the enum keyword. By all accounts, however,
characters are a scalar type, as defined at the end of the preceding section, and are therefore
part of the same general type class as the user-defined enumeration types.

TheTheThe

The

datadatadata

data

typetypetype

type

charcharchar

char

In C, single characters are represented using the data type char, which is one of the
predefined data types. Like all the basic type introduced in Chapter 2, the type char consists
of a domain of legal values and a set of operations for manipulating those values.
Informally, the domain of the data type char is the set of symbols that can be displayed on
the screen or typed on the keyboard. These symbols—the letters, digits, punctuation marks,
spacebar, Return key, and so forth—are the building blocks for all text data. Because char is



a scalar type, the set of operations available for characters is the same as that for integers.
Understanding what those operations mean in the character domain, however, requires
looking more closely at how characters are represented inside the machine.

TheTheThe

The

ASCIIASCIIASCII

ASCII

codecodecode

code

Single characters are represented inside the machine just like any other scalar type.
Conceptually, the central idea is that you can assign every character a number by writing
them all down in a list and then counting them off one at a time. The code used to represent
a particular character is called its charactercharactercharacter

character

codecodecode

code

. For example, you could let the integer 1
represent the letter A, the integer 2 represent the letter B, and so on. After you got to the
point of letting 26 represent the letter Z, you could then keep going and number each of the
lowercase letters, digits , punctuation marks, and other characters with the integers 27, 28,
29, and so on.

Even though it is technically possible to design a computer in which the number 1
represents the letter, it would certainly be a mistake to do so. In today’s world, information
is often shared between different computers: you might copy a program from one machine
to another on a floppy disk or arrange to have your computer communicate directly with
others over a national or international network. To make that kind of communication
possible, computers must be able to “talks to each other” in a common language. An
essential feature of that common language is that the computers use the same codes to
represent characters, so that the letter A on one machine does not come out as a Z on another.

In the early days of computing, different computers actually used different character
codes. The letter A might have a particular integer representation on one machine but an
entirely different representation on a computer made by some other manufacturer. Even the
set of available characters was subject to change. One computer, for example, might have
the character￠on its keyboard, while another computer would not be able to represent that
character at all. Computer communication was plagued by all the difficulties that people
speaking different languages encounter.

Over time, however, the enormous advantage that comes form enabling computers to
communicate effectively has led most computer manufactures to adopt a single standard for
character representation—a coding system for characters called ASCIIASCIIASCII

ASCII

(pronounced “as-
key”), which stands for the American Standard Code for Information Inter-change. Table
9-1 shows the ASCII code used to represent each character.

TABLETABLETABLE

TABLE
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ASCII codes

0 1 2 3 4 5 6 7 8 9
0 \000 \001 \002 \003 \004 \005 \006 \a \b8 \t

10 \n \v \f \r \016 \017 \020 \021 \022 \023

20 \024 \025 \026 \027 \028 \029 \030 \031 \032 \033

30 \036 \037 space ! " # $ % & '

40 ( ) * + , - . / 0 1



COMMON
PITFALLS

Avoid using integer
constants to refer to
ASCII characters within a
program. All character
constants should be
indica ted by enclosing the
character in single
quotation marks, as in ‘A’
or ‘*’ .

Although Table 9-1 contains several entries that appear on the keyboard, there are
several less familiar entries represented by a backward slash (\), usually called a backslash ,
followed by a single letter or a sequence of digits. These entries, called special characters,
are discussed in a separate section latter in this chapter.

You can calculate the ASCII code for any character in Table 9-1 by adding the row and
column number associated with that entry. For example, the letter A near the center of the
chart is in the row labeled 60 and the column labeled 5. The ASCII ode for the letter A is
therefore 60 + 5., or 65. You can use the table to find the code for any character in this same
way. In most cases, however, you will not need to do so. Although it is important to know
that characters are represented internally using a numeric code, it is not generally useful to
know what numeric value corresponds to a particular character.When you type the letter A,
the hardware logic built into the keyboard automatically translates that character into the
ASCII code 65, which is then sent to the computer. Similarly, when the computer sends the
ASCII code 65 to the screen, the letter A appears.

CharacterCharacterCharacter

Character

constantsconstantsconstants

constants

When you want to refer to a specific character in a C program, the standard approach is
to specify a character constant, which is written by enclosing the desired character in single
quotation marks. For example, to indicate the ASCII codes for the letter A, all you have to
write is ‘A’. The C compiler knows that this notation means to use the ASCII character code
for the letter A, which happens to be 65. Similarly, you can indicate the space character by
writing ‘ ’ or the digit 9 be writing ‘9’. Note that the constant ‘9’ refers to a character and
should not be confused with the integer value 9. As an integer, the value ‘9’ is the value for
that character given in the ASCII table, which is 57.

As long as your computer uses the ASCII character set, you could replace the character
constant ‘A’ with the integer 65. The program would work in exactly the same way but
would e much harder to read. You need to keep in mind that some other programmer will
eventually come along and have to make sense out of what you’ve written. Unless that
programmer has memorized the ASCII table, seeing the integer 65 written as part of the
program won’t immediately conjure up an image of the letter A. On the other hand, the
character constant ‘A’ conveys thatmeaning directly.

This text includes Table 9-1 to give you a more concrete understanding of how

50 2 3 4 5 6 7 8 9 : ;

60 < = > ? @ A B C D E

70 F G H I J K L M N O

80 P Q R S T U V W X Y

90 Z [ \ ] ^ _ ` a b c

100 d e f g h i j k l m

110 n o p q r s t u v w

120 x y z { | } ~ \177



characters are represented inside the machine. As soon as you have that idea in mind, you
should forget about the specific character codes and concentrate instead only on the
character itself.
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Even though it is important not the think about specific character codes, the following
two structural properties of theASCII table are worth remembering:

1. The codes for the characters representing the digits 0 though 9 are consecutive. Even
though you do not need to know exactly what code corresponds to the digit character ‘0’,
you know that the code for the digit ‘1’ is the next the digit character ‘0’, you know that the
code for the digit ‘1’ is the next larger integer. Similarly, if you add 9 to the code for ‘0’,
you get the code for the character ‘9’.

2. The letters in the alphabet are divided into two separate ranges: one for the uppercase letters
(A-Z) and one for the lowercase letters (a-z). Within each range, however, the ASCII values
are consecutive, so that you can count through the letters one at a time in order of their
ASCII code.1

Each of these properties will be useful in programs at various points later in this text.

SpecialSpecialSpecial

Special

characterscharacterscharacters

characters

Most of the characters in Table 9-1 are the familiar ones that can be displayed on the
screen. These characters are called printingprintingprinting

printing

characterscharacterscharacters

characters

. The ASCII table, however, also
includes various specialspecialspecial

special

characterscharacterscharacters

characters

, which are used to performa particular action.
You have been using one of these special characters—the newline character indicated

by the two-character sequence \n—ever since Chapter 2. The newline character, which
appears in a large majority of printf calls, is used to position the cursor at the beginning of the
next line on the screen. In addition to the newline character, there are several other special
characters with predefined functions. Special characters are indicated in programs by using
a backslash followed by a letter or numeric value. The combination of the backslash and
the characters that follow it is called an escapeescapeescape

escape

sequencesequencesequence

sequence

. Table 9-2 lists the predefined
escape sequences.

1 The second property is in fact not guaranteed by ANSIC, even though it is almost always true.
There are still computer systems that use character coding systems in which the letters are not consecutive,
but it is unusual to program in C on those computers. Because making the assumption that the letters
form a consecutive set simplifies certain programming problems considerably, the programs in this text
assume that the character set in fact has this property.



You can include special characters in character constants by writing the escape
sequence as part of the constant. Although each escape sequence consists of several
characters, each sequence is translated into a single ASCII code inside the machine. The
codes for the special characters are included in Table 9-1. For example, the newline
character is represented internally by the integer 10.

When the compiler sees the backslash character, it expects it to be the first character in
an escape sequence. If you wnat to represent the backslash character itself, you have to use
twoconsecutive backslashes inside single quotation marks like this: ‘\\’. Similarly, the single
quotation mark, when used as a character constant, must also be preceded by a backslash:’\’’.

Special characters can also be used in string constants, as you have seen in the case of
the newline character. The fact that a double quotation mark is used to indicate the end of a
string means that the double quotation mark must be marked as a special character if it is
part of a string. For example, if you write a programcontaining the printf line

printf (“\”Bother,\ ” said Pooh.\n”);

the output is

Many of the special characters in ASCII do not have explicit names and are instead
represented in programs using their internal numeric codes. The only wrinkle in this process
is that the numeric codes for special characters are indicated using base 8 notations, which
is usually called octaloctaloctal

octal

notationnotationnotation

notation

. In octal notation, every digit position is worth 8 times as
much as the next digit to its right. For example, the character constant ‘\177 ’ represents the
character whose ASCII code is the octal number 177. (This character is the code that
corresponds to pressing the Delete key, which is labeled Rubout on some keyboards.)
Numerically, the octal value 177 corresponds to the integer

1 × 64 + 7 × 8 + 7

which works out to be the decimal number 127.
Most of the special characters in the ASCII coding system are rarely used in practice.

For most programming applications, the only special characters you will need to know are
the newline character (‘ \n’), the tab character (‘\t ’), and the null character (‘\0’), which is
discussed in Chapter 14.

EscapeEscapeEscape

Escape

sequencesequencesequence

sequence

FunctionFunctionFunction

Function

\a Audible alert (beeps or rings a bell)
\b Backspace
\f Formfeed (starts a new page)
\n Newline (moves to the beginning of the next line)
\r Return (returns to the beginning of the current line without advancing)
\t Tab (moves horizontally to the next tab stop)
\v Vertical tab (moves vertically to the next tab stop)
\0 Null character 9the character whoseASCII code is 0)
\\ The character \ itself
\’ The character ‘ (requires the backslash only in string constants)
\” The character “ (requires the backslash only in string constants
\ddd The character whose ASCII code is the octal number ddd

TABLETABLETABLE

TABLE

9-29-29-2

9-2

Escape sequences for
special characters

“bother, ” said Pooh.
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In C, character values can be manipulated as if they were integers; no special
conversions are required. The result is defined according to the internal ASCII codes. For
example, the character ‘A’ , which is represented internally using the ASCII code 65, is
treated as the integer 65 whenever it is used in an arithmetic context.

Because integers and characters can be freely converted back and forth, you can easily
define a function RandomLetter that returns a randomly chosen uppercase letter. Given the
RandomIn teger function exported by the random.h interface from Chapter 8. The
implementation is simply

char RandomLetter (void)
{

return (RandomI teger (‘A’, ‘Z’));
}

Even though it is legal to apply any arithmetic operation to values of type char, not all
operations are meaningful in that domain. For example, it is legal to multiply ‘A’ by ‘B’ as part
of a program. To determine the result, the computer takes the internal codes, 65 and 66, and
multiplies them to get 4290. The program is that this integer means nothing as a character
and is in fact outside theASCII character range. Only a few of the arithmetic operations are
likely to be useful when applied to characters. The operations that generally make sense are:

 Adding an integer to a character. If c is a character and n is an integer, the expression c + n

represents the character code that comes n character after c in the coding sequence. For
example, the expression ‘0’ + n computes the character code of the nt h digit, if n is between 0
and 9. Thus ‘0’ + 5 computes the character code for ‘5 ’). Similarly, the expression ‘A’ + n - 1
computes the character code the nt h letter in the alphabet, assuming that n is between 1 and
26.

 Subtracting an integer from a character. The expression c – n represents the code of the
character that comes n characters before c in the coding sequence. For example, the
expression ‘Z’ – 2 computes the character code for ‘X’.

 Subtracting one character from another. If c1 and c2 are both characters, the expression c1 –

c2 represent the distance between those characters in coding sequence. For example, if you
look back to Table 9-1 and compute the ASCII values of each character, you can determine
that ‘a ’ – ‘A’ is 32. More importantly, the distance between a lowercase character and its
uppercase counterpart is constant, so that ‘z’ – ‘Z’ is also 32.

 Comparing two characters against each other. Comparing two character values using any of
the relational operators is a common operation, often used to determine alphabetical
ordering. For example, the expression c1 < c2 is TRUE if c1 comes before c2 in the ASCII table.

To see how these operations apply to practical problems, consider how the computer
executes a function like GetInteger . When a user types a number, such as 102, the computer
receives the individual keystrokes as characters and must therefore work with the input
values ‘1’, ‘0 ’, and ‘2’. Because the GetInteger function must return an integer, it needs to
translate the character into the integers they represent. To do so, GetInteger takes advantage



of the fact that the digits are consecutive in the ASCII sequence. For example, suppose that
GetInteger has just read a character from the keyboard and stored it in the variable ch. It can
convert the character to its numeric from by evaluating the expression

ch – ‘0’

Assuming that ch contains a digit character, the difference between its ASCII code and the
ASCII code for the digit ‘0’ must correspond to the decimal value of that digit. Suppose, for
example, that the variable ch contains the character ‘9’. If you consult the ASCII table, you
can determine that the character ‘9’ has the internal code 57. The digit ‘0’ has the ASCII code
48, and 57 – 48 is 9. The key point is that the function makes n assumption that ‘0’ has the
ASCII code 48, which means that the same function would work even if the computer used
a different character set. The only assumption is that the codes for the digits form a
consecutive sequence.

But how can GetInteger determine whether the character ch is in fact a digit? Once again,
it can take advantage of the fact that the digits are consecutive in the ASCII table. The
statement

if (ch >= ‘0 ’ && ch <= ‘9 ’…

distinguishes the digit characters from the rest of the ASCII set. Similarly, the statement

if (ch >= ‘A’ && ch <= ‘Z’ )…

identif ies the uppercase letters, and

if (ch >= ‘a ’ && ch <= ‘z’)…

identif ies the lowercase letters.
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As it happens, however, you won’t usually encounter the if statements used at the end
of the preceding section in a typical C program. The operations for checking whether a
character is a digit or a letter are so common that the designers of C put them in a library.
The interface to that library is ctype.h, which exports several functions for determining the
type of a character. As with any interface, you gain access to these functions by including
the line

#include <ctype.h>

The ctype.h interface declares several predicate functions for determining the type of a
character, of which the following are the most important:

islower (ch) Returns TRUE if the character ch is a lowercase letter
isupper (ch) Returns TRUE if ch is an uppercase letter
isalpha (ch) Returns TRUE if ch is a letter (either upper- or lowercase)
isdigit (ch) Returns TRUE if ch is a digit
isalnum (ch) Returns TRUE if ch is alphanumeric, which means that it is either a letter or a digit
ispunct (ch) Returns TRUE if ch is a punctuation symbol



isspace (ch) Returns TRUE if ch is one of the characters ‘ ‘ (the space character), ‘\t ’, ‘\n’ , ‘\f’, or
‘\v’, all of which appear as blank space on the screen

In addition, ctype.h defines these twoextremely useful conversion functions:

tolower (ch) If ch is an uppercase letter, returns its lowercase equivalent; otherwise returns ch
unchanged

toupper (ch) If ch is a lowercase letter, returns its uppercase equivalent; otherwise returns ch

unchanged

Although tolower and toupper are already available through the ctype.h interface, you can
appreciate their operation more if you try to implement them from scratch. Once again,
you can ignore the actual ASCII codes involved and rely only on the continuity
assumptions. If ch contains a character code for an uppercase letter, you can convert it to
its lowercase from by adding the constant difference in value that separates the uppercase
and lowercase characters. Rather than write that difference as an explicit constant,
however, the program is easier to read if you express it using character arithmetic as ‘a ’ – ‘A’.
Thus, you could implement the tolower function as follows:

char tolower (char ch)
{

if (ch >= ‘A’ && ch <= ‘Z’ ) {
return (ch + (‘a’ – ‘A’));

｝else {
return (ch);

}
｝

The function toupper has a similar implementation.
Even though the functions defined in the ctype.h interface are easy to implement, it is

good programming practice to use the library functions instead of writing your own. There
are three principal reasons for doing so.

1. Because the library functions are standard, programs you write will be easier for other
programmers to read. Assuming those programmers are at all experienced in C, they will
recognize the functions in the cytpe.h interface and know exactly what they mean.

2. It is easier rely on library functions for correctness than on your own. Because the ANSI C
libraries are used by millions of client programmers, there is considerable pressure on the
implementation to get the functions right. If you rewrite library functions yourself, the
chance of introducing a bug is much larger.

3. The library implementations of functions are often more efficient than those you would
write yourself. In the ctype.h interface, for example, the library mechanism runs much faster
than the implementations given in this section, often by a factor of three or four. How these
more efficient implementations work is beyond the scope of this chapter, but the important
point is that you can take advantage of that added efficiency by using the library forms.
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Control
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Because char is a scalar type, you can use it in all the statement forms in which integers
appear. For example, if ch is declared to be of type char, you can use the following for header
line to execute a loop 26 times, once for each uppercase letter in the alphabet:

for (ch = ‘A’; ch <= ‘Z’; ch++)

Similarly, you can use a character as the control expression in a switch statement. For
example, the following predicate function returns TRUE if its arguments is a vowel:

bool IsVowel (char ch)
{

switch (tolower(ch)) {
case ‘a’: case ‘e’: case ‘i ’: case ‘o’ : case ‘u’:

return (TRUE);
defaul t:

return (FALSE);
}

}

Note that the implementation uses the tolower function to recognize vowels in both their
uppercase and lowercase forms.
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Traditionally, character input and output is performed using the functions getchar and
putchar in the standard I/O library. This text discusses these functions in Chapter 15 along
with the other functions the stdio.h interface provides. Until then, the programs in this text
read character data by calling GetLine to read an entire line and then selecting the individual
characters in that line, as discussed in the section on “selecting characters from a string”
later in this chapter. To display a single character on the screen, you can use the printf

function with the format code %c. For example, the following main program uses the IsVowel
predicate code %c. For example, the following main program uses the IsVowel predicate from
he preceding section to list the English vowels in their uppercase from:

main()

{
char ch;

printf (“The English vowels are: ”);
for (ch = ‘A’; ch <= ‘Z’; ch++) {

if (IsVowel (ch)) printf (“ %c”, ch);
}
printf (“\n”);

}
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The real power of using characters comes from the fact that you can string them
together, one after another. To form a sequence of characters called a string. As noted in the
introduction to this chapter, you already know how to perform several string operations.



You can read a string from the user by calling GetLine , display a string on the screen by
calling printf, and determine whether two strings are precisely equal by calling StringEqual . As
you will discover, however, there is a lot more you need to learn about strings in order to
unlock the enormous power they bring to programming. To understand strings in their
entirety, you must consider them from several different perspectives at differing levels of
detail.

As you have found many times in this text, you can approach programming from both
a reductionistic and a holistic perspective. When you concern yourself with the internal
details of data representation, you are taking the reductionistic view. From this perspective,
your job is to understand how characters are stored in the compote’s memory, how a
sequence of those characters can be stored to form a sting, and how, for example, a 200-
character string can fit inside the same variable that holds a 2-character string. These are all
interesting questions, and you will discover the answers in due course. When you consider
string s from the holistic perspective, however, your job is to understand how to manipulate
a string as a single logical unit. By focusing on the abstract behavior of strings, you can
learn how to use them effectively without getting bogged down in details.

Ideally, it would be best to interleave the holistic and reductionistic perspectives so
that you could use each perspective to shed light on the other. Understanding the internal
structure of strings, however, requires that you first become familiar with several of the
more advanced topics covered in this text, such as arrays and pointers. Trying to master all
these ideas at the same time is just too difficult. Focusing too early on the representation of
strings means that the abstract perspective—how strings are used and why they’re
there—tends to get lost.

To make sure that you can comprehend strings holistically, this text adopts a
multistage approach. In this chapter, you will learn about the abstract behavior of strings by
using a string library that hides most of the underlying complexity. As you go through the
rest of the text, you will discover more of the details about how strings are represented,
eventually reaching a point when you can write the entire string library your self. Beyond
making it possible to learn about strigns gradually, this approach also provides another
example of effective interface design and the principle of information hiding.
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abstractions

Although this chapter concentrates on strings from an abstract perspective, it is useful
to know what other perspectives exist and how those perspectives are related. As is the case
with most abstract concepts sin programming, the high-level approach taken in this chapter
is made possible through a series of string abstractions at varying levels of detail. The
different abstractions form a hierarchy, with the most primitive facilities at the base. Each
new abstraction is built on top of the preceding one and provides a more sophisticated view
of the string concept.

An abstraction that is constructed in several hierarchical stages is called a layeredlayeredlayered

layered

abstractionabstractionabstraction

abstraction

. The structure of the layered abstraction used to represent strings is shown in
the following diagram:

the strlib.h interface

the ANSI string.h interface

language-level operations

machine-level operations

increasing
detail

increasing
abstraction



The hardware devices that perform input and output automatically translate between ASCII
codes and the symbols that appear on the screen or the keyboard. As discussed earlier in this
chapter, the computer can manipulate individual characters by applying arithmetic
operations to the integer codes used to represent them. These facilities constitute the
machine-level operations available for strings and form the lowest level of the hierarchy.

On top of the basic capabilities provided by the hardware, programming languages
also usually include some support for string manipulation. The built-in operations available
for strings form the second layer in the hierarchy. In many languages, these facilities are
quite powerful, making it possible to perform complex string manipulation directly at the
language level. ANSI C, however, provides almost no support for strings within the
language itself. The only direct language support for strings is the ability to define string
constants, which were introduced in the section on “Constants” in Chapter 2. All other
string operations are provided by libraries. Even the type name string is not included as part
of the language and is defined instead as an extension in the genlib.h interface.

In ANSI C, most of the string operations that programmers use in practice are supplied
through the string.h interface. This library provides a powerful set of string operations, but
the conceptual abstraction used in the stirng.h interface will be beyond your reach until after
you have learned the material in Chapter 11 and 13. Moreover, certain common operations
are difficult to perform using the string.h interface. For example, when you use the functions
in string.h , you cannot easily return string values from functions or even assign a string
value directly to a variable. Because using the string.h interface is the standard approach to
string manipulation in ANSI C, you must learn how to use it eventually. By delaying that
introduction of the string.h interface until Chapter 14, this book makes sure that you have all
the background you need before you try to make sense of the conceptual abstraction used in
that package.

To give you a chance to work with strings using a conceptually simpler model, this
text introduces another string library, which is accessible through the strlib.h interface. Like
genlib.h and stdio.h , the strlib.h interface is an extension to the standard ANSI C library.
Therefore, to include it in your program, you must use quotation marks:

#include “strlib.h ”

The strlib.h interface, which forms the highest layer in the abstraction hierarchy, makes it
relatively easy to work with strings.
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The principal advantage of the strlib.h interface is that it makes it possible to work with
strings as an abstract type. Although the definition will be refined in Chapter 17, in which
abstract types are a central theme, it is sufficient for now to think of an abstractabstractabstract

abstract

typetypetype

type

as a
type defined only by its behavior and not in terms of its representation.

The behavior of an abstract type is defined by the operations that can be performed on
objects of that type. The legal operations for a particular abstract type are called its
primitiveprimitiveprimitive

primitive

operationsoperationsoperations

operations

and are defined as functions in an interface associated with the type.
Details of those operations and the underlying representation of the type are hidden away in



the implementation of that interface. Whenever a client wants to manipulate values of and
abstract type, the client must use the functions provided by the interface.

In the context of strings, what are the primitive operations that you might want to
perform? To begin with, you already know how to

 Specify a string constant in a program
 Read in a string form the user by using GetLine

 Display a string on the screen by using print

 Determine whether two strings are exactly equal by using StringEqual

What else might you want to do? When working with strings, you might, for example, want
to perform any of the following operations:

 Find out how long a string is
 Select the first character—or, more generally, the it h character—within a string.
 Combine two strings to form a longer string
 Convert a single character into a one-character string
 Extract some piece of a string to form a shorter one
 Compare two strings to see which comes first in alphabetical order
 Determine whether a string contains a particular character or set of characters

There are other operations you might consider, but this list offers an interesting and useful
start. Each of these operations is provided by a function in the strlib.h interface. This interface
gives you the tools you need to use strings without requiring you to comprehend the details
of the underlying representation. The fact that you do not need to understand those details is
the essence of data abstraction.
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In Chapters 7 and 8, you learned to read and write header files that represent interface
to libraries. The entire strlib.h header file appears in Appendix B. As an exercise in reading
header files, you can look at the comments in the interface and figure out precisely what
each of the functions does. The next several sections, however, offer more detailed
description of those functions in more goal-oriented terms. Instead of focusing on what
each function does, the rest of this chapter concentrates on the abstract operations you might
want to perform, describing the functions you need to accomplish those operations.

Until now, each new function has been introduced by giving its complete prototype
and then describing its operation. Beginning in this chapter, new functions are often
introduced in the text somewhat less formally, using what is sometimes called an implicitimplicitimplicit

implicit

prototypeprototypeprototype

prototype

, which is simply a sample call to the function with descriptive names for the
parameters. In your programs, you must continue to provide the complete prototype
showing the types of each parameter. Using implicit prototypes in the text, however, often
makes it easier to see a glance how to use the function. For example, the implicit prototype
for the RandomIn teger function in Chapter 8 would be RandomIn teger (low, high) . Beginning with
this chapter, most new functions are introduced using the implicit prototype form, after



which the text explains the effect of the function in terms of the parameter names. This style
of description is common in other reference material about C.
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When writing programs to manipulate strings, you often need to know how many
characters a particular string contains. The total number of characters a string
contains—counting all letters, digits, spaces, punctuation marks, and special characters—is
called the lengthlengthlength

length

of the string.
Using the strlib.h interface, you can obtain the length of a string s by calling the function

StringLength(s). For example, the first string you encountered in this book was the string

“Hello, world.\n”

This string has length 14—five characters in the word Hello, five more in world, two
punctuation marks (a comma and a period), one space, and one newline character. Thus the
function call

StringLength (“Hello, world.\n” )

returns the value 14.
The following program reads in a single line of text from the user and reports its length:

main()
{

string str;
printf (“This program tests the StringLength function.\n ”);
printf (“Enter a string: “);
str = GetLine ();
printf (“The length is %d.\n” , StringLength (str));

}
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In C, positions within a string are numbered string from 0. For example, the individual
characters in the string “Hello there!” are numbered as in the following diagram:

The position number written underneath each character in the string is called its indexindexindex

index

within the string.
To enable you to select a particular character in a string given its index, the strlib.h

interface provides a function called IthChar that takes twoarguments—a string and an integer
representing the index—and returns a character. For example, if the variable str contains the
string “Hello there! ” , calling IthChar (str, 0) returns the character ‘H’ . Similarly, calling IthChar (str, 5)
returns ‘ ‘ , which is the space character. Be sure to remember that C number characters
starting with 0, not 1. It is easy to forget this rule and assume that IthChar (str, 5) will return the

H e l l o t h e r e !

0 1 2 3 4 5 6 7 8 9 10 11



COMMON
PITFALLSPITFALLSPITFALLS

PITFALLS

The Concat func tion
always takes two
arguments. If you need to
concatenate more than
two strings, you mus t use
nested calls to Concat.
The innermos t call
combines tow strings, the
next call adds another
string onto the result, and
so for th.

fifth character in the string. IthChar (str, 5) returns the character at index position 5, which is
the sixth character as you would number character positions in English.

Give the library function, IthChar, you can define a new function LastChar (str) that returns
the last character in str as follows:

char LastChar (string str)
{

return (Ithchar (str, StringLength (str, -1);
}

For example, calling LastChar one the string “Hello there! ” returns the exclamation point
character ‘!’.

ConcatenationConcatenationConcatenation

Concatenation

Another useful function for working with strings is the Concat function, which takes two
strings and connects them, end to end, with no intervening characters. In programming, this
operation is called concatenation. For example, the value of

Concat (“Hello”, “there”)

is the 10-character string “Hellother ”.
If you want to put a space between two words represented as string values, you have to

perform an additional concatenation. The Concat function takes only twoarguments at a time.
To concatenate three or more string values, you have to make several calls to Concat, each of
which combines two pieces. For example, if the variable word1 contains “Hello” and the
variable word2 contains “there ”, you have to make nested calls to Concat in order to generate the
11-character string “Hello there ”, as illustrated by the following expression:

Concat (Concat (word1, “ “), word2)

You can also use Concat to define a function ConcatNCopies (n, str) , which returns a string
consisting of n repeated copies of str concatenated together end to end. For example, calling
the function ConcatNCopies (10, “*” ) returns a string consisting of 10 asterisks. A simple
implementation of ConcatNCopies is

string ConcatNCopies (int n, string str)
{

string result;
int i;

result = “”;
for (i = 0; i <n; i++) _{;

result = Concat (result, str);
}
return (result);

}

In a way, the implementation strategy used in this example is similar to that used in the
Factorial function presented in the section on “Functions involving internal control structures”
in Chapter 5. In both cases, the function uses a local variable to keep track of the partially
computed result during each cycle of a for loop. In the ConcatNCopies function, each cycle



in the for loop concatenates the value of str onto the end of the previous value of result.
Because each cycle adds one copy of str to the end of result, the final value of result after n
cycles must consist of n copies of that string.

In each of the two functions—Factorial and ConcatNCopies—the initialization of the
variable used to hold the result is worthy of some note. In the Factorial function, the variable
product is initialized to 1, so thatmultiplying it by each successive value of i properly keeps
track of the result as the computation proceeds. In the case of ConcatNCopies , the
corresponding statement initializes the string variable result so that it grows through
concatenation. After the first cycle of the loop, the variable result must consist of one copy
of the string str. Prior to the first cycle, therefore, result must contain zero copies of the
string, which means it has no characters at all. The string with no characters at all is called
the emptyemptyempty

empty

stringstringstring

string

and is written in C using adjacent double quotes: “”. Whenever you need to
construct a new string by concatenating successive parts onto an existing string variable,
you should initialize that variable to the empty string.
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When suing the Concat function, you often run into situations in which you want to add
a character to an existing string. The Concat function seems like the right conceptual tool but
doesn’t quite fit the situation. The Concat function requires both of its arguments to be strings.
In many cases, what you have is a string and a character. To solve this problem, the strlib.h

library includes the function CharToString (ch). This function takes a single character ch and
returns a string consisting only of that character. After converting a single character into a
string, you can then concatenate it with another string.

To get a sense of how to apply this technique, suppose you have been asked to write a
function ReverseString (str) that returns a new string composed of the characters in str arranged
in reverse order, so that ReverseString (“ABC”) returns “CBA”. To implement this function, you can
go through the original string character by character using a for loop and put a new string
together using concatenation. If you proceed from left to right and add each character of the
original string to the front of the new one, the new string will come out in reverse order. The
following implementation of ReverseString illustrates this strategy:

string ReverseString (string str)
{

string resutl;
int i;

result = “”;
for (i = 0; i < StringLength (str); i++) {

result = Concat (CharToString (IthChar (str, i)),resul t);
}
return (result);

}

Note that each character must be converted to a string before it is concatenated to the
beginning of the variable result.
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Concatenation makes longer strings from shorter pieces. You often need to do the
reverse: separate a string into the shorter pieces it contains. A string that is part of a longer
string is called a substringsubstringsubstring

substring

. The strlib.h library provides a function SubString (s, p1, p2), the
effect of which is to extract the characters in s lying between positions p1 and p2, inclusive.
Thus the function call

SubString (“Hello there! ”, 1, 3)

returns the string “ell”. As you know, numbering in C begins at 0, so the character at index
position 1 is the charter ‘e’.

As an example of the use of SubString , the function SecondHalf (s) returns the substring
consisting of the last half of the characters in s, including the middle character if the length
of the string is odd:

string SecondHalf (string str)
{

int len;
len = StringLength (str);
return (SubString (str, len / 2, len – 1);

}

The SubString function handles certain special cases as follows:

1. If p1 is negative, it is set to 0 so that it indicates the first character in the string.
2. If p2 is greater than StringLength (s) –1, it is set to StringLength (s) – 1 so that it indicates the last

character.
3. If p1 ends up being greater than p2, SubString returns the empty string.

Although the reasons for these design choices will probably not become clear until you have
more experience with strings, these rules make string programming easier by requiring you
to test for fewer special cases when you call SubString .
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Since Chapter 5, you have been able to use the StringEqual function to compares two
strings for equality. On many occasions, you will also find it useful to determine how tow
strings relate to each other in alphabetical order. The strlib.h interface provides the function
StringCompare for this purpose. The StrinCompar e function takes two strings, s1 and s2, and
returns an integer whose sign indicates their relationship, as follows:

 If s1 precedes s2 in alphabetical order, StringCompare returns a negative integer.
 If s1 follows s2 in alphabetical order, StringCompare returns a positive integer.
 If the two strings are exactly the same, StringCompare returns 0.

Thus, if you want to determine whether s1 comes before s2 in alphabetical order, you need
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When comparing string
values, remember to use
StringEqual and
StringCompare, not the
relational operators. The
C compiler will not detec t
this error, but the program
will give comple tely
unpredictable results.

to write

if (StringCompare (s1, s2) < 0…

Although the StringCompare function returns an integer, it is not legal to make any
assumptions about the values of that integer except that it has the correct sign. On some
systems, the values returned by StringCompare will always be –1, 0, or 1. On others, the value
is some seemingly arbitrary integer with the correct sign.

The “alphabetical order” computers use is different form the order that dictionaries use
in certain respects. When StringCompare compares two strings, it compares them using the
numeric ordering imposed by the underlying character codes. This order is called
lexicographiclexicographiclexicographic

lexicographic

orderorderorder

order

and differs from traditional alphabetical order in several respects. For
example, in an alphabetical index, you will find the entry for aardvark before the entry for
Achilles, because traditional alphabetical ordering does not consider uppercase and
lowercase letters separately. If the StringCompare function is called with the arguments
“aardvark” and “Achilles”, the function simply compares the ASCII codes. In ASCII, the
lowercase character ‘a ’ comes after an uppercase ‘A’. In lexicographic order, the string
“Achilles” comes first. Thus the function call

StringCompare (“aardvark”, “Achilles”

returns a positive integer.
When you call StringCompare, it compares the strings starting with the first character in

each. If those characters are different, StringCompare considers how the two character values
relate to each other in theASCII sequence and returns an integer that indicates that result. If
the first characters match, StringCompare goes on to look at the second characters, continuing
this process until a difference is detected. If StringCompare runs out of characters in one of the
two strings, that string is automatically considered to precede the longer one, just as in
traditional alphabetical ordering. For example,

StringCompare (“abc” , “abcde fg”)

returns a negative integer. Only if the two strings match all the way down the line and end
at the same place does StringCompare return the value 0.

In C, the biggest problem that arises in using StringCompare or StringEqual is not figuring
out what the functions do. That part is simple. What’s hard is remembering to use them in
the first place. It is easy to make a mental slip and try to use one of the relational operators
instead. If you want to know whether s1 comes before s2, the temptation is strong—even for
experienced programmers—to write down what you’re thinking and express the condition
as

if (s1 < s2)… ThisThisThis

This

doesndoesndoesn

doesn

’’’

’

ttt

t

work!work!work!

work!

Expressions of this form do not have the intended effect. Worse still, the compiler doesn’t
ever tell you that you’ve made a mistake, because the expression you wrote means
something to the compiler—it just doesn’t mean what you wanted it to. In face, the Boolean
value returned when a relational operator is applied to two strings turns out to be
completely independent of their values. You will be able to understand what such an
expression means after you complete Chapter 14. For now, just keep in mind that using the
relational operators to compare strings almost certainly creates a bug. Avoiding this mistake



in the first place will save you a lot of debugging time.
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From time to time, you will find it useful to search a string to see whether it contains a
particular character or substring. The strlib.h interface provides two functions, FindChar and
FindString , for doing so. The prototype for FindChar is

int FindChar(char ch, string text, int start);

The function searches through the string text, starting at the character index specified
by start, looking for the first occurrence of the character ch. If the character is found, FindChar
returns the index position of that character. If the character does not appear before the end
of the text string, FindChar returns the value –1 . The following examples illustrate the
operation (remember that the index numbering begins at 0):

FindChar (‘ l’, “Hello there” , 0) returns 2
FindChar (‘ l’, “Hello there” , 3) returns 3
FindChar (‘ l’, “Hello there” , 4) returns –1

As with string comparison, the functions for searching a string consider uppercase and
lowercase characters to be different. Thus, the call

FindChar (‘h’, “Hello there ”, 0)

returns 7 because the first occurrence of the lowercase h appears at index position 7. The
uppercase H at index position 0 is ignored.

You can use FindChar to implement a function that generates an acronym, which is a
new word formed by combining, in order, the initial letters of a series of words. For
example, the word scuba is an acronym formed from the first letters in self contained
underwater breathing apparatus. The function Acronym takes a string composed of separate
words and return its acronym. Thus, calling the function

Acronym (“self contained underwater breathing appar atus”)

returns “scuba”.
Provided that the words are separated by a single space and that no extraneous

characters appear, the implementation of Acronym can simply take the very first letter and
then go into a loop searching for each space. Whenever it finds one, it can concatenate the
next character onto the end of the string variable used to hold the result. When no more
spaces appear in the string, the acronym is complete. This strategy can be translated into a C
implementation as follows:

string Acronym (string str)
{

string acronym;
int pos;

acronym = CharToString (IthChar (str, 0));
pos = 0;
while (TRUE) {

pos = FindChar (‘ ‘ , str, pos + 1);



if (pos == -1) break;
acronym = Concat (acronym, CharToString (IthChar (str, pos + 1)));

}
return (acronym);

}

The function FindString (str, text, start) works like FindChar , except that the first argument is a
string. The function searches through the string text looking for the string str, starting at
position start. If a match is found, FindString returns the index position of the beginning of the
match. For example,

FindString (there” , “Hello there ”, 0)

returns the value 6. If no match is found, FindString returns –1 , just as FindChar does.
For example, the function ReplaceFirst (str, pattern, replacemen t) searches through the string

str and replaces the first instance of the string pattern with the value of the replacement
string, returning the entire new string as the value of the function. If the pattern string does
not appear, the original string is returned unchanged. The program repfirs t.c , shown in Figure
9-1, contains an implementation of the ReplaceFirst function, along with a text program.
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repfirst.c

/*
* File: repfirs t.c
* ------------------
*This file implements and tests the function ReplaceFirst.
*/

#include <stdio.h>
#include “genlib.h ”
#include “strlib.h ”
#include “simpio.h”

/* Function prototypes */

string ReplaceFirst (string str, string pattern, string replacemen t);

/*Main program */

main()
{

string str, pattern, replacemen t;
printf (“This program edits a string by replacing the firs t\n”);
printf (“instance of a pattern substring by a new string.\n”);
printf (“Enter the string to be edited:\n”);
str = GetLine ();
printf (“Enter the pattern string: “);
pattern = GetLine ();
printf (“Enter the replacemen t string: “);
replacemen t = GetLine();
str = ReplaceFirst (str, pattern, replacemen t);
printf (“%s\n”, str);

}

/*
* Function: ReplaceFirst
* Usage: newstr = RepalceFirst (str, pattern, replacemen t);
* ---------------------------------------------------------------------------
* This function searches through the string str and replaces the
* firs t instance of the pattern with the specified replacemen t.



* If the pattern string does not appear, str is returned unchanged.
*/

string ReplaceFirst (string str, string pattern, string replacemen t)
{

string head, tail;
int pos;

pos = FindString (pattern, str, 0);
if (pos == -1) return (str);
head = SubString (str, 0, pos – 1);
tail = SubString (str, pos + StringLength (pattern), StringLength (str) –1);
return (Concat (Concat (head, replacemen t), tail));

}

The following is a sample runof the repfirs t.c program:

CaseCaseCase

Case
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conversion

The strlib.h library includes two functions, ConvertToUpperCase (s) and ConvertToLowerCase (s),

that convert the case of any alphabetic characters to the indicated case. For example, calling
the function

ConvertToUpperCase (“Hello, world.”)

returns the string “HELLO, WORLD.” Note that any nonalphabetic characters appearing in the
string—such as the comma, space, and period in this example—are unaffected.

Like all functions in the strlib.h interface, ConvertToUpperCase and ConvertToLowerCase do not
change any characters in their argument, but instead return an entirely new string as the
result of the function. Thus, to change the value stored in the string variable word so that all
letters within it appear in lowercase, you need to use an assignment statement, such as

word = ConvertToLowerCase (word);

If you simply call

ConverToLowerCase (word); This statement leaves word unchanged.

without making the assignment, the characters in word will not be affected.
You can implement the ConvertToLowerCase function using IthChar and Concat as follows:

string ConvertToLowerCase (string str)
{

string resutl;
char ch;
int i;

result = “”;
for (i = 0; i< StringLength (str); i++ ) {

This program edits a string by replacing the firs t
instance of a pattern substring by a new string.
Enter the string to be edited:
ThisThisThis

This
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Enter the pattern string: aaa

a





Enter the replacemen t string: aaa

a

successfulsuccessfulsuccessful

successful





This is a successful test of the ReplaceFirst function.



ch = IthChar (str, i);
result = Concat (result, CharToString (tolower (ch)));

}
return (result);

}
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The strlib.h interface exports two functions, Integer ToString and RealToString , that convert a
number into its representation as a string of characters. The function Integer ToString (n)

converts the integer n into a string of digits, preceded by a minus sign if n is negative. For
example, calling Integer ToString (123) returns the string “123”; calling Integer ToString (-4) returns the
string “ -4” . The RealToString (d) function converts the floating-point number d into the string
that would be displayed by printf using the %G format code, which sometimes produces a
number in scientif ic notation form. For example, calling RealToString (3.14) returns “3.14 ”, but
calling RealToString (0.00000000015) returns “1.5E-10 ”.

The functions Integer ToString and RealToString are useful if you want manipulate the text
representation of a number as a sequence of characters. For example, you can use
Integer ToString to write a function ProtectedIntegerField (n, places) that generates a string that
includes the text representation of the integer n preceded by enough asterisks so that the
entire string is at least as long as the value given by places. The implementation of
ProtectedIntegerField , which uses the previously defined ConcatNCopies function, is as follows:

string ProtectedIntegerField (int n, int places)
{

string numstr, fill;

numstr = Integer ToString (n);
fill = ConcatNCopies (places – StringLength (numstr), “*”);
return (Concat (fill, numstr));

}

appeared in a program, it would generate the sample run

The asterisks make it more difficult for someone to alter the value.
The strlib.h interface also exports the functions StringToInteger and StringToReal . These

functions convert strings that represent numeric value back into numbers. For example,
calling StringToInteger (“42”) returns the integer 42. Similarly, calling StringToReal (3.14159 ”) returns
the floating-point number 3.14159 . If the argument to either function is not a valid numeric
string, an error is reported. Both are useful primarily for input operations. As an example,
the following implementation of addlis t.c uses a blank line as its sentinel value:

main()
{

int total;
string line;

printf (“This program adds a list of numbers.\n”);

$*****123.00



printf (“Signal end of list with a blank line.\n”);
total = 0;
while (TRUE) {

printf (“ ? “);
line = GetLine ();
if (StringEqual (line, “”)) break;
total += StringToInteger (line);

}
printf (“The total is %d\n” , total);

}

Because GetInteger cannot read a blank line as data, using a blank line as a sentinel was
not an option when addlis t.c was introduced in Chapter 3. If the program instead reads the
input using GetLine, the blank line shows up as the empty string. If the line read in from the
user is not a blank line, the characters on that line are converted to an integer and added to
the running total.
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All the function implementations in this chapter were written for clarity rather than
efficiency. As you will discover when you study the internal details of the various string
libraries in Chapter 14, many of these implementations are extremely inefficient—so much
so that they would not be appropriate for serious applications work. They are, however,
concise, effective, and easy to understand. By working with the functions in this form, you
can gain a sense of how strings work conceptually. This knowledge will help enormously
when you look at the implementation of the strlib.h interface and discover how it works.

SUMMARYSUMMARYSUMMARY

SUMMARY

With this chapter, you have begun the process of understanding how to work with text
data. In C, the most common form of text data is a string , which is an ordered collection of
individual characters. Individual characters are represented in C using the data type char,
which is the part of a larger class of data called scalar types. Scalar types also include the
enumeration types, which were presented in this chapter as well. Working with characters is
fundamental to string processing because characters are the “atoms” from which all strings
are built.

In this chapter, you learned how to manipulate strings as an abstract type. The internal
representation of an abstract type is hidden. The client can use values of that type only by
calling functions defined in an interface. In the case of strings, the interface that provides
access to the string operations is strilib.h , which forms the highest level of a layered
abstraction . By learning to manipulate strings as abstract types, you can develop a good
sense of how to use them in exciting and sophisticated ways, even though the underlying
structure remains hidden from view.

Because strings are fundamental to modern programming, however, it is essential for
you to explore them form many different perspectives. You will learn more about strings
and their representation in Chapter 11, 13, and 14.



Important points raised in this chapter include:

 Types whose conceptual values are not numbers can usually be represented inside the
computer by numbering the elements in the domain of the type and then using those
numbers as codes for the original values. Types defined by counting off their elements
are called enumeration types.

 C makes it possible to define new enumeration types using the keywords typedef and
enum.

 Enumeration types are a subclass of scalar types, which are those types that behave
exactly like integers. Explicit conversions between scalar types and integers are not
required in C.

 Characters are represented internally as integers according to a predefined character
code. Although some computers use different character coding systems, most modern
computers use the ASCII coding system shown in Table 9-1.

 The data type char used to represent single characters is a scalar type. Character values
can therefore be manipulated using the standard operations of arithmetic.

 The ctype.h interface contains several functions for classifying individual characters, as
well as functions to change the case of a single character.

 The strlib.h interface makes it possible to work with string as an abstract type.
 The strlib.h interface defines several functions for manipulating strings. These functions

are summarized in Table 9-3.

REVIEWREVIEWREVIEW

REVIEW
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QUESTIONS

1. What is an enumeration type?

FunctionFunctionFunction

Function

callcallcall

call

ReturnReturnReturn

Return

valuevaluevalue

value

StringLength (s) length of s
IthChar (s, i) ith character in s

Concat (s1, s2) s1 and s2 concatenated end to end
CharToStirng (ch) one-character string containing ch
SubSring (s, p1, p2) substring of s from p1 to p2

StringEqual (s1, s2) TRUE if s1 and s2 are equal
StringCompare (s1, s2) integer indicating a string comparison
FindChar (ch, text, start) index of the first occurrence of ch in text after start

or –1 if not found
FindString (s, text, start) index of the first occurrence of s in text after start

or –1 if not found
ConvertToLowerCase (s) copy of s with all letters in lowercase
ConvertToUpperCase (s) copy of s with all letters in uppercase
Integer ToString (n) string representation of the integer n
StringToInteger (s) integer symbolized by the string s

RealToString (d) %G format representation of d as a string
StringToReal floating-point value symbolized by the string s

TABLETABLETABLE

TABLE

9-39-39-3

9-3

String operations
provided by strlib.h



2. What are the twooptions presented in this chapter for representing enumeration types in
C?

3. How would you define a new enumeration type outcomeT consisting of the three
constants Lose, Draw, and Win?

4. How would you modify the definition of outcomeT from the preceding question if it were
important that Lose be represented integrally as –1 , Draw as 0, and Win as 1?

5. Given the definition

typedef enum {North, East, South, West} directionT;

what are the internal numeric representations of the four constants?
6. What does ASCII stand for?
7. By consulting Table 9-1, determine the ASCII values of the characters ‘$’, ‘@’, ‘\a’, and ‘x’.
8. What gropes of characters can you assume are consecutive in theASCII table?
9. Of the special characters listed in Table 9-2, which one is sued most often in C program?
10. What are the four most useful arithmetic operations to apply to character values?

11. The implementation of RandomIn teger presented in Chapter 8 is

int RandomIn teger (int low, int high)

{

int k;

double d;

d = (double) rand() / ((double) RAND_MAX+ 1);

k = (int) (d * (high – low + 1));

return (low + k);

}

When the RandomLetter function calls RandomIn teger (‘A’, ‘Z’), the values low and high
represent characters, even though their type is int. Work through the steps in the
implementation and verify that the operations performed on all values that represent
characters are indeed in the class of operations you listed in response to the preceding
question.

12. What is the result of calling isdigit (5)? What is the result of calling isdigit (‘5’)
13. What is the result of calling touuper ( ‘5’ )?
14. True or false: It is legal to use character constants as case expressions within a switch

statement.
15. What is a layered abstraction?
16. True or false: An abstract type is defined in terms of its behavior rather than its

representation.
17. What is the result of calling each of the following functions?

a. StringLength (“ABCDE”)
b. StringLength (“ ”)
c. StringLength (“\a” )
d. IthChar (“ABC”, 2)



e. Concat (“12” , “.00”)
f. CharToString (‘2’)
g. SubString (ABCDE”, 0, 3)
h. SubString (ABCDE”, 4, 1)
i. SubString (ABCDE”, 3, 9)
j. SubString (ABCDE”, 3, 3)

18. What functions from strlib.h are useful if you want to add a new character to the end of
an existing string?

19. What is the most important caution to keep in mind when comparing strings?
20. What is the result of calling each of the following functions? (For calls to StringCompare,

simply indicate the sign of the result.)
a. StringEqual (“ABCDE”, “abcde ”)
b. StringCompare (“ABCDE”, “ABCDE”)
c. StringCompare (“ABCDE”, “ABC”)
d. StringCompare (“ABCDE”, “abcde ”)
e. FindChar (‘a’, “Abracadabra” , 0)
f. FindString (“ra”, “Abracadabra”, 3)
g. FindString (“is” , “This is a test.” , 0)
h. FindString (“This is a test” , “test” , 0)

21. What is the result of calling each of the following functions?
a. ConvertToLowerCase (“Catch-22 ”)
b. StringToInteger (SubString (“Catch-22), 5, 7))
c. RealToString (3.140)
d. Concat (Integer ToS tring (4 / 3), “ pi)

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. Define the function LeftFrom (dir), which takes a value of type directionT representing a
compass point and returns the compass point lies 90 degrees to the left. Write test
program for your function that displays the result of calling LeftFrom on every compass
point, as shown:

2. Exercise 14 in Chapter 8 asked you to reimplement the calendar.c program from Chapter
5 in the form of a calendar.c main program and a separate caltools.c file. As in the original
implementation, the caltools.c file uses integers directly to indicate the names of the
months and the days of the week.

Reimplement the two-file solutin from Chapter 8., exercise 14, so that your new
version uses two enumeration types—weekdayT and monthT—to refer to weekdays and
months. You should add the enumeration type definitions to the caltools.h interface, but
you will also need to edit the calendar.c and caltools.c files to reflect those changes. In your
solution, you should make sure that every variable used to hold a weekday or a month
is declared as the appropriate enumeration type rather than as an integer.

3. Implement the function IsConsonant (ch), which returns TRUE if ch is a consonant, that is,
any letter except one of the five vowels: ‘a ’, ‘e’, ‘i’, ‘o’ , and ‘u ’. Like IsVowel, your function

This program tests the leftFrom function.
LeftFrom (North) = West
LeftFrom (East) = North
LeftFrom (South) = East
LeftFrom (West) = South

The English consonants are:
B C D E G H J K L M NP Q R S T V W X Y Z



should recognize consonants of both cases. Write a test program that displays all the
uppercase consonants, as follows:

4. Write a function RandomWord that returns a randomly constructed “word” consisting of
randomly chosen letters. The number of letters in the word should also be chosen
randomly by picking a number between the values of the #define constants MinLetters and
MaxLetters . Write a main program that tests your function by displaying five random
words. The following is a sample run that uses the values 2 and 8 for MinLetters and
MaxLetters:

5. In the crossword game called Scrabble, points are assigned to each letter in the alphabet
as follows.

For example, the Scrabble word “FAEM” is worth 9 points: 4 for the F, 1 each for
the A and the R, and 3 for the M. Write a function ScrabbleScore that takes a word as its
argument and returns the score the word would earn if played on the Scrabble board,
not counting any of the other bonuses that occur in the game. You should ignore any
characters other than uppercase letters in computing the score. In particular, lowercase
letters are assumed to represent blank tiles, which can stand for any letter but which
have a score of 0.

Write a main program to test your ScrabbleScore function. A possible sample run for
such a test program is

PointsPointsPoints

Points

LettersLettersLetters

Letters

1 A, E, I, L, N, O, R, S, T, u

2 D, G

3 B, C, M, P

4 F, H, V, W, Y
5 K

8 J, X

10 Q, Z

This program gener ates 5 random words.
EINYE
FMDCKH
ZNTQ
UVDQIJX
KPUYW

This program tests the ScrabbleScor e function.
Enter word, ending with a blank line.
Word: XIXIXI

XI





The basic score for ‘XI’ is 9.
Word: HORNHORNHORN

HORN





The basic score for ‘HORN’ is 7.
Word: SCRABBLESCRABBLESCRABBLE

SCRABBLE

The basic score for ‘SCRABBLE’ is 14.
Word: QUIzZICALQUIzZICALQUIzZICAL

QUIzZICAL





The basic score for ‘QUIzZICAL’ is 28.
Word:



6. Implement a function Capitalize (str) that returns a string in which the initial character is
capitalized (if it is a letter) and all other letters are converted so that they appear in
lowercase form. Characters other than letters are not affected. For example, Capitalize

(“BOOLEAN”) and Capitalize (“boolean ”) should each return the string “Boolean ”.

7. Implement a predicate function EqualIgnoringCase (s1, s2), which returns TRUE if the string
s1 and s2 are the same, not counting difference in the case of a letter. For example,
EqualIgnoringCase (“CAT”, “cat”) should return TRUE.

8. One of the simplest types of codes used to make it harder for someone to red a message
is a letter-substitutionletter-substitutionletter-substitution

letter-substitution

cipherciphercipher

cipher

, in which each letter in the original message is replaced
by some different letter in the coded version of that message. A particularly simple type
of letter-substitution cipher is a cycliccycliccyclic

cyclic

cipherciphercipher

cipher

, in which each letter is replaced by its
counterpart a fixed distance ahead in the alphabet. The word cyclic refers to the fact
that if the operation of moving ahead in the alphabet would take you past Z, you simply
circle back to the beginning and start over again withA.

As an example, the following sample run shows how each letter in the alphabet is
changed by shifting it ahead four places. The A becomes E, the B becomes F, the Z
becomes D (because it cycles back to the beginning), and so on:

To solve this problem, you should first define a function EncodeS tring with the prototype

string EnocdeS tirng (stirng str, int key);

The function returns the new string formed by shifting every letter in str forward the
number of letters indicated by key, cycling back to the beginning of the alphabet if
necessary. After you have implemented EncodeS tring , write a test program that duplicates
the examples shown in the following sample run:

Note that the coding operation applies only to letters; any other character is included
unchanged in the output. Moreover, the case of letters is unaffected: lowercase letters
come out as lowercase, and uppercase letters come out as uppercase.

Write your program so that a negative value of key means that letters are shifted
toward the beginning of the alphabet instead of toward the end, as illustrated by the
following sample run:

This program encodes a message using a cyclic cipher.
Enter the numeric key: 444

4





Enter a message: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ





Encoded message: EFGHIJKLMNOPQRSTUVWXYZABCD

This program encodes a message using a cyclic chpher.
Enter the numeric key: 13
Enter a message: This is a secret message.
Encode message: Guvf vfa frperg zrffntr.

This program encodes a message using a cyclic cipher.
Enter the numeric key: -1-1-1

-1





Enter a message: IBMIBMIBM

IBM

9000.9000.9000.

9000.





Encoded message: HAL 9000.



9. A palindromepalindromepalindrome

palindrome

is a word that reads identically backward and forward, such as level or
noon. Write a predicate function IsPalindrome (str) that returns TRUE if the string str is a
palindrome. In addition, design and write a test program that calls IsPalindrome to
demonstrate that it works. In writing the program, concentrate on how to solve the
problem simply rather than how to make you solution more efficient.

10. The concept of a palindrome introduced in exercise 9 is often extended to full sentences
by ignoring punctuation and differences in the case of letters. For example, the
sentence

Madam, I’m Adam.
is a sentence palindrome, because if you only look at the letters and ignore any
distinction between uppercase and lowercase letters, it reads identically backward and
forward.Write a predicate function IsSentencePalindrome (str) that returns TRUE if the string
str fits this definition of a sentence palindrome. For example, you should be able to use
your function to write a main program capable of producing the following sample run:

11. Write a function DateString (day, month, year) that returns a string consisting of the day of
the month, a hyphen, the first three letters in the name of the month, another hyphen,
and the last twodigits of the year. For example, calling the function

DateString (22, 11, 1963)

should return the string “22-Nov-63”.

12. If the designers of the string library described in this chapter had not defined the
searching functions, you could implement those functions using the other functions
available in the library. Without calling either FindChar of FindStirng directly, implement a
function MyFindS tring that behaves in exactly the same way that FindString does.

13. Modify the function ReplaceFirst defined in the section on “Searching within a string”
earlier in this chapter into a ReplaceA ll function that replaces all instances of the pattern
string with the replacement, rather than just the first. For example, calling

ReplaceA ll (”beebee ”, “e” , “o”

should return the string “booboo”.

14. Write a function RegularPluralForm (word) that returns the plural of word formed by
following these standard English rules:

This program checks for palindromes.
Indicate the end of the input with a blank lne.
Enter a string: Madam,Madam,Madam,

Madam,

III

I

’’’

’

mmm

m

Adam.Adam.Adam.

Adam.





Tha t is a palindrome.
Enter a string: aaa

a

man,man,man,

man,

aaa

a

plan,plan,plan,

plan,

aaa

a

canal:canal:canal:

canal:

Panama!Panama!Panama!

Panama!





Tha t is a palindrome.
Enter a string: NotNotNot

Not

aaa

a

palindrome.palindrome.palindrome.

palindrome.





Tha t is not a palindrome.
Enter a string:



a. If the word ends in s, x, z, ch, or sh, add es to the word.
b. If the word ends in y and the y is preceded by a consonant, change the y to ies.
c. In all other cases, add just an s.

Write a test program and design a set of test cases to verify that your program works.
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ModularModularModular

Modular

DevelopmentDevelopmentDevelopment

Development

It is particularly important, it seems to me, in an era of ever increasing
departmentalization and specialization, to make the attempt occasionally to see wholes
and to understand what lies behind the exterior manifestations.





JessamynJessamynJessamyn

Jessamyn

West,West,West,

West,

TheTheThe

The

QuakerQuakerQuaker

Quaker

Reader,Reader,Reader,

Reader,

916291629162

9162

OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate the importance of dividing a single program into separate modules.
 To understand the need to preserve state information between calls to functions in a

module.
 To be able to use global variables to represent state information that must be

maintained across function calls.
 To recognize the dangers associated with overusing global variables.
 To be able to use the static keyword to keep functions and global variables private to a

single module.

SSS

S

o far, most of this text has focused on short programs designed to illustrate a

specific aspect of the C language. Concentrating on individual statement forms or other
details of the language makes sense when you are first learning to program. Doing so
enables you to consider each concept in isolation and learn how it works without being
overwhelmed by the complexity inherent in a large program. The real challenge, however,
is to master this complexity. To do so, you must practice writing large programs that
combine the individual concepts and tools.

The most important technique for managing large programs is the strategy of stepwise
refinement that you learned in Chapter 5: when you are faced with a big problem that
seems to require a complex solution, you break the problem down into smaller ones that
are easier to solve.

The strategy of decomposing a large problem into smaller pieces applies at many
levels of the programming process. The calendar.c example in Chapter 5 illustrated this
technique in the context of a single source file. As programs get longer, however, it
becomes hard to manage so many functions in a single source file. Just as it can be difficult
to understand a 50-line function all at once, it can be hard to understand a program
composed of 50 different functions. In either case, imposing some additional structure is
helpful. When faced with a 50-line function, your best strategy is to divide it up into
smaller functions that call each other to complete the task. When faced with a 50-function
program, you best strategy is to divide that program into several smaller source files, each
of which contains a set of related functions. The smaller source files that each constitutes a
piece of the entire program are called modulesmodulesmodules

modules

. Each individual module is simpler than the



program as a whole. Moreover, if you are careful in your design, you can use the same
module as part of many different applications.

When you divide a program into modules, it is important to choose a decomposition
strategy that limits the extent to which the modules depend on each other.

FigureFigureFigure

Figure

10-110-110-1

10-1

Program structured as a single module

The module containing the function main is called the mainmainmain

main

modulemodulemodule

module

and occupies the
highest level in the decompositional hierarchy. Each of the other modules represents a
separate abstraction whose operations are defined in an interface.

To illustrate the principle, imagine that you have written the file program.c shown in
Figure 10-1. The program consists of a single source file that contains a main program and
twoprocedures, ProcA and ProcB.

You can break this source file down into a main module for the function main and two
subsidiary modules, the first for ProcA and the second for ProcB, as illustrated in Figure 10-2.

The main module now contains only part of the code for the complete program. The
implementations of the functions ProcA and ProcB are in separate modules. Before the
program can be return, the code for each of these modules must be linked to form a single
executable program. The task of linking program pieces together is part of the standard
process of program execution, illustrated in Figure 1-2.

In a sense, each of the subsidiary modules acts as a library for the main module. As
with any library, each of these modules must have an interface that provides the compiler
with the necessary information about the functions the module contains. These interfaces
are shown in Figure 10-2 as the header files module1.h and module2.h .

program.c
main()
{

ProcA ();
ProcB ();

}

void ProcA (void)
{

…
}

void ProcB (void)
{

…
}

main.c



FIGUREFIGUREFIGURE

FIGURE

10-210-210-2

10-2

Program divided into separate modules

The example in Figure 10-2 is a simplif ied example of modular development.
Breaking up program into modules that contain only a single function, as in this example,
carries decomposition to an extreme. In more typical applications, each module includes
several related functions that form an easily identif ied component of the application as a
whole.

1-11-11-1

1-1

PigPigPig

Pig

LatinLatinLatin

Latin

———

—

aaa

a

casecasecase

case

studystudystudy

study

ininin

in

modularmodularmodular

modular

developmentdevelopmentdevelopment

development

The technique of breaking up a program into modules is called modularmodularmodular

modular

developmentdevelopmentdevelopment

development

. To illustrate this technique, this chapter solves a problem in which modular
development offers clear advantages. The problem is to write a program that reads in a line
of text from the terminal and translates each word in that line from English into Pig Latin.

Pig Latin is an invented language formed by transforming each English word
according to the following simple rules:

1. If the word begins with a consonant, you form its Pig Latin equivalent by
moving the initial consonant string (that is, all the letters up to the first vowel)
from the beginning of the word to the end and then adding the suffix ay.

2. If the word begins with a vowel, you just add the suffix way.

For example, suppose the word is scram. Because the word begins with a consonant, you
divide it into two parts: one consisting of the letters before the first vowel and one
consisting of that vowel and the remaining letters:

#include “module1.h ”
#include “module2.h ”

main()
{

ProcA ();
ProcB ();

}

module1.h module2.h
void ProcA (void); void ProcB (void);

main.c module2.c
#include “module1.h ”

void ProcA (void)
{
…
}

#include “module2.h ”

void ProcB (void)
{
…
}

s c r a m



You then interchange these twoparts and add ay at the end, as follows:

creating the Pig Latin word amscray. For a word that begins with a vowel, such as apple,
you simply add way to the end, which leaves you with appleway.

ApplyingApplyingApplying

Applying

top-downtop-downtop-down

top-down

designdesigndesign

design

Since the problem is to translate an entire line of English text into Pig Latin, the
program should be able to produce sample runs like this one:

You can start designing a solution to the Pig Latin problem without deciding immediately
whether you need to separate the program into modules. Often, the fact that a program
requires a particular modular decomposition becomes apparent only after you have
explored various solution strategies. Usually, the best approach is to begin by applying top-
down design, as described in the section on “Stepwise refinement” in Chapter 5.

With top-down design, you start at the level of the main program and work your way
down through a series of functions, each of which solves a successively simpler part of the
entire problem. At the initial stage, you define the function main as a sequence of high-
level steps that have yet to be implemented. Although it is often possible to code the steps
directly as function calls, it is usually easier to write them in English first. For example, as
long as you are designing your program on paper, you can write a rough draft for the Pig
Latin program as follows:

main()
{

Read in a line of text from the user.
Translate te line of text into Pig Latin.

}

In this example, the function header line and the braces are part of C’s standard syntax, but
the statements themselves are written as English sentences that describe what the program
will do. Programs that consist of a mixture of English and C are said to be written in
pseudocodepseudocodepseudocode

pseudocode

.

UsingUsingUsing

Using

pseudocodepseudocodepseudocode

pseudocode

Although it makes no sense to the compiler, pseudocode is useful for you as a
programmer because it enables you to keep track of the stepwise refinement process. After
you write out the complete program as a sequence of English steps, you can go back

s c ra m a y

Enter a line: thisthisthis

this

isisis

is

pigpigpig

pig

latin.latin.latin.

latin.





isthay isway igpay atinlay.



through the pseudocode statements and substitute the actual C code necessary to implement
them. In this case, for example, it is easy to translate the first pseudocode statement into C
because it matches the idiom for reading a string that you have been using since Chapter 2.
After you fill in the details of the operation required to read in a line of text form the user,
the pseudocode version of the program looks like this:

main()
{

string line;

printf (“Enter a line: “ );
line = GetLine ();
Translate the line of text into Pig Latin.

}

The result is still pseudocode, but you have made progress. The remaining English
statement is harder to code, so the best strategy is to apply stepwise refinement, replacing
the line of pseudocode with a new function that has the effect of the English sentence. In
this case, you want a function that will “ translate the line of text into Pig Latin, “which you
might choose to name Transla teLine . Using that name, you can complete the implementation
of main as follows:

main()
{

string line;

printf (“Enter a line: “ );
line = GetLine ();
Transla teLine (line);

}

At this level of detail, the program is satisfyingly simple: you display a prompt, read in a
line, and then call Transla teLine to complete the job. Though you haven’t yet written
Transla teLine , you can say something about its behaveior from the caller’s point of view. In fact,
you have enough information to specify a description and prototype for Transla teLine :

/*
* Function: Transla teLine
* Usage: Transla teLine (line);
* ------------------------------------
* This function takes a line of text and translates
* the words in the line to Pig Latin, display ing the
* translation as it goes.
*/

void Transla teLine (string line);

ImplementingImplementingImplementing

Implementing

TranslateLine

After reaching this point, you are ready to begin implementing Transla teLine . At this level,
the problem is still so complex that you need to decompose it further. As is often true in
programming, there are many strategies for doing so, some of which work better than
others. In most cases, however, no particular strategy for decomposition is clearly the



“correct” one. You will usually need to consider several ways of subdividing the problem
and see which strategy works best.

Let’s return to the case at hand. In implementing Transla teLine , you need to solve the
problem of how to divide a string into words, translate each word into Pig Latin, and
display each Pig Latin word on the screen. This statement of the problem suggests the
following conceptual decomposition:

void Transla teLine (string line)
{

Divide the line into words.
Translate each word into Pig Latin.
Display each translated word.
Display a newline character to complete the output line.

}

This decomposition is reasonable in theory but leads to certain practical problems. In the
first step, dividing the line into words, how would you store the result? A function to
implement that concept would have to return not a single word but a list of words. Once
you complete Chapter 11, you will have the tools you need to manipulate lists of words, but
for now you must make do with the tools you have. If you think carefully about the problem,
you will discover that you don’t need to keep track of all the words at once. As soon as you
find one word, you can translate and display it right away. Once that word is displayed, you
can forget it and go on the next. This observation suggests a second strategy:

void Transla teLine (string lien)
{

while (ther e are any words left on the line) {
Get the next word.
Translate that word into Pig Latin.
Display the translated word.

}
Display a newline character to complete the output line.

}

There are several details missing from the pseudocode version of the strategy, but the
overall idea seems to make sense and avoids the problem of having to keep track of an
entire list of words.

TakingTakingTaking

Taking

spacesspacesspaces

spaces

andandand

and

punctuationpunctuationpunctuation

punctuation

intointointo

into

accountaccountaccount

account

The strategy used in the pseudocode version of Transla teLine has a small problem.
Suppose, for example, that the user enters the following input line when the program is run:

Enter a line: thisthisthis

this

isisis

is

pigpigpig

pig

latin.latin.latin.

latin.







If you conceive of the input as being the four words “ this ”, “is”, “pig”, and “latin”, the output of the
program, assuming that all the English steps work exactly as they are supposed to, would
be

This output is not really what you want. All the words run together because the spaces and
punctuation marks have disappeared. The pseudocode version of Transla teLine doesn’t take
spacing and punctuation into account. On the other hand, neither did the original English
statement of the problem. The problem was incompletely specified.

One of the realities of programming is that English descriptions of problems are
usually incompletely specified. As a programmer, you will often trip over some detail that
the framer of the problem either overlooked or considered too obvious to mention. In some
cases, the omission is serious enough that you have to discuss it with the person who
assigned you the programming task. In many cases, however, you will have to choose for
yourself a policy that seems reasonable.

Deciding what seems reasonable, however, can sometimes be tricky. In this case, you
might decide to print a space between each word in the output, ignoring any other
punctuation, this strategy is simple and might be reasonable in this context. On the other
hand, it is probably not the best strategy. Punctuation helps make output readable. Because
the punctuation marks and spaces convey meaning, it would be better to display them in
precisely the same places where they appear in the input. Thus you probably want the
output to look like this:

There are many ways to redesign the program so that punctuation marks appear
correctly in the output. One approach, for example, is to change the main loop so that it
goes through the string character by character instead of word by word. If you use this
strategy, the pseudocode for the implementation has the following structure:

void Transla teLine (string line)
{

for (i = 0; i < StringLength (line); i++) {
if (the ith character in the lien is some kind of separator) {

Display that character.
} else {

Extract the word as a substring.
Translate the word to Pig Latin.
Display the translated word.

}
}
Display a newline character to complete the output line.

}

Enter a line: thisthisthis

this

isisis

is

pigpigpig

pig

latin.latin.latin.

latin.





isthay iswayigpayatinlay

Enter a line: thisthisthis

this

isisis

is

pigpigpig

pig

latin.latin.latin.

latin.





isthay isway igpay atinlay



With some amount of effort, you can get this strategy to work. (You have the opportunity to
do so in exercise 2.) Nonetheless, such a strategy has certain drawbacks. One is that the
program structure has become more complicated. The original pseudocode design was
shorter, in part because it allowed you to work with the string in larger units.

A more serious problem, however, shows up in the decomposition. The version of the
pseudocode presented in he preceding section contains the English statement

Get the next word.

That statement has disappeared in the most recent version. If you think like a programmer,
you will recognize that the operation “get the next word” is a useful general tool, one that
has application far beyond a simple Pig Latin program. Many problems require you to
break up text into words. If you can develop a general function for performing this
operation, you will have a tremendous head start toward solving those problems.

On the other hand, simply being able to get the next word does not solve the
punctuation problem. To be useful in the current application, the function that returns the
next word must be able to return the spaces and punctuation marks as well, so the output
line can include them.

RefiningRefiningRefining

Refining

thethethe

the

definitiondefinitiondefinition

definition

ofofof

of

aaa

a

wordwordword

word

What you need to do at this point is refine your notion of what constitutes a word. If
you look at the input line

this is pig latin.

you might simply see it as the four words, this, is pig, and latin. Alternatively, you can also
choose to think about the line as being composed of eight separate pieces, as follows:

interpreting the spaces and punctuation marks, like the words, as distinct entities. In
computer science, a sequence of characters that acts as a coherent unit is called a tokentokentoken

token

. In
the preceding diagram, each of the boxed units constitutes a token.

Considering spaces and punctuation characters as separate tokens allows you to
modify the Transla teLine strategy so these characters are displayed as well. The revised
pseudocode strategy is

void Transla teLine (sring line)
{

while (there are any tokens left on the line) {
Get the next token.
if (the token is a regular English word) {

Replace the token by its Pig Latin translation.
}
Display the token.

}
Display a new line character to complete the output line.

}

isthis pig latin .



The strategy is still quite simple. Moreover, the individual operations of getting a token and
testing to see whether tokens remain on the line are likely to be useful in a variety of
applications.

The idea of dividing a line into separate tokens comes up quite often in computer
science. For example, when the c compiler translates one of your programs into machine
code, the first step in the process is to break up the input file into the individual tokes used
in C: variable names, numbers, operators, and so on. This process of dividing the input into
tokens is called lexicallexicallexical

lexical

analysisanalysisanalysis

analysis

or, less formally, tokentokentoken

token

scanningscanningscanning

scanning

.
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To complete the implementation of Transla teLine using the new strategy, you must first
design a token scanner that can divide up the input line. Moreover, keeping in mind its
potential as a general tool, you want a token scanner you can apply to many problems other
than translating strings to Pig Latin. Thus, it makes sense to design the token scanner as a
separate module. Initially, the design process requires thinking about how you should
organize the scanner module and, in particular, what functions it should contain.

In the latest pseudocode version of Transla teLine, shown in the preceding section, the
scanner module comes into play at two different points. First, the scanner must provide a
function to return the next token form the line. Second, the scanner must let the client know
when the last token has been scanned. Because you are designing the interface, you get to
choose the function names. For the function responsible for returning the next token,
GetNextToken seems like a reasonable choice. To report that all tokens have been scanned, one
option is to define a predicate function called AtEndOfLine, which returns TRUE after the last
token has been read.

At this point, however, you face an interesting question: what arguments do these
functions take? At first glance, it seems as if the caller must pass the input line to
GetNextToken because the tokens come from that line. On the other hand, the idea of calling
GetNextToken (line) raises a conceptual dilemma. If GetNextToken acts the way functions
usually do, GetNextToken (line) will return the same result every time because the value of line
isn’t changing.

To illustrate the problem, let’s suppose that you want to divide the string “Hello there” into
the three tokens it contains: the word “Hello” , the space that follows it, and the word “there ”. In
addition, suppose you have stored the string “Hello there” in the variable line using the
following assignment statement:

line = “Hello there ”;

If GetNextToken takes line as its argument, it is easy to imagine obtaining the first word by
calling GetNextToken (line) . The problem is how to get the next token. If you again call
GetNextToken (line), the variable line still contains the entire string “Hello there”. Since this
function call occurs in exactly the same form as the first one, it will presumably return the
same value.

To fix this problem, you must design the scanner module to keep track of how much
progress it ahs made in dividing up the line. After GetNextToken returns a token from the line,



it must remember that it has scanned that token so it can return a different result the next
time it is called. Information that must be retained between calls to functions within a
module is called its internalinternalinternal

internal

statestatestate

state

.
When a module maintains internal state, the interface to that module usually exports a

function that initializes the state information. In the case of the scanner module, for
example, it makes sense to provide a function InitScanner (line) so that clients can tell the
scanner to return tokens starting at the beginning of the string line. To get those tokens,
clients simply call GetNextToken with no arguments. The information about which token
should be returned is part of the internal state maintained by the scanner module. The first
call to GetNextToken returns the first token, the next call returns the second token, and so on
until all the tokens have been read. At that point, the function AtEndOfLine , which also
requires no arguments, will return TRUE.

You can use the functions InitScanner , GetNextToken , and AtEndOfLine to flesh out the
implementation of Transla teLine , as follows:

void Transla teLine (string line)
{

string token;

Initscanner (line);
while (!AtEndOfLine ()) {

token = getNextToken ();
if (the token is a legal word) {

Replace the token by its Pig Latin translation.
}
Display the token.

}
Display a newline character to complete the output line.

}

The function still has a few unfinished pieces, but the loop structure itself is now complete.
The implementation first tells the scanner to extract tokens from the variable line by calling
InitScanner . It then enters a loop in which it calls GetNextToken to retriever each new token
in turn, until all the tokens have been read.
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Before fleshing out the design of the scanner interface and learning how to implement
it, you might want to tidy things up at this level be completing the implementation of
Transla teLine , which is still in pseudocode form. If you continue with the strategy of stepwise
refinement, you can finish the implementation by replacing the remaining English
statements with calls to functions. In this example, the functions are either simple calls to
printf or calls to new functions that you will then implement at the next level of the
refinement. In either case, the function calls themselves are a straightforward translation of
their English counterparts. The completed implementation of Transla teLine is therefore

void Transla teLine (string line)
{



string token;
InitScanner (line);
while (!AtEndOfLine ()) {

token = GetNextToken ();
if (IsLegalWord (token)) token = Transla teWord (token);
printf (“%s”, token);

}
printf (“\n”);

}

The code is now complete at this level of the decomposition. The solution, however, is
expressed in terms of two functions that remain unimplemented: IsLegalWord and Transla teWord.

The predicate function IsLegalWord determines whether the token returned by
GetNextToken is a word that should be translated into Pig Latin or whether it is simply part of
the punctuation. The rules of Pig Latin make sense only if a word consists entirely of letters.
It therefore seems reasonable to have IsLegalWord(token) return TRUE if every character in
token is a letter. By now, you should be familiar enough with strings to implement this
function immediately, like this:

bool IsLegalWord (string token)
{

int i;

for (i = 0; i < StringLength (token); i++) {
if (!isalpha (IthChar (token, i))) return (FALSE);

}
return (TRUE);

}

The process of translating a single word is only slightly harder. In pseudocode, the structure
of Transla teWord mirrors the rules for Pig Latin:

string Transla teWord (string word)
{

Find the position of the first vowel.
if (the vowel appears at the beginning of the word) {

Return the word concatenated with “way”.
} else {

Extract the initial substtring up to the vowel and call it the “head.”

Extract the substring from that position onward and call it the “tail. ”
Return the tail, concatenated with the head, concatenated with “ay” .

}
}

The first English statement in the pseudocode is the hardest to implement and the only one
for which it makes sense to define a new function. That function, FindFirstVowel (word), returns
the index position of the first vowel in word. Thus the first statement in the Transla teWord

implementation can be written as follows, where vp is an integer variable used to record the
position of the vowel:

vp = FindFirstVowel (word);

If you’re being careful in your design, you may notice that the function FindFirstVowel (word) is
incompletely specified. The informal description does not cover all the possible cases. What
happens if there aren’t any vowels in word? In that case, FindFirstVowel must still return



something. Given that the library functions FindChar and FindString use –1 as a special sentinel
to indicate that the value for which the function is searching does not exist in the string, it
makes sense to employ the same strategy here.

When FindFirstVowel returns –1, Transla teWord must respond reasonably. Since the result of
translating a word containing no vowels was never defined explicitly, you need to decide
what action Transla teWord should take. The easiest approach is for Transla teWord to return the
original word unchanged. Incorporating this design decision means that the code for
Transla teWord will begin with the following lines:

vp = FindFisrstVowel (word);
if (vp== -1) {

return (word);
} else …

The remaining steps in Transla teWord are simply calls to the appropriate functions from the
strlib.h interface, which makes it easy to complete the coding process, like this:

string Transla teWord (string word)
{

int vp;
string head, tial;

vp = FindFirstVowel (word);
if (vp== -1) {

return (word);
} else if {

return (Concat (word, 0, vp –1));
} else {

head = SubString (word, 0, vp – 1);
tail = SubString (word, vp, StringLength (word) – 1);
return (Concat (tail, Concat (head, “ay”)));

}
}

Coding FindFirstVowel is also easy, particularly when you remember that you already have a
function IsVowel, defined in Chapter 9, to determine whether a character is a vowel. The
implementation of FindFirstVowel is then

int FindFirstVowel (string word)
{

int i;

for (i = 0; i , StringLength (word); i++) {
if (IsVowel (IthChar (word, i))) return (i);

}
return (-1);

}

Implementing FindFirstVowel completes the last piece of the main module, which makes it
possible for you to turn your attention to the scanner module.
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At this point, you have only an informal design of the scanner module interface. You



know that the module exports three functions: InitScanner , GetNextToken , and AtEndOfLine . You
also know what arguments each of these functions requires. The next step in the process is
to translate the informal design into an interface.

Since you already know what the functions in the scanner module do, the work of
producing the scanner.h interface consists mostly of writing down the comments for each
function. The final result appears in Figure 10-3.
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/*
* File: scanner.h
* --------------------
* Thi file is the interface to a package that div ides
* a line into indiv idual “tokens” . A token is defined
* to be either
*
* 1. a string of consecutive letters and digits represen ting
* a word, of
*
* 2. a one-character string represen ting a separator
* character, such as a space or a punctuation mark.
*
* To use this package, you must firs t call
*
* InitScanner (line);
*
* Where line is the string (typically a line returned by
* GetLine) that is to be div ided into tokes. To retrieve
* each token in turn, you call
*
* token = getNextToken ();
*
* When the last token has been read, the predica te function
* AtEndOfLine returns TRUE, so that the loop structure
*
* while (!AtEndOfLine ()) {
* token = GetNextToken ();
* …process the token…
* }
*
* serves as an idiom for processing each token on the line.
*
* Further details for each function are given in the
* indiv idual descriptions below.
*/

#ifnde f_scanner_h
#define _scanner _h

#include “genlib.h ”

/*
* Function: InitScanner
* Usage: InitScanner (line);
* ---------------------------------
* This function initializes the scanner and sets it up so that
* it reds tokens from line. After InitScanner has been called,
* the firs t call to GetNextToken will return the firs t token
* on the line, the next call will reutnr the second token,
* and so on.
*/
void InitScanner (string line);



/*
* Function: GetNextToken
* Usage: word = GetNextToken
* ---------------------------------------
* This function returns thenext token on the line.
*/

string GetNextToken (void);

/*
* Function: AtEndOfLine
* Usage: if (AtEndOfLine ())…
* -------------------------------------
* This function returns TRUE when the scanner has reached
* the end of the line.
*/

bool AtEndOfLine (void);

#endif

Before you implement the scanner.h interface, you need to learn how a module can keep
track of its internal state. The next section describes this process.
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Because they must keep track of their own internal state, the functions in the scanner
module do not behave like the other functions whose implementations you have seen in this
text. When you call a typical function, it may declare local variables, but the values of those
variables are discarded when the function returns.

The scanner implementation cannot afford to throw all its information away every
time one of its functions returns. For example, whenyou call

InitScanner (“Hello there ”);

the string passed to InitScanner must save the string “Hello there ” so that subsequent calls to
GetNextToken can return the pieces of the line in sequence. Similarly, the scanner module
must also keep track of the current position within the line. As soon as GetNextToken returns
“Hello”, the implementation must record the fact that the next token is the space between the
words “Hello” and “there ”. This information—the line itself and the current position on the
line—represents the internal state of the scanner module. Unlike local variables in a
function, internal state must be preserved from call to call.

Even though you have not yet learned how to maintain internal state in a C program,
you have seen several examples of library packages that maintain state information. In the
graphics library, for example, every line starts where the last one left off. The current point
in the graphics library is part of its state and is retained between calls to the graphics library.
Similarly, the random number function rand defined in the stdlib.h remembers the previous
random number so that it can generate the next one. In each case, the modules that
implement these libraries preserve the values of some variables from call to call.

GlobalGlobalGlobal

Global

variablesvariablesvariables

variables



In Chapter 5, you learned about the mechanics of the function-calling process.
Whenever a function is called, the variables it declares are created in a separate region of
memory called a stack frame. In Chapter 5, stack frames are diagrammed as index cards.
You saw that calling a function is equivalent to creating a new index card and placing it on
top of the pile of cards that represent other active functions. Returning from a function is
equivalent to throwing away its index card and continuing in the context of the caller.

The variables declared inside a function, called local variables, exist only in the
context of a stack frame. When a function returns, the local variables in its stack frame
disappear completely. The index card representing the stack frame is thrown away, and the
values of those variables are lost. If a module needs to maintain its internal state between
function calls, it cannot use local variables to do so. It must use global variables.

A local variable is one that you declare in the context of a function. The names of the
parameters and the names of variables declared at the beginning of the block that
constitutes the function body can be referenced only inside that function. Variable
declarations, however, may also appear outside of any function definition. Variables
declared in this way are called globalglobalglobal

global

variablesvariablesvariables

variables

. The declarations look exactly the same as
those for local variables, except that they occur at the top level of the file. For example, in
the code fragment

int g;
void MyProcedure ()
{

int i;
…

}

the variable g is a global variable, and the variable i is a local variable. The local variable i is
valid only within the function MyProcedur e. The global variable g, on the other hand, can be
used in any function that follows its declaration in the module. The portion of the program
in which a variable can be used is called its scopescopescope

scope

. Thus, the scope of a local variable is the
function in which it is defined. The scope of a global variable is the entire remainder of the
source file in which it appears.

Unlike local variables, global variables are stored in memory in such a way that their
values are not affected by function calls. In terms of the index card analogy, global
variables are sotred on a separate card that is always available, as if it had been glued to the
desk top and never covered up by the stack containing the local variables. Every function
in the module can see the variable on that card. Moreover, the values of those variables are
not lost when a function returns. A global variable keeps the same value until you assign it a
new one.
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Many new programmers find the idea of global variables attractive. After all, because
global variables can be seen from any part of the program, you don’t need to pass them as
arguments to individual functions. However, programmers quickly learn that using global
variables tends to make their programsmuch harder to read.
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In writing a program, it is
usually best to avoid the
use for global variables
since they make the
program harder to
understand and debug.
The principal situation in
which global variables
are necessary is when a
module mus t main tain
internal state between
func tion calls.

Oddly enough, the properties that seem like advantages to the novice are precisely the
ones that most concern the more experienced programmer. A new programmer likes the
idea that global variables can be manipulated from any function in a source file. For an
experienced programmer, this fact signals danger. Suppose, for example, that you are
hunting for a bug in a program that fails because a variable is somehow getting set to the
wrong value. If the variable is a global one, the problem could be absolutely anywhere in
the source file since every function in the module can manipulate that variable. Local
variables are much more constrained. If a local variable has the wrong value, the
programmer can focus on a single function when looking for the bug.

To avoid such problems, global variables are used infrequently in well-structured
programs. Their principal advantage is that they make it possible for a module, such as the
scanner module, to maintain internal state. Since global variables maintain their value
between function calls, they are ideal for this purpose. Thus, in the scanner module, you
could use global variables to keep track of the line passed to InitScanner and the current
position in that line.
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The fact that global variables are visible everywhere in a single module is only part of
the problem with using them. Unless you make an explicit declaration to the contrary, the C
complier assumes that it is appropriate for other modules to see global variables as well.
Thus, when you declare a global variable, the set of functions that might change its value is
not even limited to single module. The variable can be referenced by any module in thee
entire program.

In a well-structured program, individual modules exchange data through function calls
that pass arguments from one module to another. In most cases—particularly when you are
first developing your programming habits—it is best to ensure that each global variable is
never referenced by more than one module. To avoid the possibility that two modules will
reference the same global variable, you should eliminate the danger entirely by writing the
keyword static at the beginning of the declaration, as in

static int cpos;

This declaration defines cpos as a global integer, visible form anywhere in the module in
which is defined. The name cpos, however, is not made available to other modules and is
thus entirely private to the one in which it appears. In this book, all global variables will be
declared to be static .

In C, the word static refers to how a particular variable is stored, which is discussed
Chapter 11. For most practical purposes, however, it is better to think of the word static as a
synonym for private, which more closely describes its purpose in this context. By declaring
variables using the keyword static, you keep them private to your abstraction.
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In the scanner.h interface, the global variables are initialized by calling the function
InitScanner . Using an initialization function to assign values to the global variables that
represent the internal state of a module is called dynamicdynamicdynamic

dynamic

initializationinitializationinitialization

initialization

. The key feature of
dynamic initialization is that it occurs when the program is run. The client program calls the
initialization function for a module, which then uses assignment statements to give initial
values to the global state variables.

In C, global variables can also be given initial values before the program starts to run.
As discussed in the section on ‘Programming languages and compilation” in Chapter 1, the
compiler produces object files that contain the instructions necessary to execute the
program using the computer’s own internal language. In addition to these instructions,
object files may also contain data values that specify the initial contents of a global variable .
Because this type of initialization occurs prior to the execution of the program, it is called
staticstaticstatic

static

initializationinitializationinitialization

initialization

To specify static initialization of a global variable, you include in its declaration an
equal sign after the variable name, followed by the initial value, which must be a constant1.
For example, the declaration.

static int startingValue = 1;

not only declares the variable startingValue to be a global integer variable that is private to this
module but also guarantees that the contents of the variable will be 1 when the program
starts to run.

In this text, most of the interface that maintain internal state use dynamic initialization
and include a function to perform it explicitly, like the InitScanner function in the scanner.h

interface. There are, however, two cases in which static initialization is a better choice:

1. If the value of a variable is constant throughout the lifetime of the program. This
condition occurs rarely in the case of simple variables but will become important
when you start to use more complicated data structures in Chapter 11.

2. If a variable usually has a particular initial value that only a few clients might
want to change. In cases of this sort, the best strategy is usually to set the
standard option using static initialization and then provide a function in the
interface that allows clients to change the value if necessary.

The second condition is best illustrated by example. Let’s suppose that a client of the
scanner module asked you to change the scanner interface so that all tokens containing
alphabetic characters were returned in upper case. Thus, after calling

InitScanner (“Hello there ”);

your client would like the tokens to be “HELLO”, “ “, and “THERE”. This behavior would not
make sense for all your clients. On the other hand, it would probably be useful for some of
them.

How could you satisfy the request of this client without making your other clients

1 In certain case, the same syntax for initialization can be applied to local variables as well. If you
initialize a local variable, the effect is the same as performing an assignment and can just as easily be
written as such. To simplify the discussion of initialization, this text does not use initializes for local
variables.



unhappy? The functionality is easy enough to provide. All you need to do is call the
function ConvertToUpperCase before you return from GetNextToken. On the other hand, you only
want to do so if the client has requested this behavior, To keep track of whether the client
wants uppercase tokens, you could declare a global Boolean variable as follows:

static bool uppercaseFlag;

If uppercaseFlag has the value TRUE, the canner returns tokens entirely in upper case; if it is
FALSE, the scanner behaves as it did originally.

How should you initialize uppercaseFlag? And how should you design the interface to
allow clients to change the value of that flag? These questions raise important issues of
interface design.

One approach would be to use dynamic initialization. With this design, the client
would select the behavior by passing an additional Boolean argument to InitScanner that
would serve as the setting of the uppercaseFlag option. Calling

InitScanner ( “Hello there ”, TRUE);

would indicate that the client wanted uppercase tokens returned. Conversely, calling

InitScanner (“Hello there ”, FALSE);

would indicate that the client wanted the traditional behavior of the scanner, with tokens
returned using a mixture of uppercase and lowercase letters, exactly as those characters
appeared on the input line.

This approach, however, has two serious drawbacks. First, it is extremely difficult for a
reader of the program to know what the TRUE and FALSE arguments mean in the call to
InitScanner . To decipher the purpose of these arguments, any client would have to read the
comments in the interface. Second, the new design changes an existing interface and
therefore violates the stability condition. If the scanner interface has clients, those clients
would have to change their programs.

A much better strategy that avoids both of these problems is to extend the scanner
interface rather than change it. All the old functions work precisely as they have before. To
provide the option of returning uppercase tokens, you can add a new function called
ReturnUppercaseTokens that takes a Boolean value and uses it as the setting for uppercaseFlag .
Thus, by calling

ReturnUppercaseTokens (TRUE);

the client could select the new style of behavior in which all tokens are returned in upper
case.

The key point to notice is that if ReturnUppercaseTokens is never called, the module must
continue to work as it did previously. After all, none of the existing programs that use the
old scanner.h interface call ReturnUppercaseTokens; that function did not even exist when those
clients were written. The variable uppercaseFlag therefore must have FALSE as its initial value
even if no calls are made to set it explicitly. To make sure it has the proper value, you need
to use static initialization by writing

static bool uppercaseFlag = FALSE;

Exercise 8 in this chapter gives you the opportunity to complete the implementation of the



ReturnUppercaseTokens extension.
Values that are used within a program unless a client specifically takes action to

change them are called defaultdefaultdefault

default

valuesvaluesvalues

values

. In a typical module, global variables that specify
options the client might set are initialized statically to their default values. Clients that need
to change those values do so by calling a function provided in the interface.
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In addition to its use with global variables, the keyword static can also be used to
indicate that a function is private to a particular module. When you define an interface, the
functions exported by the interface are not private. The whole point of the interface is to
allow these functions to be called form other modules. In many cases, a module will
include functions that are called only within the module in which they appear. To indicate
that a particular function is restricted to a particular module, you can use the keyword static
at the beginning of both the function prototype and its implementation. Doing so makes it
impossible for clients to call these functions, which in turn makes the abstraction boundary
between the interface and the client much more solid.

Declaring function to be static also has advantages in the context of large programs that
are being developed by several programmers. If a function or a global variable is not
declared to be static , its name cannot be used anywhere else in the collection of modules that
make up the program as a whole. The possibility that names in different functions might
interfere with each other means that the developers of independent modules must either (1)
communicate with each other to ensure that they do not use the same names or (20 make all
the names they introduce private to their own module by using the static keyword.

The following rule is an excellent guideline for modular development:

From here on, all programs in this book follow the Static Declaration Rule
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As soon as you understand that the internal state of a module can be stored using
global variables, the actual process of implementing the scanner abstraction is not at all
difficult. The scanner module must keep track of the line passed to InitScanner and also the
current position in the line, which is presumably an integer index. Computer scientists often
use the term bufferbufferbuffer

buffer

to refer to an internal storage area, so the private copy of the line might
be stored in a string variable called bugger and the current position in an integer variable
called cpos . It is also convenient to keep track of the length of the buffer string, so that the
functions do not have to recalculate the length of the string each time. The variable for this
purpose is again an integer and might be named buflen .
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All functions other than main and those
explicitly exported by an interface should be
declared as static.



Each of these variables should be declared to be global within the scanner module but
private to it in the sense that no other module has access to these variables. Thus, the global
variables required for the scanner module are

static string buffer;
static int buflen;
static int cpos;

Once you have declared these variables, the implementation of InitScanner simply initializes
them to their correct values, like this:

void InitScanner (string line)
{

buffer = line;
buflen = StringLength (buffer);
cpos = 0;

}

The line passed by the caller is stored in the variable buffer to keep track of the line within
the scanner module, the variable buflen is set to the length of the buffer, and the variable cpos

is set to 0 to indicate that the scanner is at the beginning of the line.
The implementation of GetNextToken follows precisely from the definition of the

function as given in the interface. The function begins by looking at the next character in
the line. If that character is a letter or digit, the function searches to find an unbroken string
of such characters and returns the entire string. If the current character is not, a letter or digit,
the function returns a one-character string containing that character. The implementation of
GetNextToken is therefore

string GetNextToken (void0
{

char ch;
int start;

if (cpos >= buflen) Error (“Nomore tokens”);
ch = IthChar (buffer, cpos);
if (isalnum (ch)) {

start = cpos;
while (cpos < buflen && isalnum (IthChar (buffer, cpos))) {

cpos++;
}
return (SubString (buffer, start, cpos – 1));

} else {
cpos++;
return (CharToString (ch));

}
}

The token stream is complete when the index cpos reaches the end of the string, so the
implementation of AtEndOfLine is simply

bool AtEndOfLine (void)
{

return (cpos >= buflen);
}

The complete text of the scanner.c module appears in Figure 10-4, followed by the pigla ting.c

module in Figure 10-5.
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scanner.c

/*
* File: scanner.c
* --------------------
* This file implements the scanner.h interface.
*/

#include <stdio.h>
#include <ctype.h>

#include “genlib.h ”
#include “strlib.h ”
#include “scanner.h ”

/*
* Private variables
* ----------------------
* buffer – Private copy of the string passed to InitScanner
* buflen – length of the buffer, saved for efficiency
* cpos –Current character position in the buffer
*/

static string buffer;
static int buflen;
static int cpos;

/*
* Function: InitScanner
* -----------------------------
* All this function has to do is initialize the private
* variables used in the package.
*/

void InitScanner (string line)
{

buffer = line;
buflen = StringLength (buffer);
cpos = 0;

}

/*
* Function: GetNextToken
* ---------------------------------
* The implementation of GetNextToken follows its behavioral
* description as given in the interface: if the next character
* is alphanumeric (i.e., a letter or digit), the function
* searches to find an unbroken string of such characters and
* returns the entire string. If the curren t character is not
* a letter or digit, a one-character string containing that
* character is returned.
*/

string GetNextToken (void)
{

char ch;
int start;

if (cpos >= buflen) Error (“Nomore tokens”);
ch = IthChar (buffer, cpos);
if (isalnum (ch)) {

start = cpos;
while (cpos < buflen & isalnum (IthChar (buffer, cpos))) {

cpos++;



}
return (SubString (buffer, start, cpos – 1));

} else {
cpos++;
return (CharToString (ch));

}
}

/*
* Function: AtEndOfLine
* ------------------------------
* This implementation compares the curren t buffer position
* agains t the saved length.
*/

bool AtEndOfLine (void)
{

return (cpos >= buflen);
}
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piglatin.c

/*
* File: pigla tin.c
* -------------------
* This program translates a line of text from English
* to pig latin. The rules for forming pig Latin words
* are as follows:
*
* o If the word begins with a vowel, add “way” to the
* end of the word.
* o If the word begins with a consona t, extract the set
* of consonants up to the firs t vowel, move that set
* of consonants to the end of the word, and add “ay” .
*/

#include <stdio.h>
#include <ctype.h>

#include “genlib.h ”
#include “strlib.h ”
#include “simpio.h”
#include “scanner.h ”

/* Private function prototypes */

static void Transla teLine (string line);
static string Transla teWord (string word);
static bool IsLegalWord (string token);
static int FindFirstVowel (string word);
static bool IsVowel (char ch);

/* Main program */

main()
{

string line;

printf (“Enter a line: “ );
line = GetLine ();
Transla teLine (line);

}

/*
* Function: Transla teLine
* Usage: Transla teLine (line);



* -------------------------------------
* This function takes a line of text and translates
* the words in the line to Pig Latin, display ing the
* translation as it goes.
*/

static void Transla teLine (string line)
{

string token;

InitScanner (line);
while (!AtEndOfLine()) {

token = GetNextWord (token)) token = Transla teWord (token);
printf (“%s”, token);

}
printf (“\n”);

}

/*
* Function: Transla teWord
* Usage: word = Transla teWord (word)
* -------------------------------------------------
* This function translates a word from English to Pig Latin
***

*

and returns the translated word.
*/

static string Transla teWord (string word)
{

int vp;
stirng head, tail;

vp = FindFirstVowel (word);
if (vp== -1) {

return (word);
} else if (vp == 0) {

return (Concat (word, “way”);
} else {

head = SubString (word, 0, vp – 1);
tail = SubString (word, vp, StringLength (word) – 1);
return (Concat (tail, Concat (head, “ay”)));

}
}

/*
* Function: IsLegalWord (token)…
* Usage: if (IsLegalWord (token))…
* --------------------------------------------
* IsLegalWord returns TRUE if every character in the argumen t
* token is alphabe tic.
*/

static bool IsLegalWord (string token)
{

int i;
for (i = 0; i < StringLength (token); i++) {

if (!isalpha (IthChar (token, i))) return (FALSE);
}
return (TRUE);

}

/*
* Function: FindFirstVowel
* Usage: k = FindFirstVowel (word);
* ---------------------------------------------
* FindFirstVowel returns the index position of the firs t vowel
* in word. If word does not contain a vowel, FindFirstVowel



* returns –1.
*/

static int FindFirstVowel (string word)
{

int i;

for (i = 0; i < StringLength (word); i++) {
if (IsVowel (IthChar (word, i))) return (i);

}
return (-1);

}

/*
* Function: Isvowel
* Usage: if (IsVowel (ch))…
* ----------------------------------
* IsVowel returns TRUE if ch is a vowel. This function
* recognizes vowels in either upper or lower case.
*/

static bool IsVowel (char ch)
{

switch (tolower (ch)) {
case ‘a’: case ‘e’: case ‘i ’: case ‘o’ : case ‘u’:

return (TRUE);
defaul t:

return (FALSE);
}

}

SUMMARYSUMMARYSUMMARY

SUMMARY

In this chapter, you have learned several new techniques that make it easier to divide a
single application into separate modules that together constitute the program as a whole. In
particular, you have learned how to represent internal state within a module, which makes it
possible for the functions in the module to have an effect that persists between function
calls.

Important points introduced in this chapter include:

 Large programs can be simplif ied by dividing them into separate modules. Each
module is written as a separate source file. The module containing the function main is
themain module.

 An effective modular decomposition for a program of then becomes apparent as you
attempt to solve the problem through top-down design.

 In designing a function, it is often best to write the individual steps in a combination of
English and C, which is called pseudocode.

 Modules often need to maintain internal state that persists between individual function
calls.

 Internal state must be stored using global variables. Global variables are accessible
from all functions in a module. Unlike local araibles, global variables do not disappear
when a functions returns.

 Using global variables can make programs more difficult to read and debug. To avoid



these problems, you should only use global variables when they are needed to
maintain the internal state of a module.

 All variables used to record internal state should be declared as private to the module
in which they appear. You do this by using the static keyword at the beginning of the
variable declaration.

 Unless a function is exported by an interface, you should use the static keyword to
declare the function as private to the currentmodule.

REVIEWREVIEWREVIEW

REVIEW
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QUESTIONS

1. True or false: Each module corresponds to a separate source file.
2. How do you determine which of several modules is the main module?
3. True of false: You should always choose the modular decomposition of a program

before you begin to apply top-down design.
4. What is meant by the term pseudocode?
5. What should you do when you discover that a problem is incompletely specified?
6. What is a token?
7. What are the principal differences between local and global variables?
8. Looking at a program, how can you determine which available are local and which are

global?
9. What is the scope of a local variable? Of a global variable?
10. Why is it dangerous to overuse global variables?
11. What is the function of the keyword static?
12. What is the difference between static and dynamic initialization? When is static

initialization most useful?

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. A couple of centuries ago, abbreviations were formed differently than they are today.
Rather than comprising just the leading characters in a word, an old-style abbreviation
consists instead of the leading consonants (or just the first letter if the word begins with
a vowel), followed by the very last letter in the word. This style is preserved in the
traditional abbreviations (not the two-letter postal abbreviation) of many state names,
such as

Connecticut Ct. Maine Me.
Florida Fla. Pennsylvania Pa.
Iowa Ia. Vermont Vt.

Write a function OldSty leAbbrev iation that takes a string as argument and returns a string
consisting of an old-style abbreviation formed by connecting in sequence the
following pieces:

a. The initial consonant string, up to the first vowel. If the original string begins



with a vowel, use that vowel instead (see the Iowaexample).
b. The last letter in the word.
c. A period.

2. Rewrite the Pig Latin program so that it uses the algorithmic strategy of going through
the line character by character rather than word by word. The pseudocode version of
this strategy is given in this chapter in the section on “Taking spaces and punctuation
into account.”

3. The input used to test the Pig Latin program in this chapter was written entirely in
lower case. If the input instead included capitalized words, the output would be
somewhat messy, since the capital letters would show up in the middle of words, as
shown in the following sample run:

Modify the Pig Latin program so that any word that begins with a capital letter in the
English line still begins with a capital letter in Pig Latin. Thus, after making your
changes in the program, the output should look like this:

4. The English word trash has the interesting property that its Pig Latin translation,
ashtray, happens to be another English word. There are about 20 such words in
English. You could try to find them yourself as a sort of word game, but it would be
more reliable to use the computer to search for the entire set.

Suppose that you had access to an interface worddic t.h that exported the following
functions:

InitDic tionary () initializes the dictionary package
GetNextDictionaryEntry() Returns the next word in the dictionary
AtEndOfDictionary () Returns TRUE after reading the last word
IsEnglishWord (word) Returns TRUE if word is in the dictionary

Use the worddic t.h interface to write a main program that lists all the English word for
which the Pig Latin translation is also an English word.

5. Write a program that counts the number of words in input text entered by the user. The
input may consits of serveral lines, with the end of the data indicated by a blank line. A
word should be counted only if it consists entirely of letters. One possible sample run
of the program is

Enter a line: thisthisthis

this

isisis

is

pigpigpig

pig

latin.latin.latin.

latin.





isThay isway igPay atinLay.

Enter a line: thisthisthis

this

isisis

is

pigpigpig

pig

latin.latin.latin.

latin.





Isthay Isway Igpay Atinlay.

This program counts the number of words in a paragraph.
End the praragraph with a blank line.
WeWeWe

We

holdholdhold

hold

thesethesethese

these

truthstruthstruths

truths

tototo

to

bebebe

be

self-evident,self-evident,self-evident,

self-evident,

thatthatthat

that

allallall

all

menmenmen

men

andandand

and

womenwomenwomen

women

areareare

are

createdcreatedcreated

created

equal.equal.equal.

equal.





------

--

senecasenecaseneca

seneca

FallsFallsFalls

Falls

Declaration,Declaration,Declaration,

Declaration,

184818481848

1848









Number of words: 19



6. Write a function Longes tWord (line) that returns the longest word in line. Test your
function with a main program that can duplicate this sample run:

7. Write a function ReverseSentence (line) that divides line into words and returns a string
consisting of the same words in reverse order. Your function should discard all the
original punctuation and separate each word in the result with a single space. For
example, a main program that reads in a line and then displays the result of calling
ReverseSentence might produce the following output:

8. Extend the scanner.h interface so that it includes the ReturnUppercaseTokens function
described in the section on “Initializing global variables.” Write a test program that
tests your scanner by reading in a line of data and then displaying each of the tokens,
one per line, as illustrated by this sample run:

Make sure the pigla tin.h program can use the extended scanner module without any
internal changes.

9. In a C program, spaces and tabs are used only to separate individual tokens and have
no other significance. If you werewriting a token scanner for a C compiler, it would be
useful for it to discard tokens that consist entirely of white space. Design an extension
to the scanner.h interface that allows the client to specify that spaces, tabs, and any other
character for which the isspace function in ctype.h returns TRUE should be ignored . Make
sure that your design does not affect any existing clients of the scanner .h interface.

10. Write a program calc .c that implements a simple arithmetic calculator. Input to the
calculator consists of lines composed of integer constants separated by the five
arithmetic operators used in C: +, -, *, /, and %. For each line of input, your program
should display the result of applying the operators to the surrounding terms. To read
the individual values and operators, you should use the scanner module as extended in
exercise 9, so that spacing is ignored. Your program should exit when the user enters a
blank line.

To reduce the complexity of the problem, your calculator should ignore C’s rules

Enter a line:
AllAllAll

All

mimsymimsymimsy

mimsy

werewerewere

were

thethethe

the

borogoves.borogoves.borogoves.

borogoves.





The longes t word is “borogoves” .

Enter a line: double,double,double,

double,

doubledoubledouble

double

toiltoiltoil

toil

andandand

and

trouble:trouble:trouble:

trouble:





trouble and toil double double

Enter a line: HelloHelloHello

Hello

theretherethere

there





The tokens are:
“HELLO”
“ “
“THERE”



of precedence and instead apply the operators in left-to-right order. Thus, in your
calculator program, the expression

2 + 3 * 4

has he value 20 and not 14, as it would in C.
The following is a sample run of he calc .c program:

11. In some programming applications, it is useful to be able to generate a series of names
that form a sequential pattern. For example, if you were writing a program to number
diagrams in a document, having a function that returned the sequence of strings “Figure

1”, “Figure 2”, “Figure 2”, and so on, would be very handy. Similarly, a program designed to
label points in a geometric diagram could use a function that returned the sequence “p1”,
“P2”, “P3”, and so forth.

If you think about this problem from a broader perspective, the tool that would be
most useful is a label generator module containing a function that returns the next label
in a consecutive sequence, where each label is composed of a prefix string (“Figure ” or
“P” in the examples from the preceding paragraph) and an integer used as a sequence
number.

Design an interface lableseq.h that provides an abstraction for generating these
sequences of labels. Your interface should export a function GetNextLabel that takes no
arguments and returns the next label in the sequence. If no explicit initialization is
performed, the labels should use the string “Label ” as the prefix and begin with sequence
number 1. Clients, however, should be able to change these defaults by calling
SetLabelPrefix (prefix) and SetLabelNumber (nextNumber) to set the prefix and sequence number,
respectively, for the next label. Implement the interface by writing the corresponding
labelseq.c file.

Write a test program for the labelseq package that reads in a prefix and a starting
sequence number and then displays the next five labels returned by GetNextlabel , as
illustrated by the following sample run:

This program implements simple calculator.
When the > promp t appears, enter an expression
consis ting of integer constants and the operators
+, -, *, /, and %.To stop, enter a blank line.
> 222

2

+++

+

222

2





4
> 111

1

+++

+

222

2

+++

+

333

3

+++

+

444

4

+++

+

555

5





15
> 101010

10

%%%

%

444

4





2
> 4+4+4+

4+

999

9

–––

–

2*16+1/3*6-67+8*2-3+26-1/34+3/7+2-52*16+1/3*6-67+8*2-3+26-1/34+3/7+2-52*16+1/3*6-67+8*2-3+26-1/34+3/7+2-5

2*16+1/3*6-67+8*2-3+26-1/34+3/7+2-5





0
>

This program tests the lableseq abstraction.
Prefix to use for labels: p
Starting number: 0
P0
P1
P2
P3
P4



12. When text is displayed on the printed page or a computer screen, it usually must be
adjusted to fit within fixed margins. Output that is too wide must be broken up and
displayed on several lines. If the text is composed of words, the divisions between the
lines are made at the spaces between the word boundaries. As long as an entire word
fits on the current line without extending past the right margin, it is placed there. If a
word would extend past the right margin, the spaces before it are converted to a
newline character, and the word is placed at the beginning of the next line. Subsequent
words are then added to the newly created line until that line fills up as well. This
process is called fillingfillingfilling

filling

and can be repeated that as long as there is any text to display.
The need to fill lines of output comes up in many different applications. Because

filling is a general problem, the idea of writing a library package to perform filling
operations has considerable appeal. An interface to such a package is shown in Figure
10-6.

Implement the fill.h interface by writing the corresponding fill.c module. To test your
implementation, write a program that displays the prime numbers between 1 and 200
using as few lines as possible for the output. The following sample run shows the
output when using a fill margin of 55 characters:
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fill.hfill.hfill.h

fill.h

/*
* fill.h
* -----
* This file is the interface to an abstraction that enables
* you to display filled output. To use the package, you firs t
* call SetFillMargin to set an output margin and then make
* calls to PrintFilledS tring to display the output. These
* functions are described in more detail below.
*/

#ifnde f _fill_ h
#define_fill_h

#include “genlib.h ”

/*
* Function: SetFillMargin
* Usage: SetFillMargin (margin);
* -----------------------------------------
* This function sets the fill margin to the value given by the
* margin parameter. When strings are displayed using the
* function PrintFilledS tring, the output will be broken up
* into separate lines so that no lines extend past the margin.
* If no margin is set explicitly , the package uses 65 for the
* fill margin as a defaul t.
*/

void SetFillMargin (int margin);

The primes between 0 and 200 are: 2, 3, 5, 7, 11, 13,
17, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193, 197, 199,



/*
* Funciton: PrintFilledS tring
* Usage: PrintFilledS tring (str);
* ---------------------------------------
* The string str is displayed on the screen, starting from
* where the last string left off. Spaces and newline characters
* in the strin are treated specially . If a space character
* appears in an argumen t, the function may choose to div ide
* the string at that point by moving to the next line.
* Such div ision occurs when the next word would not fit
* within the margin established by SetFillMargin. A newline
* character in the string froces the cursor to advance to the
* beginning of the next line.
*/

void PrintFilledS tring (string str);

#endif
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate the importance of array data to programming.
 To be able to declare and manipulate simple arrays.
 To understand how data values are stored in memory.
 To recognize how the process of passing arrays as function parameters differs from

the process of passing simple variables.
 To learn how to apply static initialization to arrays.
 To understand the structure of multidimensional arrays.

UUU

U

p to now, the examples in this book have focused on the use of increasingly

sophisticated algorithms to manipulate simple data. As the algorithms become more
detailed, the programs used to implement them increase in size and complexity. To
reduce the algorithmic complexity, programmers use the general strategy of stepwise
refinement to break a large program down into smaller, more easily managed functions.
When those smaller functions become too complicated, they are then divided into still
smaller functions. The complete solution has the form of a hierarchy in which high-
level functions make calls to lower-level functions, which in turn call even lower-level
functions make calls to lower-level functions, until the functions are simple enough to
implement directly without making further calls.

Beginning in this chapter, you will discover that data types also form a hierarchy.
You can use the simple data types you have encountered in the earlier chapters to define
more complicated types, which can then be used to define types of still greater
complexity, to whatever level the program requires. The principal advantage of
defining these new type is that doing so enables you to combine many independent data
values and think of them as a single unif ied collection. By considering a collection of
data as a single entity, you can reduce the conceptual complexity of your programs



signif icantly.
Just as the control statements and function calls in a program define its algorithmic

control structure, the hierarchy of type definitions comprises its datadatadata

data

structurestructurestructure

structure

. These
two ideas—control structure and data structure—together constitute the foundations of
modern programming. In 1976, Niklaus Wirth, the inventor of the programming
language Pascal, expressed this principle in the title of a programming text, which he
wrote in the form of an equation:

Algorithms + Data Structures = Programs

Each half of the left side of this equation is critical to programming. At this point, you
know something about algorithms. To become a full-f ledged programmer, you must
also learn about data structure in programming.

C provides several different mechanisms for defining new data types based on
existing ones. In this chapter, you will have a chance to learn about arrays, which are
the most common compound structure in programming. The other major mechanisms
for creating new types—points and records—are discussed in Chapters 13 and 16,
respectively.
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IntroductionIntroductionIntroduction

Introduction

tototo

to

arraysarraysarrays

arrays

An arrayarrayarray

array

is a collection of individual data values with two distinguishing
characteristics:

1. An array is ordered. You must be able to count off the individual components
of an array in order: here is the first, here is the second, and so on.

2. An array is homogeneous. Every value stored in an array must be of the same
type. Thus, you can define an array of integers or an array of floating-point
numbers but not an array in which the two types are mixed.

From an intuitive point of view, it is best to think of an array as a sequence of boxes, one
box for each data value in the array. Each of the values in an array is called an elementelementelement

element

.
For example, the following diagram represents an array with five elements:

In C, each array has two fundamental properties:

 The elementelementelement

element

typetypetype

type

, which is the
type of value that may be stored in the
elements of the array

 The arrayarrayarray

array

sizesizesize

size

, which is the
number of elements the array contains

Whenever you create a new array in your

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for

array declarationsdeclarationsdeclarations

declarations

element type arrayname[size];
Where:

elementtype is the type of each element in the array
arrayname is the name of the variable being

declared as an array
size is the number of elements that are allocated as

part of the array



program, you must specify both the element type and the array size.

ArrayArrayArray

Array

declarationdeclarationdeclaration

declaration

Like any other variable in C, an array must be declared before it is used. The
general form for an array declaration is shown in the syntax box to the right. For
example, the declaration

int intArray[10];

declares an array named intArray with 10 elements, each of which is of type int. You can
represent this declaration pictorially by drawing a row of 10 boxes and giving the entire
collection the name intArray:

Each element in the array is identif ied by a numeric value called its indexindexindex

index

. In C, the
index numbers for an array always begin with 0 and run up to the array size minus one.
Thus, in an array with 10 elements, the index numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,
as the preceding diagram shows.

In most case, you should specify the size of the array using a symbolic constant
instead of an explicit integer. Using a symbolic constant makes it easier for
programmers who will maintain your program in the future to change the array size. For
example, instead of writing the declaration

int intArray[10];

it would be preferable to define the size as a constant

#define Nelements 10

and then to write the declaration as

int intArray[Nelemen ts];

As is the case with any variable, you use the name of an array to indicate to other
readers of the program what sort of value is being stored. For example, suppose that you
wanted to define an array that was capable of holding the scores for a sporting event,
such as gymnastics or figure skating, in which scores are assigned by a panel of judges.
Each judge rates the performance on a scale from 0 to 10, with 10 being the highest.
Because a score may include a decimal fraction, as in 9.9, each element of the array
must be of type double, which is the standard floating-point type. Thus the declaration

double scores[Njudges];

declares an array named scores with one element of type double to hold each judge’s
score. If, for example, there are five judges, and the constant Njudges is therefore
defined as

intArray

0 1 2 3 4 5 6 7 8 9



#define Njudges 5

the declaration of scores introduces an array with five elements, as shown in the
following diagram:

When you declare an array, the values of its elements are initially undefined. Thus, just
as you discovered with simple variables, you cannot rely on the contents of any element
unless you initialize it explicitly. To do so, you need a mechanism that makes it possible
to assign a value to each of the individual elements.

ArrayArrayArray

Array

selectionselectionselection

selection

To refer to a specific element within an array, you need to specify both the array
name and the index corresponding to the position of that element within the array. The
process of identifying a particular element within an array is called selectionselectionselection

selection

and is
indicated in C by writing the name of the array and following it with the index written
in square brackets. The result is a selectionselectionselection

selection

expressionexpressionexpression

expression

, which has the following form:

array -name[index ]

Within a program, a selection expression acts just like a simple variable. You can use it
in an expression, and, in particular, you can assign a value to it. Thus, if the first judge
(judge #0, since C counts array elements beginning at zero) awarded the contestant a
score of 9.2, you could store that score in the array by writing the assignment statement

scores[0] = 9.2;

The effect of this assignment can be diagrammed as follows:

You could then go ahead an assign scores for each of the other four judges using, for
example, the statements

scores[1] = 9.9;
scores[2] = 9.7;
scores[3] = 9.0;
scores[4] = 9.5;

Executing these statements results in the following picture:

scores

0 1 2 3 4

scores

9.2

0 1 2 3 4

scores



In working with arrays, it is essential to understand the distinction between the index of
an array element and the value of that element. For instance, the first box in the array
has index 0, and its value is 9.2. It is also important to remember that you can change the
values in an array but never the index numbers.

The real power of array selection comes from the fact that the index value need not
be constant, but can be any expression that evaluates to an integer or any other scalar
type. In many cases, the selection expression is the index variable of a for loop, which
makes it easy to perform an operation on each element of the array in turn. For example,
you can set each element in the scores array to 0.0 with the following statement:

for (i = 0; i < Njudges; i++) {
scores[i] =0.0;

}
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The program gymjudge.c given in Figure 11-1 provides a simple example of array
manipulation. This program asks the user to enter the score for each judge and then
displays the average score.
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gymjudge.c

/*
* File: gymjudge.c
* ----------------------
* This program averages a set of five gymnastic scores.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

/*
* Contants
* ------------
* Njudges – Number of judges
*/

#define Njudges 5

/* Main program */

main()
{

double gymnasticScores[Njudges];
double for (i = 0; i < Njudges; i++) {

printf (“Score for judge #%d: “, i);
gymnatsticScores[i] = GetReal ();

}
total = 0;
for (i = 0; i < Njdges; i++) {

9.2 9.9 9.7 9.0 9.5

0 1 2 3 4



total += gymnasticScaores[i];
}
average = total / Njudges;
printf (“The average score is %.2f\n”, average);

}

Running the gymnastic.c program with the data used in the examples in the preceding
section produces the following sample run:

ChangingChangingChanging
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indexindexindex

index
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In C, the first element in every array is at index position 0. In many applications,
however, this design may cause confusion for the user. To a nontechnical person using
the gymjudge.c program, the fact that it asks about judge #0 is likely to be disconcerting. In
the real world, we tend to number elements in a list beginning at 1. It would therefore be
more natural for the program to ask the user to enter the scores for judges numbered
from 1 to 5 instead.

There are two standard approaches for solving this problem:

1. Use the indices 0 to 4 internally, but add 1 to each index value when
requesting data from the user or displaying data on the screen. If you adopt
this approach, the only part of the gymjudge.c program that needs to change is
the printf statement that displays the prompt for each input value, which
becomes

printf (“Score for judge #%d: “, i + 1);

2. Declare the array with an extra element so that its indices run from 0 to 5, and
then ignore element 0 entirely. Using this approach, the main program
becomes

main()
{

double gymnasticScores[Njudges + 1];
double total, average;
int i;

printf (‘Please enter a score for each judge.\n”);
for (i = 1; i <= Njudges; i++) {

printf (“Score for judge #%d: “, i);
gymnasticScores[i] = GetReal ();

}
total = 0;
for (i = 1; i <= Njudges; i++) {

total += gymnasticScaores[i];
}
average = total / Njudges;

Please enter a score for each judge.
Score for judge #0: 9.29.29.2

9.2





Score for judge #0: 9.99.99.9

9.9





Score for judge #0: 9.79.79.7

9.7





Score for judge #0: 9.09.09.0

9.0





Score for judge #0: 9.59.59.5

9.5





The average score is 9.46



printf (“The average score is %.2f\n”, average);
}

Note that the declaration of the scores array uses the expression Njudges + 1 to
specify the array size. The array size in a declaration can be an expression,
but only if all the terms in the expression are constant.

The advantage of the first approach is that the internal array indices still begin with
0, which often makes it easier to use existing functions that depend on that assumption.
The disadvantage is that the program requires two different sets of indices: an external
set for the user and an internal set for the programmer. Even though the user sees a
consistent and familiar index pattern, having to think about both sets of indices can
complicate the programming process. The advantage of the second approach is that the
internal indices match those you use to communicate with the user.
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Although the gymjudge.c program in Figure 11-1 is sufficient to solve a specific
problem, it is too simple to illustrate several of the most important issues that arise when
using arrays. The most significant weakness of the gymjudge.c example is that it is written
as a single function using none of the techniques of decomposition that you have leaned
in the earlier chapters. In order to write more sophisticated programs that use arrays,
you will need to learn how to pass an array as an argument from on function to another.

Before you can appreciate the details of how array data can be communicated
between two functions, however, you must first gain a deeper understanding of how C
uses memory to represent data. In C, passing an array as an argument to a function is not
quite the same as passing a simple variable. If you understand how arrays are
represented inside the computer, C’s approach to arrays makes a certain amount of sense.
If you don’t understand the internal representation, C’s approach makes no sense at all.

In order to develop a mental model of how data is stored inside a computer, you
need to look more closely at how the memory system operates in a typical machine.
The face the computer has a memory system came up in the section on “The
components of a typical computer” in Chapter 1, but you have not yet had a chance to
learn how that memory works.
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bytes,
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wordswordswords
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At the most primitive level, all data values inside the computer are stored in the
form of fundamental units of information called bits. A bitbitbit

bit

records precisely one value,
which can be in either of two possible states. If you think of the circuitry inside the
machine as if it were a tiny light switch, you might label those states as on and off.
Historically, the word bit is a contraction of binary digit, and it is therefore more
common to label those states using the symbols 0 and 1, which are the two digits used in
the binary number system on which computer arithmetic is biased.

Since a single bit holds so little information, the bits themselves do not provide a



particularly convenient mechanism for storing data. To make it easier to store such
traditional types of information as numbers or characters, individual bits are collected
together into larger units that are then treated as integral units of storage. The smallest
such combined unit is called a bytebytebyte

byte

and is large enough to a single character, which
typically requires eight individual bits 1. On most machines, bytes are assembled into
larger structures called wordswordswords

words

, where a word is usually defined to be the size required to
hold an integer value. Some machines use two-byte words (16 bits), some use four-byte
words (32 bits), and some use less conventional sizes.

The amount of memory available to a particular computer varies over a wide range.
Memory sizes are usually measured in kilobytes (KB) or megabytes (MB). In most

sciences, the prefixes kilo and mega stand for 1000 and 1,000,000, respectively. In the
world of computers, however, the decimal system does not match the internal structure
of the machine, and these prefixes are taken to represent the power of two closest to
their traditional values. Thus, in programming these prefixes have the following
meanings:

kilo (K) = 210= 1,024
mega(M) = 220= 1048,576

A 64KB computer—a tiny machine by modern standards—would therefore have
64×1024 or 65,536 bytes of memory. Similarly, an 8MB workstation would have 8
×1,048,576 or 8,388,608 bytes of memory.

MemoryMemoryMemory

Memory

addressesaddressesaddresses
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Within the memory system, every byte is identif ies by a numeric addressaddressaddress

address

.
Typically, the first byte in the computer is numbered 0, the second is numbered 1, and so
on, up to the number of bytes in the machine. For example, you can diagram the
memory of a 64KB computer as follows:

0
1
2

1000
1001
1002
1003
1004
1005
1006

1 Even though a byte consists of eight bits on almost all modern computers, the rules for ANSI C
do not require that bytes be precisely this long. The only rule is that objects of type char are defined to
occupy one byte of information. Thus, a byte must be large enough to hold any character code.



Each byte of memory can hold one character of information. For example, if you were
to declare the character variable ch, the complier would reserve one byte of storage for
that variable as part of the current function frame. Suppose that this yte happened to be
at address 1000. If the program then executed the statement

ch = ‘A’ ;

the internal representation of the character ‘A’ would be stored in location 1000. Since
the ASCII code for ‘A’ is 65, the resulting memory configuration would look like this:

In most programming applications, you will have no way of predicting the actual
address at which a particular variable is stored. In the preceding diagram, the variable ch

is assigned to address 1000, but this choice is entirely arbitrary. Whenever your program
makes a function call, the variables within the function are assigned to memory
locations, but you have no way of predicting the addresses of those variables in advance.
Even so, you may find it useful to draw pictures of memory and label the individual

locations with addresses beginning at a particular starting point. These addresses—even
though you choose them yourself—can help you to visualize what is happening inside
the memory of the computer as your program runs.

Values that are larger than a single character are stored in consecutive bytes of
memory. For example, if an integer takes up two bytes on a particular computer, that
integer requires two consecutive bytes of memory and might therefore be stored in the
shaded area in the following diagram:

1007

65533
65534
65535

1000 65
1001
1002
1003
1004
1005
1006
1007

1000
1001
1002
1003



Data values requiring multiple bytes are identified by the address of the first byte,
so that the integer represented by the shaded area is the word stored at address 1000.

As a second example, values of type double typically require eight bytes of memory,
so that a variable of type double stored at address 1000 would take up all the bytes
between addresses 1000 and 1007, inclusive:
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sizeof operatoroperatoroperator
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Except for the type char, which is defined to be one byte in length on all computer
systems, the number of bytes required to store a value of a particular type may differ
from machine to machine. For example, variables of type int take up two bytes on some
microcomputers but usually require four bytes on larger machines. Similarly, although
eight bytes is a reasonably common size for a value of type double, some computers
represent a double using a different number of bytes. In general, the designer of the C
compiler for a particular computer chooses the size that is most efficient for that
machine.

When you write a C program, you can determine how much memory will be
assigned to a particular variable by using the sizeof operator. The sizeof operator takes a
single operand, which must be a type name enclosed in parentheses or an expression. If
the operand is a type, the sizeof operator returns the number of bytes required to store a
value of that type; if the operand is an expression, sizeof returns the number of bytes
required to store the value of that expression. For example, the expression

sizeof (int)

Returns the number of byte required to store a value of type int. The expression

sizeof x

returns the number of bytes required to store the variable x.
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Whenever you declare a variable in a program, the compiler must reserve memory
space to hold its value. The process of reserving memory space is called allocationallocationallocation

allocation

.
Global variables are allocated when the program begins execution and remain at the
same addresses until the program exits. Local variables are allocated only when a
function is called. The variables themselves are allocated in a region of memory
assigned to that function, which is called its frameframeframe

frame

. As long as a function is running, its
local variables remain at the same address within that frame. When the function returns,
the frame is discarded along with all its variables, making it available for use by some
other function.

If you declare a simple variable, the compiler reserves the number of bytes
corresponding to the size of that object—the same number the sizeof operator would
return. If you declare an array variable, the compiler reserves consecutive memory
locations to hold all the values that comprise the array, one right after another.
Depending on the element type, each element of the array may fit into a single memory
byte, or it may require several bytes. For example, the declaration

char charArray[20];

reserves exactly 20 bytes of storage because characters are defined to occupy exactly
one byte each.

Data types that require more storage will take up more than one byte per element.
For example, assuming that Njudges is defined to be 5 and that each value of type double

requires eight types of memory, the array scores declared by writing the line

double scores[Njudges];

would require

8 bytes/element ×5elements = 40 bytes

To reserve storage for the entire array, the compiler would therefore need to allocate 40
bytes as part of the current frame. If the frame began at address 1000 in memory, the
elements of the array would be laid out alas shown in Figure 11-2. Element 0 of the
array is stored in the eight bytes between 1000 and 1007, element 1 is stored in the eight
bytes between 1008 and 1015, and so on.

1000
…………

………… scores[0]

1008
…………

………… scores[1]

1016
…………

………… scores[2]

1024
…………

………… scores[3]
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Memory layout for scores array

When the C compiler encounters a selection expression, such as

scores[i]

it calculates the appropriate memory address by multiplying the index by the size of
each element in bytes and adding the resulting value to the initial address of the array. In
Figure 11-2, the element size is 8, and the initial address of the array is 100, Thus, if i is
2, the location of element scores[i] is given by

2×8 + 1000

The address is 1016, which matches the address for scores[2], as the diagram shows. In
this calculation, the initial address of the array (i.e., 1000) is called the basebasebase

base

addressaddressaddress

address

of
the array, and the adjustment necessary to find the correct element (i.e., the 2×8 or 16) is
called the offsetoffsetoffset

offset

.
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The array scores diagrammed in Figure 11-2 has five legal index values: 0, 1, 2, 3,
and 4. What happens if you try to select an element in the array whose index falls
outside this range? For example, suppose that you were to evaluate the expression

scores[i]

when i happened to have the value 5. Since there is no element 5 in the array, the result
is meaningless. What does C do in this case?

If you are fortunate enough to be using one of the very few C compilers that
protect unwary programmers from such mistakes, you will get an error message when
you run the program indicating that an array index is out of bounds. It is far more likely,
however, that the program blithely goes ahead without catching the error at all. On most
systems, programs evaluate a selection expression by taking the base address of the
array and then adding the offset, which is itself calculated by multiplying the element
number by the size of the element type. Thus, in this example, C would try to select the
value stored at address

5×8+1000 = 1040

The problem is that you have no idea what is stored in address 1040. It might be some
other variable in the program or possibly a part of the program itself. In any case, the
contents of address 1040 have nothing to do with the scores array, and referencing an
out-of-range element is certainly an error—even though it may not be detected as such
by the computer. Your program might crash or deliver entirely meaningless results,

1032
…………

………… scores[4]



giving no concrete indication of the precise source of the problem.
When a program seems to be misbehaving in some inexplicable way, you should

be suspicious of the array selections. One helpful technique is debugging such programs
is to print out the value of the index before referencing an element of an array. For
example, if you were to add the line

printf (“i = %d\n”, i);

before the line that evaluates scores[i] , you could monitor the behavior of your program as
it reached this line. If the output indicated that i was equal to 5 or –23 or some other
value outside the legal index range, you would know where to start looking for the
problem. Once you had discovered and repaired the problem, you could then remove
the printf call.

In some cases, however, it is safest to include an explicit conditional test to see if
an array subscript is out of bounds. Before evaluating scores[i], you might want to include
the following statement:

if (i <0 || i >= Njudges_ {
error ( “Index i (vlue %d) is out of vounds, i);

}

If you include this statement, your program will generate an error message if i is out of
bounds, alerting you to a bug that might otherwise go undetected.

On the other hand, writing conditional tests of this sort for every subscript
operation would make your program much longer and more complicated. In general,
you should use such tests when there is a reasonable chance that the subscript might in
fact be out of bounds. For example, there would be no point in checking the value of i

inside a for loop with the following control line;

for (i = 0; i < Njudges; i++)

The for loop itself ensures that the value of i remains in bounds. However, if you are
using an index value that was passed in as a parameter, it pays to be more suspicious. In
such cases, you have less control over the value of the index because its source is in
some other part of the program. In a large program, someone else may have written that
part, and you have no way of knowing whether that programmer was as careful as you
are. In such cases, testing the values you receive as parameters can save considerable
debugging time.
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As you know from Chapter 5, the key to writing a large program is breaking it
down into many functions, each of which is small enough for you to comprehend it as a
unit. The individual functions communicate by passing parameters from one function to
another. If a large program involves arrays, decomposing that program will often
require functions to pass entire arrays as parameters. In C, the operation of passing an
array as a parameter is closely tied to the internal representation of arrays in memory
and can therefore seem mysterious. Having become acquainted with that internal
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representation, you are now ready to learn how array parameters work and how to use
them effectively.

The issues involved in using arrays as parameters are best illustrated in the context
of a simple example. Let’s suppose that you have been asked to write a program reverse.c

that performs these steps:

1. Reads in a list of integers until 0 is entered as a sentinel value
2. Reverses the elements in that list
3. Displays the list in reverse order

The following sample run illustrate s the operation of the program:

To illustrate the process of passing arrays as parameters, it is important to decompose
this program into three functions that correspond to the three phases of the program
operation: reading the input values and storing them in an array, reversing the elements
of the array, and displaying the results. Using this decomposition, the main program
would have a structure something like this:

main()
{

int list[NElements];

GetInteerArray(list); ThisThisThis

This

programprogramprogram

program
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reversal

program.program.program.

program.

HeHeHe
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finalfinalfinal

final

versionversionversion

version
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PrintfIntegerArray (list); aaa
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different

argumentargumentargument

argument

structurestructurestructure

structure

}

This general design, however, raises two important issues:

1. As written, the number of items in the array is specified by the constant NElements .
But the specification of the problem requires that the number of elements be
indicated by having the user enter the sentinel value 0 after the last data value.

2. The functions GetIntegerArray and ReverseIntegerArray are only useful if they change the
values in their argument arrays. However, up to now, the functions you have seen in
this text have been unable to change the values of their arguments art all. If arrays
acted the same way simple variables do, the entire design of the program would
have to be changed.

Each of these issues is discussed in detail in the sections that follow.
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According to the specification, the reverse.c program does not fix the number of list
elements in advance but instead allows the user to enter any number of values,
indicating the end of the list with a predefined sentinel value. While this design is
convenient for the user, it creates a problem for the programmer writing the code.
Because the array variable list is declared in the main program, the compiler must
allocate memory for it as soon as the program begins. At this point, the user has not yet
entered any data, so there is no way to know precisely how large the array should be.
Even so, the compiler requires you to specify the size. Moreover, the size you specify in
the declaration of the array must be a constant whose value can be determined at the
time of compilation. The problem is therefore to find a way to achieve the effect of an
array that can hold a varying number of elements even though arrays in fact have a fixed
size.

The usual strategy for solving this problem is to declare an array that is larger than
you need and use only part of it. Thus, instead of declaring the array based on the actual
number of elements—which you often do not know in advance—you define a constant
indicating the maximum number of elements and use that constant in the declaration of
the array. For example, in the main program for reverse.c , you could declare the variable
list using

int list[MaxElements];

You choose as the value of MaxElemen ts a number larger than those you would ever
expect to encounter in practice. For example, if you were writing reverse.c for use with
lists of 100 elements or so, you would choose some larger value for MazElemen ts . And
because it often makes sense to provide room for growth, you might choose a somewhat
larger value for MaxElemen ts , such as 250. On any given use of the program, the actual
number of elements in the list would smaller then this bound. For example, your
program might end up using only the first 75 elements in the array, leaving the others
unused. For simple applicatio ns like this one, you are not in danger of running out of
memory on a modern computer, and you don’t need to worry about whether you are
“wasting memory.” If memory usage turns out to be important, you can allocate the
array memory explicitly, as discussed in the section on “Dynamic arrays” in Chapter 13.

Once you choose to allocate MaxElemen ts elements for the array, you must confront
the problem that the functions using that array need to know how many elements are
actually in use. To provide this information, your program needs to maintain a separate
variable to keep track of the number of elements in use at any particular time. For
example, you could declare the variable n in the main program and use it to indicate the
number of valid array elements, which will usually be less than MaxElemen ts . The size of
the array specified in the declaration—in this case indicated by the constant
MaxElemen ts—is called the allocatedallocatedallocated

allocated

sizesizesize

size

of the array. The number of elements actually
in use—represented here by the variable n—is called the effectiveeffectiveeffective

effective

sizesizesize

size

of the array.
If a function takes an existing array, it needs to know the effective size. For

example, the function PrintIntegerArray must take the effective size of that array as a



parameter so it knows how many elements to display. The call to PrintIntegerArray in the
main program must therefore include n in the list of arguments along with the array list,
as follows:

PrintIntegerArray(lis t, n);

Because the call to PrintIntegerArray passes two arguments, its prototype must declare two
matching parameters: an array of integers containing the data and an integer
representing the effective size. In C, an array parameter specification looks exactly like
an array declaration, except that the array size is optional. Although it is legal to write
the prototype for PrintIntegerArray as

void PrintIntegerArray (int array[MaxElemnts], int n);

it is much more common to eliminate the upper bound from the parameter specification
and instead write

void PrintIntegerArray (int array[], int n);

This style of specification makes it more explicit that PrintIntegerArray can take an integer
array of any allocated size. You specify the actual number of elements to print by
passing the effective size as the parameter n.

As with any function, the names of the formal parameters declared in the prototype
may be different from the names of the actual arguments. The association of arguments
with parameters is established on the basis of their position in the argument list: the first
argument is associated with the first parameter, and so forth. In this example, the array is
called list in the main program and array in each of the subsidiary functions. Choosing
different names makes it easier for you to distinguish references to the array in the main
program from those in the other functions.

Because ReverseIntegerArray also needs access to the array data and the effective size,
it must take the same arguments that PrintIntegerArray does. Its prototype therefore looks
like this:

void ReverseIntegerArray (int array[], int n);

The function GetIntegerArray , however, has a different structure. It is impossible for the
main program to pass the effective size of the array to GetIntegerArray; at the time
GetIntegerArray is called, the main program does not know the effective size. GetIntegerArray
must determine the effective size itself by counting the values as the user enters them,
until the user enters the sentinel .At that point, GetIntegerArray must tell the main
program how many values the user entered and must therefore be a function that returns
an integer.

Even though GetIntegerArray does not need to take the effective size as an argument, it
does need to know the allocated size. If the user types in more data than the array can
hold, it is important for GetIntegerArray to report an error. In addition, GetIntegerArray is more
general if it also takes the sentinel value as a parameter, which makes it possible to use
the same function to read lists of input data that use different sentinel values. Thus, the
prototype for GetIntegerArray should look like this:

int GetIntegerArray (int array[], int max, int sentinel);
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Before you try to implement any of these functions, however, it is important to
resolve the remaining issue concerning array parameters. When a function is called with
a simple variable, the function receives a copy of the calling argument. Because it works
only with a copy and not with the original value, a function cannot change the value of
the calling arguments. When a function is called with an array argument, however, the
relationship between the argument and the corresponding parameter changes.

To understand how arrays are passed from one function to another, you need to
consider the underlying representation of those arrays in memory. Assuming that
MaxElemen ts is defined to be 250, the declaration

int list[MaxElements];

asks the compiler to reserve space for an array of 250 integers in the frame for main.
Although it is not possible to know exactly what addresses will be used inside the
machine, let’s suppose that the memory assigned to the array list begins at address 1000
and continues for the next 25 integer-sized words. If integers take up two bytes of
memory on the computer you’re using, the values in the array list would be stored in
bytes 1000 to 1499, inclusive:

When you write a function that accepts an array argument, you usually want the
function to work directly with the values in the memory locations corresponding to that
array. C does precisely that. Whenever any array is passed to a function, only the base
address of the array is recorded in the local frame. If you select an element of the local
array declared within the function, the operation of adding the offset to the base address
ends up generating an address within the calling array. The ultimate effect is that the
formal array parameter declared in a function header ends up being a synonym for the
argument array in the caller and not a copy of it.

To understand the details of the array operation, it helps to think about what
happens when the main program calls ReverseIntegerArray . If the array contains the five

1000 …… list[0]
1002 …… list[1]
1004 …… list[2]
1006 …… list[3]
1008 …… list[4]
1010 …… list[5]
1012 …… list[6]
1014 …… list[7]

1494 …… list[247]
1496 …… list[248]
1498 …… list[249]



values 1, 2, 3, 4, and 5, the initial configuration of the frame for ReverseIntegerArray looks
like this:

If ReverseIntegerArray does its job, it will reverse the order of the first n elements in the
array whose base address is 1000, resulting in the following state:

When RreverseIntegerArray returns, its frame disappears, but the changes made to the
contents of the five memory words starting at 1000 are permanent, since these addresses
are not part of that frame.

Although the way C treats array parameters makes it easier for functions to
manipulate array data, it is critical to remember that C treats simple variables in an
entirely different way. If array parameters were treated like all other parameters, calling

ReverseIntegerArray (list, n);

would create an entirely new array in the frame for ReverseIntegerArray and would copy all
250 elements of the array list into the corresponding local variable array . That approach
would make it impossible for the ReverseIntegerArray function to affect the values in list,
thereby rendering the function useless. Even for functions like PrintInteerArray that do not

1000 1 array[0]
1002 2 array[1]
1004 3 array[2]
1006 4 array[3]
1008 5 array[4]
1010 …… array[5]
1012 …… array[6]
1014 …… array[7]

1494 …… array[247]
1496 …… array[248]
1498 …… array[249]

1000 5 array[0]
1002 4 array[1]
1004 3 array[2]
1006 2 array[3]
1008 1 array[4]
1010 …… array[5]
1012 …… array[6]
1014 …… array[7]

1494 …… array[247]
1496 …… array[248]
1498 …… array[249]

main

ReverseIntegerArray

array
at address

1000

n

5

main

ReverseIntegerArray

array
at address

1000

n

5



need to change the values of their array parameters, the way C treats array parameters
increases the efficiency of the program because it eliminates the need to copy the entire
array, which can take a considerable amount of execution time if the array is large1.

Because in C the behavior of array parameters is different from that of other
parameters, it is worth thinking of the difference in terms of the following rule:

ImplementingImplementingImplementing

Implementing

PrintIntegerArray andandand

and

GetIntegerArray

To complete the reverse.c program, you need to implement each of the functions
called by the main program. Although you can choose to write such functions in any
order, it often makes sense to start with the easiest one, which in this case is certainly
PrintIntegerArray . This function has the task of going through and displaying each of the
elements in the array on a separate line. To go through the elements, all you need is a for

loop that begins at 0 and continues until it has processed all the active elements. The
upper bound of the for loop is the effective size n. The implementation of PrintIntegerArray is
therefore

static void PrintIntegerArray (int array[], int n)
{

int i;

for ( = 0; i < n; i++) {
printf (“%d\n” , array[i]);

}
}

The implementation of GetIntegerArray is slightly more complicated, mostly because you
need to check to make sure the user does not enter more data than the array can hold.
Because C provides no protection against writing past the end of the array, such
checking is critically important. If you fail to check and the user enters too much data,
the data can easily overwrite other important information and cause your program to fail
in mysterious ways. The following implementation of GetIntegerArray incorporates the test
for too much data:

ARRAYARRAYARRAY

ARRAY

PARAMETERPARAMETERPARAMETER

PARAMETER

RULERULERULE

RULE

If you call a function that takes an array as a formal
parameter, the array storage used for the parameter is shared
with that of the actual argument. Changing the value of an
element of the parameter array therefore changes the value of
the corresponding element in the argument array.

1 When a function accepts an aray parameter but does not change the elements of the array,
ANSI C allows you to document that fact by preceding the parameter declaration with the keyword
const, as in

void PrintIntegerArray (const int array[], int n);
The keyword const lets the compiler know,along with any clients, that the function will not change
the value of any array elements. Unfortunately,C compilers implement const with varying degrees of
success. On some systems, the keyword is ignored; on others, programs written using it cannot always
be compiled successfully. Because such problems occur even with some widely used compilers, this
text does not use the const keyword.



static int GetIntegerArray (int array[], int max, int sentinel)
{

int n, value;

n = 0;
while (TRUE) {

printf (“ ? “);
value = GetInteger ();
if (value == sentinel) break;
if (n == max) Error ( “Too many input items for array”);
array[n] = value;
n++;

}
return (n);

}

As soon as you have implemented GetIntegerArray and PrintIntegerArray , it probably makes
sense to test them before going on to write ReverseIntegerArray. For example, you could
take these two functions and compile them with the following main program:

main()
{

int list [MaxElements], n;

n =GetintegerArray (list, MaxElemen ts, Sentinel);
printIntegerArray (list, n);

}

From the user’s point of view, this program does not do anything particularly interesting:
it simply reads in a list of integers and displays that list in exactly the same order. From

your perspective as a programmer, however, this program accomplishes a great deal. If
it works, you know that GetIntegerArray and PrintIntegerArray are working, which means that
you have less to worry about when you write ReverseIntegerArray . Testing a program in
stages is an important programming strategy that you should try to take advantage of
wherever possible.

ImplementingImplementingImplementing
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ReverseIntegerArray

As soon as you have tested your implementations of the functions GetIntegerArray and
PrintIntegerArray , you are ready to turn to ReverseIntegerArray itself. The basic algorithm is
simple: to reverse an array, you need to exchange the first element with the last one, the
second element with the next-to-last one, and so on until all the elements have been
exchanged. Because arrays are numbered beginning at 0, the last element in an array of n

items is at index n – 1 , the next-to-last element is at index n – 2 , and so forth. In fact, given
any integer index i, the array element that occurs i elements from the end is always at
index position

n – i – 1

Thus, in order to reverse the elements of array, all you need to do is swap the values in
array[i] and array[n – i – 1] for each index value i from the beginning of the array up to the
center, which falls at index position n /2. As soon as you reach the center, the elements in
the second half of the array will already have their correct values because each cycle of



the for loop correctly repositions two array elements—one in each half. In pseduocode,
the implementation of ReverseIntegerArry is therefore

static void ReverseIntegerArray (int array[], int n)
{

int i;

for (i = 0; i < n / 2; i++) {
Swap the values in array[i] and array[ n – i – 1]

}
}

The operation of swapping two values in an array is useful even beyond the bounds of
this example. For this reason, it makes sense to define that operation as a separate
function and to replace the remaining pseudocode in ReverseIntegerArry with a single
function call.

Although it is tempting to try, the function call that exchanges the two elements
cannot be written as

Swap (array[i], array[n – i – 1]); This design can’t work.

In this call, the arguments to Swap are individual array elements. Array elements act like
simple variables and are therefore copied to the corresponding formal parameters. The
Swap function could easily interchange the local copies of these values but could not
make permanent assignments to the calling arguments.

To avoid this problem, you can simply pas the entire array to the function that
performs the swap operation, along with the two indices that indicate the positions that
should be exchanged. For example, the call

SwapIntegerElements (array, i, n – i –1);

exchanges the elements at index positions i and n – i – 1 of array, which is precisely what
you need to replace the pseudocode in ReverseInteerArray .

ImplementingImplementingImplementing
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SwapIntegerElements

Implementing SwapIntegerElements is a little more complicated than it first appears.
You cannot simply assign one element to another because the original value of the
destination would then be lost. The easiest way to handle the problem is to use a local
variable to hold one of the values temporarily. If you hold onto the value of one of the
elements, you are then free to assign the other value directly, after which you can copy
the first value from the temporary variable.

Suppose you want to exchange the values in array at positions 0 and 4. The strategy
requires three separate steps.

1. Store the value in array[0] in the temporary variable, as illustrated in the
following diagram:

array



2. Copy the value from array[4] into array[0], leaving the following configuration:

Because the old value of array[0] has previously been stored in tmp , no
information is lost.

3. Assign the value in tmp to array[4] , as shown in this diagram:

This three-step strategy is used as the basis for following implementation of
SwapIntegerElements:

static void SwapIntegerElements (int array[], int p1, int p2)
{

int tmp;

tmp = array[p1];
array[p1] = array[p2];
array [p2] = tmp;

}

This function fills in the last missing piece of the reverse.c program, which appears in its
complete form in Figure 11-13.
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reverse.c

/*
* File: reverse.c
* ------------------
* This program reads in an array of integers, reverses the
* elemen ts of the array,and then displays the elemen ts in
* their reversed order.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

/*
* Constants
* -------------
* MaxElemen ts –– Maximum number of elemen ts
* Sentinel –– Value used to termina te input
*/

#define MaxElemen ts 250
#define Sentinel 0

/* Private function prototypes */

static int GetInteerArray (int array[], int max, int sentinel);
static void PrintIntegrArray (int array[], int n);
static void ReverseIntegerArray (int array[], int n)
static void SwapIntegerElements (int array[], int p1, int p2);
static void GiveInstructions (void);

/* Main program */

main()
{

int listMaxElemen ts], n;

GiveInstructions ();
n = GetIntegerArray (list, MaxElemen ts, Sentinel);
ReverseIntegerArray (list, n);
PrintInteerArray (list, n);

}

/*
* Function: GetIntegerArray
* Usage: n = GetIntegerArray (array, max, sentinel);
* ------------------------------------------------------------------
* This function reads elemen ts into an integer array by
* reading values, one per line, from the keyboard. The end
* of the input data is indicated by the parameter sentinel.
* The caller is responsible for declaring the array and
* passing it as a parameter, along with its allocated
* size. The value returned is the number of elemen ts
* actually entered and therefore gives the effective size
* of the array, which is typically less than the allocated
* size given by max. If the user types in more than max
* elemen ts, GetIntegerArray gener ates an error.
*/

static int GetintegerArray (int array[], int max, int sentinel)
{

int n, value;



n = 0;
while (TRUE) {

printf (“ ? “);
value = GetInteger ();
if (value == sentinel) break;
if (n == max) Error ( “Too many input items for array”);
array[n] = value;
n++

}
return (n);

}

/*
*Function: PrintIntegerArray
* Usage: PrintIntegerArray (array, n);
* ----------------------------------------------
* This function displays the firs t n values in array,
* one per line, on the console.
*/

static void PrintIntegerArray (int array[], int n)
{

int i;

for (i = 0; i < n; i++) {
printf (“%d\n” , array[i]);

}
}

/*
* Function: ReverseIntegerArray
* Usage: ReverseIntegerArray (array, n);
* --------------------------------------------------
* This function reverses the elemen ts of array, which has n as
* its effective size. The procedure operates by going through
* the firs t half of the array and swapping each elemen t with
* this counterpar t at the end of the array.
*/

static void ReverseIntegerArray (int array[], int n)
{

int i;

for (i = 0; i < n / 2; i++) {
SwapIntegerElements (array, i, n – i – 1);

}
}

/*
* Funciton: SwapIntegerElements
* Usage: SwapIntegerElements (array, p1, p2);
* -----------------------------------------------------------
* This function swaps the elemen ts in array at index
* positions p1 and p2.
*/

static void SwapIntegerElements (int array[], int p1, int p2)
{

int tmp;

tmp = array[p1];
array[p1] = array[p2];
array[p2] = tmp;

}



/*
* Function: GiveInstructions
* Usage: GiveInstructions ();
* -----------------------------------
* This function gives instructions for the array reversal program.
*/

static void GiveInstrucitons (void)
{

printf (“Enter numbers, one per line, ending with the\n”);
printf (“sentinel value %d. The program will then\n ”, Sentinel);
printf (“display those values in reverse order.\n”);

}
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The data structure of a program is typically designed to reflect the organization of
data in the real-world domain of the application. If you are writing a program to solve a
problem that involves a list of values, you should probably use an array to represent that
list in the program. For example, in the gymjudge.c program shown in Figure 11-1, the
problem involves a list of scores—one for each of five judges. Because the individual
scores form a list in the conceptual domain of the application, it is not surprising that an
array is used to represent the data in the prgoram. The array elements have a direct
correspondence to the individual data items in the list. Thus, scores[0] corresponds to the
score for judge #0, scores[1] to the score for judge #1, and so on.

In general, whenever an application involves data that can be represented in the
form of a list like

a0, a1, a2, a3, a4, ..., an-1

an array is the natural choice for the underlying representation. It is also quite common
for programmers to refer to the index of an array element as a subscriptsubscriptsubscript

subscript

, reflecting the
fact that arrays are used to hold data that would typically be written with subscripts in
mathematics.

There are, however, important uses of arrays in which the relationship between the
data in the application domain and the data in the program takes a different form.
Instead of storing the data values in successive elements of an array, for some
applications it makes more sense to use the data to generate array indices. Those indices
are then used to select elements in an array that records some statistical property of the
data as a whole.

Understanding how this approach works and appreciating how it differs from more

This program ocunts letter frequencies.
Enter a blank line to signal end of input.
PeterPeterPeter

Peter

piperpiperpiper

piper

pickedpickedpicked

picked

aaa

a

peckpeckpeck

peck





ofofof

of

pickledpickledpickled

pickled

peppers.peppers.peppers.

peppers.









A 1
C 3
D 2
E 8
F 1
I 3
K 3
L 1
O 1
P 9
R 3
S 1
T 1



traditional uses of arrays requires looking at a concrete example. Suppose you want to
write a program that reads lines of text form the user and keeps track of how often each
of the 26 letters appears. When the user types a blank line to signal the end of the input,
the program should display a table indicating how many times each letter appears in the
input data. The operation of the program is illustrated by the following sample run:

In order to generate the letter-frequency table, the program has to search each line of
text character by character. Every time a letter appears, the program must update a
running count that keeps track of how often that letter has appeared so far in the input.
The interesting part of the problem lies in designing the data structure necessary to
maintain a count for each of the 26 letters.

It is possible to solve this problem without arrays by defining 26 separate
variables —nA , nV, nC, and so forth up to nZ—and then using a switch statement to check
all 26 cases:

switch (toupper (ch)) {
case ‘A’: nA++; break;
case ‘B’: nB++; break;
case ‘C’: nC++; break;
…
case ‘Z’: nZ++; break;

}

This process results in a long, repetitive program. A better approach is to combine the 26
individual variables into an array and then use the character code to select the
appropriate element within the array. Each element contains an integer representing the
current count of the letter that corresponds to that index in the array. If you call the array
letterCounts , you can declare it by writing

int letterCounts[Nletters];

where NLetters is defined to be the constant 26. This declaration allocates space for an
integer array with 26 elements, as shown in this diagram:

Each time a letter character appears in the input, you need to increment the
corresponding element in letterCounts . Finding the element to increment is simply a matter
of converting the character into an integer in the range 0 to 25 by using character
arithmetic. The conversion process is accomplished by the function LetterIndex , which has
the following implementation:

int LetterIndex (char ch)
{

if (isalpha (ch) {
return (toupper (ch) – ‘A’ );

} else {
return (-1);

}
}

letterCounts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25



The LetterIndex function returns a value between 0 and 25 if ch is a letter in either upper or
lower case. If ch is not a letter, LetterIndex returns –1. Thus, to record each character, all
you need to do is

 Convert the character to an index by calling LetterIndex

 If the index value is not –1, increment the letterCounts array element a that index
position

You can easily translate these steps into C, as shown in the following implementation of
the function RecordLetter:

void RecordLetter (char ch, int letterCounts[])
{

int index:

index = LetterIndex (ch);
if (index != -1) letterCounts[index]++;

}

It is essential for RecordLetter to check that the value returned by LetterIndex is not –1. If you
fail to include this check, the program will increment the integer in location letterCounts[-1].
Even though this element does not in fact exist, most compilers will generate code that

examines the integer word immediately preceding the start of the array, as indicated by
the colored box in the following diagram:

Because the location in memory that immediately precedes the letterCounts array might
hold some other data the program needs, changing that location could easily lead to
erroneous results and might cause the program to crash.

Before you can count the individual characters, you must ensure that each element
of the array is initialized to 0 at the beginning of the program. This phase of the program
operation is accomplished by the function ClearIntegerArry , which is likely to prove useful
in other applications as well. The code for ClearIntegerArray is

static void ClearIntegerArray (int array[], int n)
{

int i;

for (i = 0; i , n; i++) {
array[i] = 0;

}
}

The function DisplayLetterCoun ts generates the frequency table at the end of the program
and has the following implementation:

void DisplayLetterCoun ts (const int letterCounts[])
{

char ch;

letterCounts
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int num;

for (ch = ‘A’; ch <= ‘Z’; ch++) {
num = letterCounts[LetterIndex (ch)];
if (num != 0) printf (“%c %4d\n”, ch, num);

}
}

It’s important to note that the for loop counts from ‘A’ to ‘Z’ rather than from 0 to 25.
Because we use indices that correspond to out conception of the problem, the resulting
for loop becomes much easier to understand. You should also note that it is unnecessary
in this case to check for a –1 result from LetterIndex because the structure of
DisplayLetterCoun ts ensures that the out-of-range condition cannot occur.

The rest of the program, shown in Figure 11-4, consists of the code necessary to
scan the input character by character.
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countlet.c

/*
* File: countlet.c
* -------------------
* This program counts the occurrences of indiv idual letters
* that appear in text read in from the user. This program
* might be useful as a tool in solv ing cryptograms.
*/

#include <stdio.h>
#include <ctype.h>
#include “simpio.h”
#include “strlib.h ”
#include “genlib.h ”

/*
* Constants
* -----  --------
* MaxLines – Maximum nubmer of inipu t lines
* NLetters – Number of letters
*/

#define MaxLines 100
#define NLetters 26

/* Private fucntion declarations */

static void CountLetters (int letterCounts[]);
static void CountLettersInS tring (string str, int letterCounts[]);
static void RecordLetter (char ch, int letterCounts[]);
static void DisplayLetterCoun ts (const int letterCounts[]);
static int LetterIndex (char ch);
static void ClearIntegerArray (int array[], int n);

/* Main program /*

main()
{

int letterCounts[Nletters];

printf (“This program counts letter frequencies.\n”);
printf (“Enter a blank line to signal end of input.\n ”);
ClearIntegerArray (letterCounts, NLetters);
CountLetters (letterCounts);
DisplayLetterCoun ts (letterCounts);



}

/*
* Function: CountLetters
* Usage: CountLetters (letterCounts);
* -----------------------------------------------
* This function upda tes the values in the letterCounts array
* by scanning through a series of strings read in from the
* user. A blank line is used to signal the end of the input
* text.
*/

static void CountLetters (int letterCounts[])
{

string line;

while (TRUE) {
line = GetLine ();
if (StringLeng th (line) == 0) break;
CountLettersInS tring (line, letterCounts);

}
}

/*
* Function: CountLettersInS tring
* Usage: CountLettersInS tring (str, letterCounts);
* ---------------------------------------------------------------
* This function upda tes the values in the letterCounts array for
* each character in the string str.
*/

static void CountLettersInS tring (string str, int letterCounts[])
{

int i;

for (i = 0; i < StringLength (str,); i++) {
RecordLetter (Ithchar (str, i), letterCounts);

}
}

/*
* Function: RecordLetter
* Usage: RecordLetter (ch, letterCounts);
* ----------------------------------------------------
* This function records the fact that the character ch has
* been seen by incremen ting the appropriate elemen t in the
* letterCounts array. Non-letters are ignored.
*/

void RecordLetter (char ch, int letterCounts[])
{

int index;

index = LetterIndex (ch);
if (index != 1) letterCounts[index]++;

}

/*
* Function: DisplayLetterCoun ts
* Usage: DisplayLetterCoun ts (letterCounts);
* ---------------------------------------------------------
* This function displays the letter frequency table, leav ing
* out any letters that did not occur.
*/



void DisplayLetterCoun ts (coust int letterCounts[])
{

char ch;
int num;

for (ch = ‘A’; ch <= ‘Z’; ch++) {
num = letterCounts[LetterIndex (ch)];
if (num != 0) printf (“%c %4d\n”, ch, num);

}
}

/*
* Function: LetterIndex
* Usage: index = LetterIndex (ch);
* -------------------------------------------
* This function converts a character into the appropriate index
* for use with the letterCounts array. In this implementation,
* LetterIndex converts characters in either case to an integer
* in the range 0 to 25. If ch is not a valid letter, LetterIndex
* returns –1. Clients should check for a –1 return value unless
* they are able to guarantee that the argumen t is a letter.
*/

int LetterIndex (char ch)
{

if (isalpha (ch)) {
return (toupper (ch) – ‘A’ );

} else {
return (-1);

}
}

/*
* Function: ClearIntegerArray
*Usage: ClearIntegerArray (array, n);
* -----------------------------------------------
* This function sets the firs t n elemen ts in the array to 0.
*/

static void ClearIntegerArray (int array[], int n)
{

int i;

for (i = 0; i <; i++) {
array[i] = 0;

}
}
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Array variables can be declared to be either local or global like any other variable.
To avoid the pitfalls associated with using global variables, arrays should be declared as
local unless there is a compelling reason to the contrary. The reasons for choosing to use
global declaration are outlined in the discussion of global variables in Chapter 10.
Moreover, global arrays used in a program double should usually be declared as static
variables to avoid having them exported to other modules.

If an array is declared to be a static global variable, its individual elements can be
assigned initial values before the program begins to run. This process is an example of
static initialization, which was introduced in the section on “Initializing global



variables ” in Chapter 10. In the case of an array variable, the equal sign specifying the
initial value is followed by a list of the initial values for each element enclosed in curly
braces. For example, the declaration

static int digits[10]

Introduces a global array called digits in which each of the 10 elements is initialized to its
own index number.
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When initializers are provided for an array, it is legal to omit the array size from the
declaration. Thus, you could also write the declaration for the array digits as

static int digits[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

When the compiler encounters a declaration of this form, it counts the number of
initializers and reserves exactly that many elements for the array.

In the digits example, there is little advantage in leaving out the array bound. You
know that there are 10 digits and that new digits are not going to be added to this list. For
arrays whose initial values may need to change over the life cycle of the program,
having the compiler compute the array size from the initializers is useful for program
maintenance because it frees the programmer from having to maintain the element count
as the program evolves.

For example, imagine you’re writing a program that requires an array containing
the names of all U.S. cities with populations of over 1,000,000. Taking data from the
1990 census, you could declare that array as follows:

static string bigCities[] = {
“New York”,
“Los Angels”,
“Chicago”,
“Houston ”,
“Philadelphia ”,
“San Diego ”,
“Detroit”,
“Dallas ”,

};

When the figures are in from the 2000 census, it is likely that Phoenix and San Antonio
will have joined this list. If they do, you could then simply add their names to the
initializer list. The compiler will then expand the array size to accommodate the new
values.

Note that the last initializer for the bigCities array is followed by a comma. This
comma is optional, but it is good programming practice to include it. Doing so allows
you to add new cities without having to change the existing entries in the initializer list.
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If you write a program that uses the bigCities array, you will probably need to know
how many cities the list contains. The compiler has this number because it counted the
initializers. The question is how to make that information available to the program.

In C, there is a standard idiom for determining the number of elements in an array
whose size is established by static initialization. Given any array a , the number of
elements in a can be computed using the expression

sizeof a / sizeof a[0]

In English, this expression takes the size of the entire array and divides it by the size of
the initial element in the array. Because all elements of an array are the same size, the
result is the number of elements in the array, regardless of the element type. Thus you
could initialize a variable nBigCities to hold the number of cities in the bigCities array by
writing

static int nBigCities = sizeof bigCities / sizeof bigCities[0];
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According to the definition given in Chapter 9, a scalar type can be used in any
context in which an integer can appear. It is therefore possible to use values of any scalar
type as array indices. This fact increases the power of scalar types and often simplif ies
their use.

As an example, initialized arrays make it very easy to convert values of an
enumeration type into their corresponding names—and operation that is not directly
supported by C. For instance, if you want to display Boolean values using the names
FALSE and TRUE, you can do so by declaring the array booleanNames as

static string booleanNames = { “FALSE”, TURE”};

and then using a printf statement such as

printf (“flag = %s\n”, booleanNames[ flag]);

Because the type bool is defined in genlib.h using

typedef enum {FALSE, TRUE} bool;

the constant FALSE has the internal value 0 and TRUE has the internal value 1. Using these
values as indices into the booleanNames array generates the name string corresponding to
the appropriate Boolean value. The same strategy works with any consecutive
enumeration type.
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In C, the elements of an array can be of any type. In particular, the elements of an
array can themselves be arrays. Arrays of arrays are called multidimensionalmultidimensionalmultidimensional

multidimensional

arraysarraysarrays

arrays

.
The most common form of multidimensional array is the two-dimensional array, which
is most often used to represent data in which the individual entries form a rectangular



structure marked off into rows and columns. This type of two-dimensional structure is
called a matrixmatrixmatrix

matrix

. Arrays of three or more dimensions are also legal in C but occur much
less frequently.

As an example of two-dimensional array, suppose you wanted to represent a game
of tic-tac-toe as part of a program. As you probably know, tic-tac-toe is played on a
board consisting of three rows and three columns, as follows:

Players take turns placing the letters X and O in the empty squares, trying to line up
three identical symbols horizontally, vertically, or diagonally.

To represent the tic-tac-toe board, the most sensible strategy is to use a two-
dimensional array with three rows and three columns. Although you could also define an
enumeration type to represent the three possible contents of each square—empty, X, and
O—it is probably simpler in this case to use char as the element type and to represent the
three legal states for each square using the characters ‘ ‘, ‘X’, and ‘O’. The declaration for
the tic-tac-toe board would then be written as

char board[3][3];

Given this declaration, you could then refer to the characters representing the individual
squares on the board by supplying two separate indices, one specifying the row number
and a another specifying the column number. In this representation, each number varies
over the range 0 to 22, and the individual positions in the board have the following
names:

Internally, c represents the variable board as an array of three elements, each of
which is an array of three characters. The memory allocated to board consists of nine
bytes arranged in the following form:

board[0][0] board[0][1] board[0][2]

board[1][0] board[1][1] board[1][2]

board[2][0] board[2][1] board[2][2]

board[0]
board[0][0]
board[0][1]
board[0][2]

board[1]
board[1][0]
board[1][1]
board[1][2]



In the two-dimensional diagram of the board array, the first index is assumed to indicate
the row number. This choice, however, is arbitrary because the two-dimensional
geometry of the matrix is entirely conceptual; in memory, these values form a one-
dimensional list. If you wanted the first index to indicate the column and the second to
indicate the row, the only functions you would need to change would be those that
depend on the conceptual geometry, such as a function that displays the current sate of
the board. In terms of the internal arrangement, however, it is always true that the first
index value varies least rapidly as the array elements are positioned in memory. Thus all
the elements of board[0] appear in memory before any elements of board[1].
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Multidimensional arrays are passed between functions just as single-dimensional
arrays are. The parameter declaration in the function header looks like the original
declaration of the variable and includes the index information. For example, the
following function displays the current state of the board array:

static void DisplayBoard (char board[3][3])
{

int row, column;

for (row = 0; row < 3; row++) {
if (row != 0) printf (“---+---+---\n”);
for (column = 0; column < 3; column++) {

if (column != 0) printf (“ | “):
printf (“ %c“, board[row][column]);

}
}

}

Much of the code in DisplayBoard is used to format the output so that the board appears in
the following easy-to-read form:

When a function accepts a multidimensional array as a parameter, C requires that
you specify the size of each index in the array except for the first, which is optional.
Thus, the function header for DisplayBoard could have been written as

static void DisplayBoard (char board[][3])

The program would then have worked in exactly the same way because the base address

board[2]
board[2][0]
board[2][1]
board[2][2]

X O X

X O

X O



of the array and the size of the second index are sufficient for C to determine the address
of every element in board, no matter how many rows it contains. However, leaving out
the first index makes the declaration unsymmetrical, and it is therefore more common to
include the array bounds for each index in the declaration of a multidimensional array
parameter.
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You can use static initialization with multidimensional arrays just like single-
dimensional arrays. To emphasize the overall structure, the values used to initialize each
internal array are usually enclosed in additional set of curly braces. For example, the
declaration

static double identityMatrix [3][3] = {
{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}

}

declares a 3×3 matrix of floating-point numbers and initializes it to contain the
following values:

This particular matrix comes up frequently in mathematical applications and is
called the identityidentityidentity

identity

matrixmatrixmatrix

matrix

.
As in the case of parameters, the declaration of a statically initialized

multidimensional array must specify all index bounds except possibly the first, which
can be determined by counting the initializers. As was true with parameters, however, it
is usually best to specify all of the index bounds explicitly when you declare a
multidimensional array.

Additional examples of how static initialization can be used with multidimensional
arrays appear in Chapter 12.
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SUMMARY

In this chapter, you have learned about two distinct but related concepts: the
internal representation of data in memory and the particular data structure called the
array. The fundamental points to remember about memory and data representation are:

 Each variable is stored somewhere in memory and therefore has an address.
 Once allocated, the address of a variable never changes, even though its

contents may change.
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 Depending on the type of data it holds, a variable will require different
amounts of memory. Moreover, the amount of memory required to hold a
value of a particular type varies from machine to machine. Within a program
compiled for a specific machine, you can use the sizeof operator to determine
the number of bytes required to hold any data value.

In terms of arrays, the important points discussed in this chapter include:

 Arrays are used to represent collections of data that are both ordered and
homogeneous. Each component of the array is called an element and is
identif ied by a numeric index. In C, all arrays begin with index number 0.

 When you declare an array variable, you have to specify the array size, which
must be constant. For applications that need to work with varying amounts of
data, the typical approach is to allocate enough space in the arrays to hold the
maximum number of values and to use only a part of that storage. The
maximum number of elements is called the allocated size of the array; the
number of elements actually in use is called the effective size.

 The process of referring to an individual element in an array is called selection
and is indicated by writing an expression in square brackets after the name of
the array.

 In memory, the elements of an array are stored in consecutive memory
locations. The first address in the array is called is its base address, and the
adjustment required to select a particular element is called the offset of that
element.

 Whenever you pass an array as an argument to a function, the corresponding
formal parameter is initialized to hold the base address of the calling array.
Within the function, all references to elements of the formal parameter array
refer to the corresponding elements of the calling array. An array parameter is
therefore shared with its calling argument, even though any other parameter
type is merely a copy.

 When you use an array as a formal parameter, you can omit the array size
from the declaration. In such cases, it is usually necessary to pass the effective
size of the array as a separate parameter.

 The index of an array can be of any scalar type, including integers, characters,
or enumerations.

 You can apply static initialization to global arrays by including a list of
initializers enclosed in curly braces, one for each element of the array.

 Arrays can be declared with more than one index, in which case they are
called multidimensional arrays . In C, multidimensional arrays are treated as
arrays of arrays. The first index value selects an element of the outermost
array, the second index value selects an element from that array, and so on.
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1. What are the two characteristic properties of an array?
2. Define the following terms: element , index, element type, array size, selection.
3. Write array declarations for the following array variable:

a. An array realArray consisting of 100 floating-point values
b. An array inUse consisting of 16 Boolean values
c. An array lines that can hold up to 100 strings

Remember that the upper bounds for these arrays should be defined as
constants to make them easier to change.

4. Write the variable declaration and for loop necessary to create and initialize
the following integer array:

5. What are the two approaches outlined in this chapter for representing an array
in which the natural index values begin at 1 instead of at 0? What are the
tradeoffs between these two approaches?

6. Define the following terms: bit, byte, word, address.
7. How can you determine the number of bytes required to represent a data value

in C?
8. How many bytes are required to hold an array of 20 characters?
9. Write a C expression that computes the number of bytes needed to represent an

array containing NElements values of type double .
10. What happens on most machines if you try to select an array element outside

the allocated bounds of that array?
11. What is the difference between allocated size and effective size?
12. In you own words, state the Array Parameter Rule. From the programmer’s

point of view, what is the central difference between the operation of passing
an array as a parameter and that of passing a simple variable?

13. Given your understanding of how arrays are allocated in memory, explain
briefly why the Array Parameter Rule applies.

14. True of false: When you declare an array parameter in a function, the array
size is optional.

15. What is the role of the variable tmp in the SwapIntegerElements function?
16. In Review Question 4, you initialized the contents of the array

squares

0 1 4 9 16 25 36 49 64 81 100

0 1 2 3 4 5 6 7 8 9 10

squares

0 1 4 9 16 25 36 49 64 81 100

0 1 2 3 4 5 6 7 8 9 10



using dynamic initialization. Rewrite the declaration so that squares is a
statically initialized global array.

17. What is the idiom introduced in this chapter for determining the number of
elements in an array whose size is set by static initialization?

18. In the discussion of enumeration types in Chapter 9, the type directionT was
defined as follows:

typedef enum {North, East, South, West} directionT;

Given a variable dir of type directionT , show how you could use a statically
initialized array to display the name of that direction n the screen.

19. What is a multidimensional array?
20. Assuming that the base address for the array is 1000 and that values of type int

require two bytes of memory, draw a diagram that shows the address of each
element in the array declared as follows:

int rectangular[2][3];

21. What variable declaration would you use to record the state of a chessboard,
which consists of an 8×8 array of square, each of which may contain any one
of the following symbols:

K white king k black king
Q white queen q black queen
R white rook r black rook
B white bishop b black bishop
N white knight n black knight
P white pawn p black pawn
- empty square

How could you initialize this array statically so that it holds the standard
starting position for a chess game:

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. Write a program that uses the sizeof operator to display the number of bytes
required to store a value of each of the basic types. The results of this program
for the machine I used to generate this text appear in the following sample run:

r n b q k b n r
p p p p p p p p
- - - - - - - -
- - - - - - - -
- - - - - - - -
P P P P P P P P
R N B Q K B N R

Values of type char requir e 1 byte.
Values of type int requir e 2 bytes.
Values of type short requir e 2 bytes.
Values of type long requir e 4 bytes.
Values of type floa t requir e 4 bytes.
Values of type double requir e 12 bytes



because the size varies among different computer systems, the results you get
are likely be different from those shown.

2. Because individual judges may have some bias, it is common practice to throw
out the highest and lowest score before computing the average. Write a
program that reads in scores from a panel of seven judges and then computes
the average of the five scores that remain after discarding the highest and
lowest.

3. In statistics, a collection of data values is usually referred to as a distributiondistributiondistribution

distribution

.
A primary purpose of statistical analysis is to find ways to compress the
complete set of data into summary statistics that express properties of the
distribution as a whole. The most common statistical measure is the meanmeanmean

mean

,
which is simply the traditional average. For the distribution x1, x2, ..., xn, the
mean is usually represented by the symbol .x

Write a function Mean (array, n) that returns the mean of an array of type
double whose effective size is n . Test your function by incorporating it into the
gymjudge.c program in Figure 11-1.

4. Another common statistical measure is the standardstandardstandard

standard

deviationdeviationdeviation

deviation

, which
provides an indication of how much the individual values in the distribution
differ from the mean. To calculate the standard deviation whose elements are
x1, x2, ..., xn you need to perform the following steps:

a. Calculate the men of the distribution as in exercise 3.
b. Go through the individual data items in the distribution and calculate the

square of the difference between each data value and the mean. Add all
these values to a running total.

c. Take the total from step b and divide it by the number of data items1.
d. Calculate the square root of the resulting quantity, which represents the

standard deviation.

In mathematical form, the standard deviation (σ ) is given by the following
formula:

n

xx
n

i
i




 1

2)(


The Greek letter sigma ( Σ ) represents a summation of the quantity that
follows, which in this case is the square of the difference between the mean
and each individual data point.

Write a function Standar dDeviation (array, n) that takes an array of floating-
point values and the effective size of that array and returns the standard
deviation of the data distribution contained in the array.

1 The procedure given here is used by statisticians to compute the standard deviation of a
complete data distribution. If you want to calculate the standard deviation based instead on a sample
of the distribution you need to divide by n –1.



5. In the third century B.C., the Greek astronomer Eratosthenes developed an
algorithm for finding all the prime numbers up to some upper limit N. To apply
the algorithm, you start by writing down a list of the integers between 2 and N.
For example, if N were 20, you would begin by writing down the following list:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

You then begin by circling the first number in the list, indicating that you have
found a prime. You then go through the rest of the list and cross off every
multiple of the value you have just circled, since none of those multiples can
be prime. Thus, after executing the first step of the algorithm, you will have
circled the number 2 and crossed off every multiple of two, as follows:

2○ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Form here, you simply repeat the process by circling the first number in the list
that is neither crossed off nor circled, and then crossing off its multiples. In this
example, you would circle 3 as a prime and cross of all multiples of 3 in the
rest of the list, which would result in the following state:

2○ 3○ 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Eventually, every number in the list will either be circled of crossed out, an
shown in this diagram:

2○ 3○ 4 5○ 6 7○ 8 9○ 10 11○ 12 13○ 14 15○ 16 17○ 18 19○ 20

The circle numbers are the primes; the crossed-out numbers are composites.
This algorithm for generating a list of primes is called the sieve of
Eratosthenes.

Write a program that uses the sieve of Eratosthenes to generate a list of
the primes between 2 and 1000.

6. In May of 1833, Samuel F.B. Morse set the message “What hath God
Wrought!” by telegraph from Washington to Baltimore, heralding the
beginning of the age of electronic communication. To make it possible to
communicate information using only the presence of a single tone, Morse
designed a coding system in which letters and other symbols are represented as
coded sequences of short and long tones, traditionally called dots and dashes.
In Mores code, the 26 letters of the alphabet are represented by the following
codes:

A ·━ J • ━ ━ ━ S • • •
B ━ • • • K ━ • ━ T ━

C ━ • ━ • L • ━ • • • U • • ━

D ━ • • M ━ ━ V • • • ━

E • N ━ • W • ━ ━

F • • ━ • O ━ ━ ━ X ━ • • ━

G ━ ━ • P • ━ ━ • Y ━ • ━ ━

H • • • • Q ━ ━ • ━ Z ━ ━ • •



I • • R • ━ •

You can easily store these codes in a program by declaring an array with 26
elements and storing the sequence of characters corresponding to each letter in
the appropriate array entry.

Write a program that reads in a string from the user and translates each
letter in the string to its equivalent in Morse code, using periods to represent
dots and hyphens to represent dashes. Separate words in the output by
replacing each space in the input with a newline character, but ignore all other
punctuation characters. Your program should be able to generate the following
sample run:

7. A histogram is a graphical way of displaying data by dividing the data into
separate ranges and then indicating how many data values fall into each range.
For example, given the set of exam scores

100, 95, 47, 88, 86, 92, 75, 89, 81, 70, 55, 80

a traditional histogram would have the following form:

The asterisks in the histogram indicate one score in the 40s, one score in the
50s, five scores in the 80s, and so forth.

When you generate histograms using a computer, however, it is usually
much easier to display them sideways on the page, as in this sample run:

Write a program that reads in an array of integers using GetIntegerArray and then
displays a histogram of those numbers, divided into the ranges 0-9, 10-19, 20-

* *
*
*

*
*
*
*
*

*
* *

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100

This program translates a lie into Mores code.
Enter English text: WhatWhatWhat

What

hathhathhath

hath

GodGodGod

God

wroughtwroughtwrought

wrought





.-- .... .- -

.... .- - ....
--. --- -..
.-- .-. --- ..- --. .... -

0-9 |
10-19 |
20-29 |
30-39 |
40-49 | *
50-59 | *
60-69 |
70-79 | **
80-89 | *****
90-99 | **
100 | *



29, and so for the, up to the range containing only the value 100. Your program
should generate output that looks as much like the sample run as possible.

8. Rewrite you solution to exercise 7 by defining a separate hist.h interface that
provides clients with a more general facility for generating histograms of
integer data. The package should allow the client to specify the minimum and
maximum values as well as the size of each histogram range; you might
choose to provide other options as well.

9. When you are trying to represent the behavior of some quantity that varies over
time, one of the usual tools is the linelineline

line

graphgraphgraph

graph

, in which a set of data values are
plotted on an x-y grid with each pair of adjacent points connected by a straight-
line. For example, given the following set of 10 points:

(0.0, 0.67)
(0.4, 0.68)
(0.8, 0.71)
(1.2, 0.86)
(1.6, 0.86)
(2.0, 1.04)
(2.4, 1.30)
(2.8, 1.81)
(3.2, 1.46)
(3.6, 1.86)

the line graph that represents them looks like this:

Write a function DrawLineGraph that generates a line graph given an array of x-
coordinate values, a second array of the corresponding y-coordinate values,
and the number of data points.

10. The mechanism depicted in the following diagram—which has sometimes
been marketed by toy stores as a “probability board”—can be used to
demonstrate important properties of random processes.



The mechanism works as follows. You start by dropping a marble in the hole at
the top. The marble falls down and hits the uppermost peg, indicated by the
small circle in the diagram. The marble bounces off the peg and falls, with
equal probability, to the left or right. Whichever way it goes, it then hits a peg
on the second level and bounces again, one direction or the other. The process
continues until the marble passes all the pegs and drops into one of the
channels at the bottom. For example, the colored line in the following diagram
shows one possible path for the marble:

Write a program to simulate the operation of dropping 50 marbles into a
probability board with 10 channels along the bottom, as in the diagram. Your
program should display its results pictorially using the graphics library
described in Chapter 7. As each marble lands, the program should draw a
circle at the appropriate place on the screen.

The following screen image shown one possible sample run:

Note that the marbles tend to cluster in the center channels. The reason for this
behavior is that there are many more ways in which a marble can reach the
center columns than the ones on the ends. For example, to reach the leftmost
column, the marble must have bounced to the left nine times in a row. In
contrast, there are many paths from the top to the two center columns because
the order of the left and right bounces can be reordered without affecting where
the marble ends up. In general, the likelihood that a random process will end
up in a particular state depends on the number of ways of reaching that state.

11. Using the declaration of the tic-tac-toe board given in the section on
“Multidimensional arrays” earlier in this chapter, write a predicate function
IsWinningPosi tion (board, player) that returns TRUE if the specified player, which is
either the character ‘X’ or the character ‘O’ , has won the tic-tac-toe game. A
winning position is one in which three identical symbols are lined up

This program tests the IsWinningPosi tion function..
Enter the state of the board, row by row.

XOXXOXXOX

XOX





---

-

XOXOXO

XO





XXX

X

---

-

OOO

O





X has won



horizontally, vertically, or diagonally. Test your function by writing a main
program that reads in the current contents of the board array and then reports
whether either player has won the game, as illustrated by this following sample
run:

12. The initial state of a checkers game is shown in the following diagram:

The dark squares in the bottom three rows are occupied by red checkers (which
appear in white in the diagram); the dark squares in the top three rows contain
black checkers. The two center rows are unoccupied.

If you want to store the state of a checkerboard in a computer program,
you need a two-dimensional array indexed by rows and columns. The elements
of the array could by of various different types, but a reasonable approach—as
illustrated by the tic-tac-toe example—is to use characters. For example, you
could use the letter r to represent a red checker and the letter b to represent a
black checker. Empty squares could be represented as spaces or hyphens
depending on whether the color of the square was light or dark.

Implement a function InitChekcerBoard that initializes a checkerboard array
so that it corresponds to the starting position of a checkers game. Implement a
second function DisplayCheckerboard that displays the current state of a
checkerboard on the screen, as follows:

b b b b
b b b b

b b b b
- - - - -
- - - - -
r r r r

r r r r
r r r r
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To be able to implement and use the linear search and binary search algorithms
to find data in an array.

 To appreciate the differences in efficiency between these algorithms.
 To understand the implementation of a simple sorting algorithm called selection

sort.
 To recognize how the efficiency of the selection sort algorithm depends on the

number of data items.

III

I

n Chapter 11, you had the opportunity to learn about most of the fundamental array

operations and to see how arrays are used in a variety of applications. There are however,
two important array operations Chapter 11 omits so that they can be covered more
thoroughly in a chapter of their own. These operations are:

 SearchingSearchingSearching

Searching

, which is the process of finding a particular element in an array
 SortingSortingSorting

Sorting

, which is the process of rearranging the elements in an array so that they
are stored in some well-defined order

Because searching and sorting are closely related at arrays, this chapter is in a sense a
continuation of the array discussion. This chapter, however, has another central theme that
links it not just to Chapter 11 bur also to the discussion of algorithms in Chapter 6.
Because there are many different strategies for searching and sorting—with vastly
different levels of efficiency—these operations raise interesting algorithmic issues.

1-11-11-1

1-1

SearchingSearchingSearching

Searching

In earlier chapters, you have already encountered functions that perform searches,
although they have not appeared in the context of arrays. For example, the function
FindFirstVowel that appears as part of the pigla tin.c program (Figure 10-5) searches a string to
find the first vowel. The implementation

int FindFirstVowel (stirng word)
{

int i;



for (i = 0; i< StringLength (word); i++) {
if (IsVowel (IthChar (word, i))) return (i);

}
return (-1);

}

Adopts a simple and straightforward algorithmic approach to the searching problem.
Starting at the beginning of the string, the function looks at each character of the string in
turn. If that character is a vowel, FindFirstVowel returns the index of that character in the
original string. If it goes all the way through the strring without finding any vowels,
FindFirstVowel reutrns –1 to inform the cilient that no vowels appear.
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You can easily apply the same strategy to searching for a specific data item within an
array. For example, the function FindIntegerInA rray looks for the integer key in an array of
integers whose effective size is n:

int FindIntegerInA rray (int key, int array[], int n)
{

int i;

for (i = 0; i < n; i++) {
if (key ==array[i]) return (i);

}
return (-1);

}

Using a structure that resembles that of FindFirstVowel, the for loop in FindIntegerInA rray looks at
the first n elements of array in turn. If one of those elements matches the value of the
parameter key, the function returns the array index at which the match is found. If the for

loop goes all the way through the array without finding the desired value, FindIntegerInA rray
returns –1.

You can use FindIntegerInA rray to write a program findcoin.c that displays the name of a U.S.
coin, given its value, as shown in Figure 12-1.
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findcoin.c

/*
* File: findcoin.c
* -------------------
* This program uses a search operation to repor t the names of
* legal U.S. coins.
*/

#include <stdio.h>
#include <ctype.h>
#include “simpio.h”
#include “genlib.h ”

/*
* Global variables
* -----------------------
* coinNames - - Array containing the name of each coin
* coinValues - - Array containing the corresponding coin values



* nCoins - - Number of distinct coins
*/

static stirng coinNames[] = {
“penny ”,
“nickel” ,
“dime ”,
“quarter” ,
“half-dollar ” ,

};

static int coinVlaues[ ] = { 1, 5, 10, 25, 50};

static int nCoins = sizeof coinValues / sizeof coinValues[0];

/* Main program */

main()
{

int value, index;

printf (“This program looks up names of U.S. coins.\n”);
printf (“Enter coin value: “);
value = GetInteger();
index = FindIntegerInA rray (value, coinVlaues, nCoins);
if (index == -1) {

printf (“Ther e is no such coin.\n”);
} else {

printf (“Tha t’s called a %s.\n”, coinNames[index]);
}

}

/*
* Function: FindIntegerInA rray
* Usage: index = FindIntegerInA rray (key, array, n);
* ------------------------------------------------------------------
* This function returns the index of the firs t elemen t in the
* specified array of integers that matches the value key. If
* key does not appear in the firs t n elemen ts of the array,
* FindIntegerInA rray returns –1.
*/

static int FindIntegerInA rray (int key, int array[], int n)
{

int i;

for (i = 0; i < n; i++) {
if (key == array[i]) return (i);

}
return (-1);

}

The FindIntegerInA rray function returns the index of the coin value in the array coinValues .
If the coin is one of the five standard coins minted in the United States, the resulting index
is then used to select the corresponding element from the array coinNames , which gives the
name of that coin. The two array are related by the fact that the values in corresponding
index positions refer to the same coin, as illustrated by the following diagram:

coinValues coinNames
0 1 0 penny
1 5 1 nickel
2 10 2 dime



Arrays that use corresponding index positions to store related data values are called
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As a prelude to a discussion of different algorithms for searching, this section
introduces a more sophisticated searching application that will make it easier to describe
the issues that arise. Suppose that you wanted to represent the following mileage table1 in
a program:

The individual entries in the table itself form a two-dimensional array with 12 rows and 12
columns. Each individual entry in the matrix is an integer that indicates the number of
miles between the cities corresponding to that row and column. The following declaration
introduces a global variable called mileageTable and uses static initialization to fill it with the
data shown in the mileage chart:

#define NCities 12
static int mileageTable[NCities][NCities] = {

{ 0, 1108, 708, 1430, 732, 791, 2191, 663, 854, 748, 2483, 2625};
{1108, 0, 994, 1998 , 799, 1830 , 3017 , 1520 , 222, 315, 3128 , 3016 };
{708, 994, 0, 1021 , 279, 1091 , 2048, 1397 , 809, 785 , 2173 , 2052 };
{1430, 1998, 1021 , 0, 1283 , 1034 , 1031 , 2107, 1794 , 1739 , 1255 , 1341};
{732, 799, 279, 1283 , 0, 1276 , 2288 , 1385 , 649, 609 , 2399 , 2327 };
{791, 1830 , 1091 , 1034 , 1276 , 0, 1541, 1190 , 1610 , 1511 , 1911 , 2369};
{2191, 3017, 2048, 1031 , 2288 , 1541, 0, 2716, 2794 , 2703 , 387, 1134};
{663, 1520 , 1397 , 2107 , 1385 , 1190, 2716 , 0, 1334 , 1230 , 3093 , 3303};
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Atlanta 1108 708 1430 732 791 2191 663 854 748 2483 2625
Boston 1108 994 1998 799 1830 3017 1520 222 315 3128 3016
Chicago 708 994 1021 279 1091 2048 1397 809 785 2173 2052
Denver 1430 1998 1021 1283 1034 1031 2107 1794 1739 1255 1341
Detroit 732 799 279 1283 1276 2288 1385 649 609 2399 2327

Houston 791 1830 1091 1034 1276 1541 1190 1610 1511 1911 2369

Los Angeles 2191 3017 2048 1031 2288 1541 2716 2794 2703 387 1134
Miami 663 1520 1397 2107 1385 1190 2716 1334 1230 3093 3303

New York 854 222 809 1794 649 1610 2794 1334 101 2930 2841
Philadelphia 748 315 785 1739 609 1511 2703 1230 101 2902 2816

San Francisco 2483 3128 2173 1255 2399 1911 387 3093 2930 2902 810
Seattle 2625 3016 2052 1341 2327 2369 1134 3303 2841 2816 810

1 Data source: Rand McNally Road Atlas 1994, New York: Rand McNally.



{854, 222, 809, 1794 , 649 , 1610 , 2794 , 1334 , 0, 101 , 2930 , 2841};
{748, 315, 785, 1739 , 609 , 1511 , 2703 , 1230 , 101 , 0, 2902 , 2816 };
{2483, 3128, 2173 , 1255 , 2399 , 1911 , 387 , 3093 , 2930 , 2902 , 0, 810};
{2625, 3016, 2052 , 1341, 2327 , 2369 , 1134 , 3303 , 2841, 2816 , 810, 0},

};

Because the city names in this chart are the same for both the rows and columns, they can
be stored in a single array called cityTable , which you can declare and initialize as follows:

static string cityTabe[NCityes] = {
“Atlanta”,
“Boston ”,
“Chicago”,
“Denver”,
“Detroit”,
“Houston ”,
“Los Angeles” ,
“Miami” ,
“New York”,
“Philadelphia ”,
“San Francisco ”,
“Seattle ”,

};

Now that you have the data, the next question to consider is how to write a program that
reads in the names of cities and displays the distance between them, as illustrated by the
following sample run:

All your program has to do is execute the following steps:

1. Read in the names of the twocities as strings.
2. Find the index positions at which the city names occur in the cityTable array.
3. Use the index positions to select the result from mileageTable .

Assuming that you can implement a function FindStringInA rray that searches through an array
of strings, the rest of the program is straightforward:

main()
{

int city1, city2;

printf (“This program looks up intercity mileage.\n”);
city1 = GetCity (“Enter name of city #1: “);
city2 = GetCity (“Enter name of city #2: “);
printf (“Distance btween %s”, cityTable[city1]);
printf “ and %s:” cityTable[city2]);
printf” %dmiles.\n”, mileageTable[city1][city2];

}

static int GetCity (string promp t)
{

stirng cityName;

This program loks up intercity mileage.
Enter name of city #1: SanSanSan

San

FranciscoFranciscoFrancisco

Francisco





Enter name of city #2: BostonBostonBoston

Boston





Distance between San Franciso and Boston: 3128 miles.



int index;

while (TURE) {
printf (“%s:, promp t);
cityName = GetLine ();
index = FindStringInA rray (cityName, cityTable, Ncities);
if (index >= 0)break;
printf (“unknown city name - -try again.\n. ”);

}
return (index);

}

LinearLinearLinear

Linear

serchserchserch

serch

The only piece missing from the program is the code for FindStringInA rray . If you follow
the logic used to implement FindIntegerInA rray , you only need to change the argument types
and use StirngEqual to compare the string values within the loop. The resulting code, with its
comments, appears in Figure 12-2.
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FindStringInArray

/*
* Function: FindStringInA rry
* Usage: index = FindStringInA rray (key, array, n);
* ----------------------------------------------------------------
* This function returns the index of the firs t elemen t in the
* specified array of string that matches the value key. If
* key does not appear in the firs t n elemen ts of the array,
* FindStringInA rray returns –1.
*/

static int FindstringInA rray (string key, string array[], int n)
{

int i;

for (i = 0; i < n; i++) {
if (StringEqual (key, array[i])) return (i);

}
return (-1)

}

The algorithm used in FindStirngInA rray (and in the earlier FindIntegerInA rray function as
well) is called the linearlinearlinear

linear

searchsearchsearch

search

algorithmalgorithmalgorithm

algorithm

. Using this algorithm, the search starts at the
beginning of the array and goes straight down the line of elements until it finds a match or
reaches the end of the array.

To search an array of 12 city names, looking at every element takes very little time on
a modern computer system. But what if the array instead had thousands or even millions of
elements? At some point, if the array became large enough, you would begin to notice a
delay as the computer searched through every value. But is searching every value really
necessary? It’s worth stopping to think for a moment about this question.

Suppose that someone asked you to find the distance between San Francisco and
Boston in the mileage table. To find the entry for San Francisco would you start at the top
of the page and work your way down? Probably not. Because the list of cities is in
alphabetic order, you know that San Francisco must come somewhere near the end of the



list and that Boston is somewhere near the top. The odds are good that your eyes would
find these values very quickly without ever looking atmost of the names in the list.

BinaryBinaryBinary

Binary

searchsearchsearch

search

To take advantage of the fact that the cityTable array is already in alphabetic order, you
need to use a different algorithm. To illustrate the process as concretely as possible, let’s
suppose that you are looking for San Francisco in an array with the following values:

Instead of starting at the top of the array as in linear search, what happens if you start by
picking an element somewhere near the center? The index of the center element can be
computed by averaging the endpoints of the index range and is therefore

2
110 

When evaluated using integer arithmetic, this expression has the value 5.
The city name stored in cityArray[5] is Houston. Given that you’re looking for San

Francisco, what do you know at this point? You haven’t found San Francisco yet, so you
have to keep looking. On the other hand, you know that San Francisco must come after
Houston because the array is in alphabetic order. Thus, you can immediately eliminate all
the city names in index positions 0 through 5, which leaves you in the following position:

cityTable
0 Atlanta
1 Boston
2 Chicago
3 Denver
4 Detroit
5 Houston
6 Los Angeles
7 Miami
8 New York
9 Philadelphia
10 San Francisco
11 Seattle

cityTable
0 Atlanta
1 Boston
2 Chicago
3 Denver
4 Detroit
5 Houston
6 Los Angeles
7 Miami
8 New York
9 Philadelphia



In one step, you’ve managed to cross out half the possibilities. The really good new,
however, is that you can now do the same thing all over again. You know that San
Francisco—if it exists in the list at all—must lie between positions 6 and 11 of cityTable . The
center of that range can therefore be computed by evaluating

2
116 

using integer arithmetic, which produces the value 8. San Francisco comes later in the
alphabet than New York does, so you can now cross off three more positions.

When you look at the center of the remaining range, you find San Francisco at index
position 11, thereby completing the entire search operation in only three steps.

This algorithm—looking at the center element in a sorted array and then determining
which half to search on that basis—is called binarybinarybinary

binary

searchsearchsearch

search

...

.

To implement this algorithm,
all you need to do is keep track of two indices that mark the end-points of the index range
within which the search is limited. In the function, these indices are stored in the variables
lh and rh, which represent the left-hand (lower) index and right-hand (upper) index,
respectively. Initially, these index bounds cover the entire array, but move closer together
as possibilities are eliminated. If the index values ever cross, the key value does not exist in
the array.

The code for the function FindStringInSor tedArray , which uses the binary search algorithm,
appears in Figure 12-3.
FIGURE 12-3 FiindStringInSortedArray

/*
* Function: FindStringInSor tedArray
* Usage: index = FindStringInSor tedArray(key, array, n);
* -------------------------------------------------------------------------
* This function returns the index of an elemen t that matches key
* in the specified array of strings, which must be sorted in
* lex icographic order. If key appears more than once in the
* array, the function can return any index at which it appears.
* If key does not appear at all in the firs t n elemen ts
* of the array, FindStirngInSor tedArray returns –1.

10 San Francisco
11 Seattle

cityTable
0 Atlanta
1 Boston
2 Chicago
3 Denver
4 Detroit
5 Houston
6 Los Angeles
7 Miami
8 New York
9 Philadelphia
10 San Francisco
11 Seattle



*
* This implementation uses the binary search” algorithm. At
* each stage, the function computes the midpoin t of the remaining
* key . If there is a match, the function returns the index.
* If the key is less than the string at the at index position, the
* function sea4ches in the firs t half of the array; if the key is
* larger, the function searches in the second half of the array.
*/

int FindStringInSor tedArray(string key, string array[], int n)
{

int lh, rh, mid, cmp;

lh= 0;
rh = n –1;
while (lh <= rh) {

mid= (lh + rh) / 2;
cmp = StringCompare(key, array[mid];
if (cmp == 0) return (mid);
if (cmp < 0) {

rh = mid – 1;
} else {

lh = mid + 1;
}

}
return (-1);

}
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The discussion in the previous section suggests that the binary search algorithm is
more efficient that the linear search algorithm. Even so, it is hard to appreciate just how
much better binary search is without being able to compare the performance of the two
algorithms using some quantitative measure. For searching, a convenient measure that
provides a good indication of algorithmic performance is the number of times StringEqual or
StringCompare is called to compare the key against some element in the array.

Suppose that you execute the linear search algorithm on an array containing N
elements. How many times will the function call StringEqual? The answer depends of course
on where the key value shows up in the list. In the worst case—which occurs when the key
is in the last position or does not appear at all—FindStringInA rray will call StringEqual N times,
once for each element in the array.

What about the binary search algorithm that was used in the implementation of
FindStirngInSor tedArray? After the first call to StringCompare, the algorithm can immediately
eliminate half of the array elements, leaving only N/2 elements to search. After the second
call, it can rule out half of those elements, leaving N/4 elements. Each time, the number of
possibilities is halved. Eventually, after you divide an integer N in half enough times, you
will eventually end up with 1, at which point there is only a single comparison left to be
made. The number of steps required to reach this point is the number of times you can
divide N by 2 before you get 1, which his represented by k in the following formula:

N/2/2/.../2/2=1

k times



Multiplying by all those 2s gives the equivalent equation

N = 2K

If you remember logarithms from high-school algebra, you can express the value of k
as

k = log2N

Thus, to search an array of N elements requires N comparisons if you use linear search and
log2N comparisons if you use binary search.

Expressing the relative efficiency of these algorithms in mathematical form is useful
as a means of making quantitative predictions about efficiency. For most people, however,
such formulas do not convert a real sense of how these algorithms compare. For that, you
need to look at some numbers. The following table shows the closest integer to log2N for
various values of N.

Reflecting on what the values in this table mean, you can see that, for small arrays,
both strategies work reasonably well. On the other hand, if you have an array with
1,000,000,000 elements, linear search requires 1,000, 000,000 comparisons to search that
array in the worst case, whereas the binary search algorithm gets the job done using at most
30 comparisons. Clearly, this reduction in the number of required comparisons represents
an overwhelming increase in algorithmic efficiency.

The only problem is that the binary search algorithm requires that the array elements
be listed in sorted order. If they are not, you may have to resort to linear searching.
Alternative ly, you can ensure that the array elements are in the correct order by sorting the
array yourself. Sorting an array is a slightly more challenging problem than searching one
and is the subject of the remainder of their chapter.
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In most commercial applications, computers are used for extremely simple operations
such as adding a sequence of numbers or calculating an average—precisely the sort of
problem you learned to solve in the earlier chapters. However, several important operations
required for commercial programming are more sophisticated. Of these, the most important
is sortingsortingsorting

sorting

, the process of arranging a list of values (usually represented as an array) into
some well-defined order. For example, you might rank a list of numbers from lowest to
highest based on their numeric value. Alternative ly, you might choose to alphabetize a list
of names. These two operations turn out to be quite similar. Despite differences in detail

N log2N
10 3
100 7
1000 10

1,000,000 20
1,000,000,000 30



(one uses numbers and the other uses strings), the problem to be solved is precisely the
same: given a list and a mechanism for comparing two elements in that list, how can you
rearrange the elements of the list so that the elements are properly ordered?
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Let’s consider, for example, the problem of sorting an array of integers. Suppose that
you have been presented with an array of integers in some random order, such as the
following:

What you need to do at this point is to define a new function, which you could call
SortIntegerArray , that would rearrange the elements of this array so that they run from lowest to
highest, as follows:

Because SortIntegerArray should be as general as possible, it should take as parameters both
the name of the array and the effective size. Its prototype is therefore

void SortIntegerArray (int array[], int n);

which is similar in structure to the ReverseIntegerArray function introduced in Chapter 11. In
fact, this function is general enough that it makes sense to export it through an interface so
that other modules can use it as a library. Such an interface, called sort.h , is shown in Figure
12-4.
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sort.h

/*
* File: sort.h
* --------------
* This file prov ides an interface to a simple procedure
* for sorting an integer array into increasing order.
*/

#infnde f _sort_H
#define _sort_H

/*
* Function: SortIntegerArray
* Usage: SortIntegerArray (array, n);
* ----------------------------------------------
* This function sorts the firs t n elemen ts in array into
* increasing numerical order. In order to use this procedure,
* you must declare the array in the calling program and pass
* the effective number of elemen ts as the parameter n.
* Inmost cases, the array will have a larger allocated
* size.

31 41 59 26 53 58 97 93

0 1 2 3 4 5 6 7

26 31 41 53 58 59 93 97
0 1 2 3 4 5 6 7



*/

void SortIntegerArray (int array[], int n);

#endif

Writing the corresponding sort.c implementation, however, is trickier than it might
seem, particularly if you are interested in finding an efficient strategy for sorting the data.
As is the case with many problems in computer science, there are many different
algorithms you can use. In an advanced computer science course, you might well spend
several weeks studying various different algorithms for sorting, each of which had
particular advantages or disadvantages. At this point in your study of computer science,
however, it is best to begin with one algorithm for sorting that you can understand in detail.
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Of the many possible sorting algorithms, one of the easiest to explain is the selectionselectionselection

selection

sortsortsort

sort

algorithm. When you apply the selection sort algorithm, you put the array into its final
order one element at a time. In the first step, you find the smallest element in the entire list
and put it where it belongs—at the beginning. In the second step, you find the smallest
remaining element and put it in the second position. If you continue this process for the
entire array, the final result is in sorted order.

To get a sense of the selection sort approach, watch what happens if you start with the
following array of numbers:

Because the smallest element is the value 26 in position 3, you move this element into
position 0. As with the reverse.c program shown in Figure 11-3, you don’t want to lose track
of the value that was originally in position 0, so the easiest thing to do is exchange the
values in positions 0 and 3. Doing so leaves the array in the following state:

correctly positioned

After the exchange, position 0 is correctly filled with the smallest value.
From this point, you can proceed with the rest of the list. The next step is to use the

same strategy to correctly fill the second position in the array. The smallest value (except
for the value 26 already placed correctly) is the 31, which is now in position 3. If you
exchange this value with the one at index position 1, you reach the following state, with the
correct values in the first two elements:

31 41 59 26 53 58 97 93

0 1 2 3 4 5 6 7

26 31 41 53 58 59 93 97

0 1 2 3 4 5 6 7



correctly positioned

On the next cycle, you switch the next smallest value (which turns out to be 41) into
position 2:

correctly positioned

If you continue on in this way, you can correctly fill up index positions 3, 4, and so on until
the array is completely sorted.

To keep track of which element you are trying to fill at each step in the algorithm, you
can imagine that you use your left hand to point to each of the index positions in turn. For
each left-hand position, you then use your right hand to identify the smallest element
remaining in the rest of the array. Once you find it, you can just take the values to which
your hands point and exchange them. In the implementation, your left and right hands are
replaced by variables—lh and rh—that hold the index number of the appropriate element in
the array.

You can turn this intuitive outline into pseudocode as follows:

for (each index position lh in the array) {
Let rh be the index of the smallest value between lh and the end of the list
Swap the elements at index positions lh and rh

}

Replacing the pseudocode with the correct C statements is straightforward, mostly because
twoof the operations are familiar: the for loop control line is a standard idiom, and you can
accomplish the swap operation at the end of the loop by calling the SwapIntegerElements

function defined as part of the reverse.c program in Figure 11-3. The one remaining step is
the one that finds the smallest value. Following the discipline of stepwise refinement, you
can define a new function to perform this operation and complete the coding of the
SortIntegerArray procedure as follows:

void SortIntegerArray (int array[], int n)
{

int lh, rh;
for (lh = 0; lh < n: ln++) {

rh = FindSmalles tInsteger (array, lh, n-1);
SwapIntegerElements (array, lh, rh);

}

}

The FindSmalles tInteger function takes three arguments: the array and two index numbers

26 31 41 53 58 59 93 97
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indicating the range within the array in which to find the smallest value. The function
returns the index—not the value—of the smallest element of the array between the
specified index positions. Thus, the prototype for FindSmalles tInteger looks like this:

int FindSmalles tInteger (int array[], int low, int high);

To implement FindSmalles tInteger, the simplest approach is to go through the list, keeping track
at each loop cycle of the index of smallest value so far. When you reach the end of the list,
the smallest value so far will be the smallest value in the list as a whole. This suggests the
following code, in which the variable spos keeps track of the index position of the smallest
value so far:

int FindSmalles tInteger (int array[], int low, int high)
{

int i, spos;

spos = low;
for (i = low; i <= high; i++) {

if (array[i] < array[spos]) spos = i;
}
return (spos);

}

At the beginning of the scan, the first value you consider is automatically the smallest value
so far. Thus, you can initialize spos to the starting index position, which is given by the
parameter low. As you look at each position in turn, you have to see if the current value is
smaller than your previous candidate for the smallest value. If it is, the old value can no
longer be the smallest in the entire list, and you need to correct the value of spos to indicate
the new position, which will retain its value until you find an even smaller value.

The function SwapIntegerElements is precisely the same function as in the ReverseIntegerAray
implementation from Chapter 11, and there is no reason to rewrite it. Whenever you write a
function that implements some generally useful operation, it is wise to keep that function
around so that it is available for future use. Successful programmers always try to reuse
existing code as much as possible because doing so saves the trouble of writing and
debugging those parts of the program from scratch.

Copying the code for SwapIntegerElemn ts completes the code for the entire selection sort
algorithm. The complete code for the sort.c implementation appears in Figure 12-5.
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sort.c

/*
* File: sort.c
* --------------
* This file implements the sort.c interface using the selection
* sort algorithm.
*/

#include <stdio.h>
#include “genlib.h ”
#include “sort.h”

/* Private function prototypes */

static int FindSmalles tInteger (int array[], int low, int high);
static void SwapIntegerElements (int array[], int p1, int p2);



/*
* Function: SortIntegerArray
* ---------------------------------
* This implementation uses an algorithm called selection sort,
* which can be described in English as follows. With your left
* hand, point at each elemen t in the array in turn, starting at
* index 0. At each step in the cycle:
*
* (1) Find the smallest elemn t inteh range between your left
* hand and the end of the array, and point at that elemen t
* with your right hand.
* (2) Move that elemen t into its correct index position by
* switching teh elemen ts indicated by your left and right
* hands.
*/

void SortIntegerArray (int array[], int n)
{

int lh, rh;

for (lh = 0; lh < n; lh++) {
rh = FindSmalles tInteger (array, lh, n-1)
SwapIntegerElements (array, lh, rh);

}
}

/*
* Function: FindSmalles tInteger
* Usage: index = FindSmalles tInteger (array, low, high);
* -----------------------------------------------------------------------
* This function returns the index of the smallest value in the
* specified array of integers, searching only between the index
* positions low and high, inclusive. It operates by keeping track
* of the index of the smallest so far in the variables spos. If the
* index range is empty, the function returns low.
*/

static int FindSmalles tInteger (int array[], int low, int high)
{

int i, spos;

spos = low;
for (i = low; i <= high; i++) {

if (array[i] < array[spos]) spos = i;
}
return (spos);

}

/*
* Function: SwapIntegerElements
* Usage: SwapIntegerElement (array, p1, p2);
* ----------------------------------------------------------
* This function swaps the elemen ts in array at index
* positions p1 and p2.
*/

static void SwapIntegerElements (int array[], int p1, int p2)
{

int tmp;

tmp = array[p1];
array[p1] = array[p2];
array[p2] = tmp;

}
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The selection sort algorithm has several positive qualities. For one this it is relatively
easy to understand. For another, it gets the job done. There are, however, sorting algorithms
that are far more efficient. Unfortunately, the most efficient ones require techniques beyond
your current level of programming knowledge. For this reason, the text defers discussion of
more efficient sorting algorithms until chapter 17.

Even though you cannot yet substantially improve the efficiency of selection sort, you
are nonetheless in a position to consider how efficient it is. One interesting question is how
long it takes to execute selection sort on a given set of input data. There are two ways you
can approach this question.

1. You can run the program and measure how long it takes. Because programs run
very quickly on modern computers and often finish their work in a fraction of a
second, you might not be able to measure the elapsed time with a stopwatch, but
you can accomplish the same result by using the computer’s internal clock.

2. You can think more generally about the operation of the program and try to
develop a qualitative sense of how it behaves.
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To determine how long it takes to run a program, the most common approach is to use
the system libraries to keep track of the amount of computing time required. The ANSI
interface time.h exports a procedure called clock that returns the amount of time the
processing unit of the computer has used in executing the program. The result type of the
clock function is a machine-dependent clock unit, but you can covert those clock units into
seconds using the following expression:

(double) clock () / CLOCKS_PER_SEC

If you record the starting and finishing times in the variables start and finish, you can use
the following code to compute the time require to perform a calculation:

double start, finish, elapsed;

start = (double) clock () / CLOCKS_PER_SEC;
… Perform some calculation…
finish = (double) clock () /CLOCKS_PER_SEC;
elapsed = finish – start

You can apply this technique to calculate the running time for the selection sort algorithm
implemented in Figure 12-5. The time required to call SortIntegerArray on arrays of different
sizes is shown in Table 12-1. In the table, N indicates the number of array elements and the
running time column shows the average time in milliseconds (thousandths of a second)
required to sort an array of that size using selection sort.



The table reveals some highly interesting results. For small values of N, selection sort
runs reasonably quickly. As N gets larger, however, the selection sorting algorithm slow
down precipitously. If the array contains 30 values, for example, SortIntegerArray can sort the
array in a thousandth of a second. By the time you reach 800 items, selection sort takes
more than half a second. Commercial applications often require sorting 10,000 or 100,000
values or more. With arrays on that scale, selection sort becomes prohibitively slow.
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To understand why these timing numbers come out as they do, it is important to think
about how the algorithm works. Consider the timing data for selection sort in Table 12-1.
When N is 50, the algorithm requires 2.4 milliseconds to run. When N doubles to 100,
however, the algorithm requires 9.67 milliseconds, almost four times as long. The rest of
the table shows the same progression. Whenever you double the number of data items,
them time required goes up by a factor of four. Algorithms of this sort are said to be
quadraticquadraticquadratic

quadratic

, because their running time grows as the square of the size of the input.
The fact that selection sort is a quadratic algorithm is not surprising if you think about

how it works. In sorting a list of eight numbers, the selection sort implementation of
SrotIntegerArray executes the outer for loop eight times. The first cycle finds the smallest value
out of a group of eight numbers, the next cycle finds the smallest value out of the remaining
seven numbers, and so on. The number of operations the program executes is proportional
to the number of values it must check, which in this specific case is

8 + 6 + 5 + 4 + 3 + 2 + 1

More generally, given N elements, the time required to execute the selection sort algorithm
is proportional to the following sum:

N + N –1 + N –2 +… + 3 + 2 + 1 =
2

2 NN 

The quadratic behavior comes from the appearance of theN2 term.
The process of applying mathematical techniques to predict algorithmic efficiency is

called analysisanalysisanalysis

analysis

ofofof

of

algorithmsalgorithmsalgorithms

algorithms

, which is discussed further in Chapter 17. If you go on in
computer science, you will learn how to analyze the performance of algorithms in much
more detail. This knowledge will prove to be a powerful tool for evaluating which
algorithm is best suited for a particular application.

NNN

N

RunningRunningRunning

Running

timetimetime

time

10 0.13
20 0.33
30 1.00
40 1.47
50 2.40
100 9.67
200 37.33
400 146.67
800 596.67

TABLETABLETABLE

TABLE

12-112-112-1

12-1

Running times for the
selection sort algorithm
in milliseconds
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With this chapter, you have had the opportunity to learn about two of the most
important operations on arrays—searching and sorting—each of which is and interesting
algorithmic problem in its own right. The important points covered in this chapter include:

 The linear search algorithm operates by looking at each element of an array in
sequential order until the desired element is found. Linear search is a reasonable
strategy for small arrays but becomes inefficient as the size of the array increases.

 The binary search algorithm is much more efficient that linear search but
requires that the elements of the array be in sorted order.

 Sorting algorithms vary considerably in their efficiency. For arrays containing a
small number of elements, simple algorithms such as selection sort are perfectly
adequate. For large arrays, however, such algorithms cease to be cost-effective.

REVIEWREVIEWREVIEW

REVIEW
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QUESTIONS

1. Define the terms searching and sorting.
2. What changes would you have to make to the FindIntegerInA rray function to change it

to a FindRealInArray function that found a matching value in an array of floating-
point numbers?

3. What are parallel arrays?
4. Describe the linear search and binary search algorithms in simple English.
5. True or false: If the number of data items is large enough, the binary search

algorithm can be millions of times faster than the linear search algorithm.
6. What condition must be true before the binary search algorithm can be applied?
7. Describe the steps that are involved in the selection sort algorithm.
8. The for loop control line in the selection sort implementation of SortIntegerArray was

written as

for (i = 0; i < n; i++)

Would the function still work if you change this line to

for (i + 0; i < n –1; i++)

9. What expression can you use to determine how many seconds of processor time
have been consumed by your program?

10. What does it mean to say that an algorithm is quadratic?

PROGRAMMINGPROGRAMMINGPROGRAMMING

PROGRAMMING

EXERCISESEXERCISESEXERCISES

EXERCISES

1. A resistorresistorresistor

resistor

is a common component in electronic circuitry that restricts the flow of
electrical current. The extent to which a resistor opposes the current flow is called



its resistanceresistanceresistance

resistance

, which is traditionally measured in ohms (Ω ). As the resistance
increases, current flows less freely.

The resistance is usually indicated on the resistor itself using a color code.
The resistor is a small ceramic cylinder with a wire extending from each end.
Three colored bands encircle the body of the cylinder, as shown in this diagram:

The colors of the bands correspond to digits as follows:

0 black 5 green
1 brown 6 blue
2 red 7 violet
3 orange 8 gray
5 yellow 9 white

The first two bands indicate the first two digits of the resistance; the third band
indicates a power of ten by which the first twodigits are multiplied. For example,
the color-code sequence yellow-violet-orange (4-7-3) corresponds to

47×103

or 47,000Ω.
Write a program that reads in the colors of the three bands on a resistor and

writes out the corresponding resistance, as illustrated by the following sample run:

2. Write a program guessnum.c that plays a number-guessing game with its user, who
is presumably an elementary-school child. The child thinks of a number and then
answers a series of questions from the computer until it correctly guesses the
number. The following sample run shows what happens when the child’s number

band 1
tens digit

band 1
power of 10 multiplier
digit

band 2
units digit

This program interprets the resistor color code.
Color of first band: YellowYellowYellow

Yellow





Color of second band: VioletVioletViolet

Violet





Color of third band:OrangeOrangeOrange

Orange





Resistance = 47000 ohms.

Think of a number tetween 1 and 100 and I’ll
guess it.
Is it 50? nonono

no





Is it less than 50? yesyesyes

yes





Is it 25? nonono

no





Is it less than 25? yesyesyes

yes





Is it 12? nonono

no





Is it less than 18? yesyesyes

yes





Is it 15? nonono

no





Is it less than 15? nonono

no





Is it 16? nonono

no





Is it less than 16? notnotnot

not





Is it 17? yesyesyes

yes





I guessed the number



is 17:

3. Write a predicate function IsSorted (array, n) that takes an integer array and its
effective size as parameters and returns TRUE if the array is sorted in
nondecreasing order.

4. Extend the sort.h and sort.c files given in Figures 12-4 and 12-5 so that, in addition
to exporting the SortIntegerArray function, the interface also exports a function
Alphabe tize that sorts an array of strings into lexicographic order.

5. In Chapter 11, exercises 3 and 4 asked you to write programs to compute two
common statistical measures: the mean and the standard deviation. Another
common statistical measure is themedianmedianmedian

median

, the data value that occupies the central
element position in a distribution whose values have been sorted from lowest to
highest. If the distribution contains an even number of values and therefore has no
central element, the standard convention is to average the two values that fall
closest to the midpoint.

Write a function Median (array, n) that returns the median of an array of floating-
point values. Your implementation may not assume that the array is in sorted order
but may change the order of element as it runs.

6. Besides the mean and the median, the third statistical measure designed to
indicate the most representative element of a distribution is the modemodemode

mode

, the value
that occurs most often in the array. For example, in the array

the mode is the value 84, because it appears three times .The only other value that
appears more than once is 82, which only appears twice.

Write a function Mode (array, n) that returns the mode of an array composed of
integer values. If there are several values that occur equally often and outnumber
and of the other values (such distributions are called multimodemultimodemultimode

multimode

), our function
may return any of those values as the mode. As in exercise 5, your
implementation may not assume that the array is in sorted order but may change
the order of elements if doing so makes the solution easier to write.

7. Write a function RemoveZeroElemen ts (array, n) that goes through an array of integers
and eliminates any elements whose value is 0. Because this operation changes the
effective size of the array, RemoveZeroElemen ts should return the new effective size
as a result. For example, suppose that scores contains an array of scores on an
optional exam and that nScores indicates the effective size of the array, as shown:

scores

nScores

As this point, the statement

65 84 95 75 82 79 82 72 84 94 96 90 84

65 0 95 0 0 79 82 0 84 94 86 90 0

13



nScores = RemoveZeroElemen ts (scores, nScores);

should remove the 0 scores, compression the array into the following
configuration:

scores

nScores

8. Write a function RemoveDuplica tes (array, n) that removes all duplicate values from a
sorted array of integers, leaving only a single copy of each value. As n exercise 7,
RemoveDuplica tes should return the effective size of the new array. Suppose, for
example, that the array scores contains the following data values:

scores

nScores

The statement

nScores =RemoveDuplica tes (scores, nScores);

should then remove the duplicate scores, leaving the following configuration:

scores

nScores

9. Man algorithmic problems are related to sorting in their solution structure. For
example, you can shuffle an array by “sorting” it according to a random key value.
One way to do this is to begin with the selection sort algorithm and then replace
the step that finds the position of smallest value with one that selects a random
position. The result is a shuffling algorithm in which each possible output
configuration is equally likely.

Write a program shuffle.c that displays the integers between 1 and 52 in a
randomly sorted order.

10. One of the most famous algorithmic problems taught at the introductory level is
the Dutch National Flag problem, first proposed by Edsger Dijkstra. Suppose that
you have an array with n elements each of which is a character—‘R’, ‘W’ or
‘B’—representing one of the colors in the Dutch flag. Initially, these values might
be jumbled in the array, as shown in the following configuration:

65 95 79 82 84 94 86 90 0 0 0 0 0

8

65 72 75 79 82 82 84 84 84 86 90 94 95

13

65 72 75 79 82 84 86 90 94 95 ? ? ?

10



Your job is to rearrange these characters so that they appear in the same order as
they do in the Dutch flag: all the reds, followed by all the whites, followed by all
the blues.

Try to infer the algorithm by studying the following sample run of a program
to solve this problem, which displays the sequence of the colors each time it
interchanges twopositions:

Write a program that implements the algorithm on a randomly constructed initial
state.

11. There are several other sorting algorithms besides selection sort that make sense at
your level of programming knowledge. Unfortunately, those algorithms do not
offer any advantages over selection sort in terms of their algorithm performance.
Even so, coding these algorithms gives you more practice using arrays.

For example, you can sort an integer array from lowest to highest by applying
the following procedure. Start by going through the array, looking at adjacent pairs
of values. If the values forming the pair are correctly ordered, do nothing; if the
values are out of order, swap them. In either case, move on the next pair of values.
The pairs overlap as you move through the list so that the second element in one
pair becomes the first element of the next pair. Repeat this operation until you
make a complete pass in which you do not need to exchange any integers. This
algorithm is called bubblebubblebubble

bubble

sortsortsort

sort

, because the values seem to “bubble up” to their
eventual positions.

Reimplement the SortIntegerArray function using the bubble sort algorithm.
12. Another sorting algorithm—insertioninsertioninsertion

insertion

sortsortsort

sort

—operates as follows. You go through
each element in the array in turn, as with the selection sort algorithm. At each step

R V W W B B R W W R R Q R B W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initial state:
R B W W B B R W W RR W R BW
Swapping positions 1 and 14
R W W W B B R W W R R W R B B
Swappint positions 4 and 13
R W W W B B R W W R R W R B B
Swappint positions 4 and 12
R W W W R B R W W R R W B B B
Swappint positions 1 and 4
R R W W W R W W RR B B B B
Swappint positions 5 and 11
R R RW W WW WW RR B B B B
Swappint positions 2 and 6
R R RR W W WWWW R B B B B
Swappint positions 3 and 9
R R RR W W WWWW R B B B B
Swappint positions 4 and 10
R R RR R W W WWWW B B B B



in the process, however, your goal is not to find the smallest value remaining value
and switch it into its correct position, but rather to ensure that the values you’ve
covered so far in the array are correctly ordered with respect to each other.
Although those values may shift as more elements are processed, they form an
ordered sequence in and of themselves.

For example, if you consider again the data used in the selection sort
discussion, the first cycle of the insertion sort algorithm requires no work because
an array of one element is always sorted:

in order

The next two cycles of the main loop also require no rearrangement of the array,
because the sequence 31-41-59 forms and ordered subarray.

The first significant operation occurs on the next cycle, when you need to fit
26 into this sequence. To find where 26 should go, you need to move backward
through the earlier elements, which you know are in order with respect the each
other, looking for the position where 26 belongs. At each step, you need to shift
the other elements over one position to make room for the 26, which winds up in
position 0. Thus, the configuration after the fourth cycle is

in order

On each subsequent step, you again insert the next element in the array into its
proper position in the initial subarray, which is always sorted at the end of each
step.

The insertion sort algorithm is particularly efficient if the array is already
more or less in the correct order. It therefore makes sense to use insertion sort to
restore order to a large array in which only a few elements are out of sequence.

Reimplement the SortIntegerArray function using the insertion sort algorithm.

31 41 59 26 53 58 97 93

0 1 2 3 4 5 6 7

26 31 41 59 53 58 93 97

0 1 2 3 4 5 6 7
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To appreciate the importance of being able to use addresses as data values.
 To be able to use the pointer operators & and *.
 To be able to use call by reference to share data between a function and its caller.
 To recognize the relationship between pointers and arrays.
 To understand in detail how to use the ++ and --operators.
 To be able to apply dynamic allocation to reserve new storage as a program runs.

TTT

T

his chapter introduces the concept of a pointerpointerpointer

pointer

—a data item whose value is the

address in memory of some other value. In many high-level programming languages,
pointers are used sparingly because those languages provide other mechanisms that
eliminate much of the need for pointers. In C, which was designed to give programmers as
much access as possible to the facilities provided by the hardware itself, the pointer
concept is pervasive. Thus, it is impossible to understand C programs without
understanding something about how pointers work. Moreover, if you want to become an
effective C programmer, you will have to go further and learn how to use pointers
effectively in applications.

In C, pointers sever several purposes, of which the following are the most important:

 Pointers allow you to refer to a large data structure in a compact way. Data
structures in a program can become arbitrarily large. No matter how larger they
grow, however, the data structures still reside somewhere in the computer’s
memory and therefore have an address. Pointers allow you to use the address as
a shorthand for the complete value. Because a memory address is internally
represented as an integer, this strategy offers considerable space savings when
the data structures themselves are large. This principle comes up repeatedly in
the rest of this text, particularly in Chapters 14 and 16.

 Pointers facilitate sharing data between different parts of a program. If you pass
the address of some data value form one function to another, both functions have
access to the same data. This application of pointers is explained in the section
on “Passing parameters by reference” later in this chapter.



 Pointers make it possible to reserve new memory during program execution. Up
to now, the only memory that you have been able to use in your programs has
been the memory assigned to variables that you have declared explicitly. In
many applications, it is convenient to acquire new memory as the program runs
and to refer to that memory using pointers. This strategy is discussed in the
section on “Dynamic allocation” later in this chapter.

 Pointers can be used to record relationships among data items. In advanced
programming applications, pointers are used extensively to model connections
between individual data values. For example, programmers often indicate that
one data item follows another in a conceptual sequence by including a pointer
the second item in the internal representation of the first. This topic is considered
briefly in Chapter 17, although a complete discussion of this application of
pointer lies beyond the scope of this text.

As with most programming concepts, mastering the use of pouters requires that you
consider them from both the reductionistic and the holistic perspectives. This chapter
begins on the reductionistic level by reviewing the fundamentals of memory addressing,
which were introduced in Chapter 11, using that framework as a context for discussing the
mechanics of pointers. Thereafter, the chapter proceeds to investigate some of the basic
applications of pointers. The examples in this chapter, however, are intended primarily to
reinforce your understanding of the underlying details. Because pointers are a substantial
topic—too large to cover entirely in one chapter—some of the holistic presentation of
pointers is deferred to later chapters, which build on the framework presented here.
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As you discovered in Chapter 11, simple variables are not the only repository for data
in a program. Data can also exist in more complicated data structures, such as arrays. In C,
any expression that refers to an internal memory location capable of storing data is called
an lvaluelvaluelvalue

lvalue

(pronounced “ell-value”). The l at the beginning of lvalue comes from the
observation that lvalues can appear on the left side of an assignment statement in C. For
example, simple variables are lvalues because you can write a statement like

x =1.0;

Similarly, selection expressions are lvalues because you can assign them values directly, as
in

intarray[2] = 17;

Many values in C, however, are not lvalues. For example, constants are not lvalues because
a constant cannot be changed. Similarly, arithmetic expressions return results that are
values but no lvalues because it is illegal to assign a value to the result of an arithmetic
expression.

The concept of an lvalue makes it possible to recast the three principles outlined in the
summary of Chapter 11 in a more general way:



1. Every lavlue is stored somewhere in memory and therefore has address.
2. Once it has been declared, the address of an lvalue never changes, even though

the contents of the lvalue may change.
3. Depending on the type of data they contain different lvalues require different

amounts of memory.

To pave the way for a discussing of pointers, it is useful to add a fourth principle to this list:
4. The address of an lvalue is itself data that can be manipulated and stored in

memory.

This last point may seem rather unexciting at first, but its implications for programming
turn out to be profound. As an illustration, consider the declaration

int i;

This declaration reserves storage somewhere in memory for the integer i. For example, if
integers require four bytes on the computer running the program, the variable i might be
assigned to locations 1000 through 10003, as indicated by the shaded area in this diagram:1

According to the fourth principle, the address 1000 associated with the variable i is a data
value in its own right. The value 1000 is just an integer, after all, and can be stored in
memory as such. That it happens to represent the address of another value is important to
the programming process, butt does not affect how the value 1000 is represented internally.
It fits into memory just like any other integer. For example, it is possible to store the
address of the variable i in the next memory word, which consists of the range of bytes
between addresses 1004 and 1007. At this point, you do not yet know how to write C code
to store that address, but the result of doing so is illustrated in the following diagram:

1000

1001

1002

1003
1004

1005

1006

1007

1000

1 In Chapter 11, the diagrams assume that integers require two bytes; this chapter assumes that they
require four. The change in representation is intended to remind you that the space required to store an
integer can vary from one computer to another. Making an assumption about the size of any object limits
the extent to which your programs can be made to work on other machines.



The value 1000 shown in address 1004 can then be used to refer to the value of the variable
i stored in the shaded region. To emphasize relationships such as that between the address
in location 1004 and the variable i at location 1000, programmers often draw arrows on
their box diagrams of memory, like this:

Of course, there are no arrows inside the computer. The word at address 1004 simply
contains a sequence of bits that corresponds to the numeric value 1000. That same
sequence of bits can be used as an integer or as an address depending on how you have
declared that variable in your program. If you have declared the variable as a pointer, you
can interpret the value 1000 stored in location 1004 as the address of the variable i in
memory and then use that pointer to retrieve or manipulate i’s value.
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C includes facilities for manipulating pointers, just as it includes facilities for
manipulating integers. You can store address values in pointer variables or pass them as
parameters to functions, just like any other data type. Before you begin to do so, however,
it is important to consider some of the mechanical details that govern the use of pointers in
C.
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As with all other variables in C, You must declare pointer variables before you use
them. To declare a pointer variable, you need to use the declaration syntax shown in the
syntax box to the right. For example, the declaration

int *p;

declares the variable p to be of the conceptual type pointer-to-int. Similarly, the decoration

char *cptr;

declares the variable cptr to be of type pointer-to-char . These two types—pointer-to-int and
pointer-to-char—are distinct in C, even though each of them is
represented internally as an address. To use the data at that
address, the compiler needs to know how to interpret it and
therefore requires that the type of the underlying value be
specified explicitly. The type of the value to which a pointer
points is called the basebasebase

base

typetypetype

type

of that point. Thus, the type
point-to-int has it as its base type.

It is important to note that the asterisk used to indicate
that a variable is a pointer belongs syntactically with the variable name and to with the base
type. It mark each of the variables with an asterisk, as in

int *p1, *p2;

The declaration

int *p1, p2;

declares p1 as a pointer to an integer but declares p2 as an integer variable.
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C defines two operators that manipulate pointer values:

& Address-of
* Value-pointed-to

The & operator takes as its operand an expression that corresponds to some value stored in
memory, which is usually a variable or an array reference. The operand is written after the
& and must be an lvalue. Given a particular lvalue, the & operator returns the memory
address in which that lvalue is stored.

The * operator takes a value of any pointer type and returns the lvalue to which in
points. This operation is called dereferencingdereferencingdereferencing

dereferencing

the pointer. The * operation produces an
lvalue, which mean that you can assign a value to a dereferenced pointer.

The easiest way to illustrate these operators is by example. Consider the declarations

int x, y;
int *p1, *2;

These declarations allocate memory for four words, twoof type int and twoof type pointer-
to-int. For concreteness, let’s suppose that these values are stored in the machine addresses

SYNTAXSYNTAXSYNTAX
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forforfor

for

pointerpointerpointer

pointer

declarationdeclarationdeclaration

declaration

base-type *pointer-variable;

Where:
base-type is the type of the value to
which the pointer points

pointer-variable is the variable being
declared

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

New programmers
sometimes forget that the *
used in the declaration of
the pointer must appear
before each pointer
variable. For example, the
declaration

char *cp, c;

declares cp to e of type
pointer-to-char but c to be
of type



indicated by the following diagram:

You can assign values to x and y using assignment statements, just as you always have. For
executing the assignment statements

x = -42;
y = 163;

results in the following memory state:

To initialize the pointer variables p1 and p2, you need to assign values that represent the
addresses of some integer objects. In C, the operator that produces addresses is the &

operator, which you can use to assign the addresses of x and y to p1 and p2, respectively:

p1 = &x;
p2 = &y;

These assignments leave memory in the following state:

Once again, the pointer values in p1 and p2 have the intuitive effect of “pointing” to the
variables to which they refer. You can diagram this relationship using arrows, as follows:

To move from a pointer to the value it points to , you use the * operator. For example the
expression

*p1

1000 x
1004 y

1008 p1

1012 p2

1000 -42 x

1004 163 y

1008 p1
1012 p2

1000 -42 x

1004 163 y

1008 1000 p1

1012 1004 p2

1000 -42 x
1004 163 y

1008 1000 p1

1012 1004 p2



indicates the value in the memory location to which p1 points. Moreover, since p1 is
declared as a pointer to an integer, the compiler knows that the expression *p1 must refer to
an integer. Thus, given the configuration of memory illustrated in the diagram, *p1 turns out
to be another name for the variable x.

Like the simple variable name x, the expression *p1 is an lvalue, and you can assign
new value to it. Executing the assignment statement

*p1 = 17;

changes the value in the variable x because that is where p1 pointes. After you make this
assignment, the memory configuration is

You can see that the value of p1 itself is unaffected by this assignment. It continues to
hold the value 1000 and therefore still points to the variable x.

It is also possible to assign new values to the pointer variables themselves. For
instance, the statement

p1 = p2;

instructs the computer to take the value contained in the variable p2 and copy it into the
variable p1. The value contained in p2 is the pointer value 1004. If you copy this value into
p1, both p1 and p2 point to the variable y, as the following diagram shows:

In terms of the operations that occur inside the machine, copying a pointer is exactly the
same as copying an integer. The value of the pointer is simply copied unchanged to the
destination. From the conceptual perspective of the diagram, the effect of copying a pointer
is to replace the destination pointer with a new arrow that points to the same location as the
old one. Thus, the effect of the assignment

p1 = p2;

is to change the arrow leading out of p1 so that it points to the same memory address the
arrow originating at p2.

It is important to be able to distinguish the assignment of a pouter from that of a value.
Pointer assignment, such as

p1 = p2;

makes p1 and p2 point to the same location. Value assignment, which is represented by the

1000 17 x

1004 163 y
1008 1000 p1

1012 1004 p2

1000 -42 x

1004 163 y
1008 1000 p1

1012 1004 p2



statement

*p1 = *p2;

copies the values from the memory location addressed by p2 into the location addressed by
p1.
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In pointer applications—particularly those that extend beyond the scope of this
text—it is useful to be able to store in a pointer variable a special value indicating that the
variable does not in fact point to any valid data, at least for the present. C defines a special
constant called NULL for this purpose1. The constant NULL can be assigned to any pointer
variable and is represented internally as the address value 0.

If a pointer variable has the value NULL, it is important not to dereference that variable
with the * operator. The intent of the NULL value is to indicate that the pointer does not point
to valid data, so the idea of trying to find the data associated with a NULL pointer does not
really make sense. Unfortunately, most compilers do not produce programs that explicitly
check for this error. If you dereference NULL, the usual approach is for the computer to look
and see what value is stored in address 0. If you happen to change that value by performing
value assignment through a NULL pointer, the program can easily crash, giving no clue as to
the nature of the program. The same is turn for pointer variables whose values have not yet
been initialized.

The uses of the NULL pointer will be introduced as they become relevant to a particular
application. For now, the important thing to remember is that this constant exists.
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To get a sense of how pointer variables are used in practice, it is helpful to look at one
of the most common applications of pointers in C—the technique of passing pointers to a
function to allow that function to manipulate data in its caller. In C, whenever you pass a
simple variable from one function to another, the function gets a copy of the calling value.
Assigning a new value to the parameter as part of the function changes the local copy but
has no effect on the calling argument. For example, if you tried to implement a function
that initialized a variable to zero using the following strategy

void SetToZero (int var)
{ This program is buggy

var = 0; and in fact has no effect.
}

the function would have no effect whatever. If you called

SetToZero (x)

1 The constant NULL is actually defined in the stdlib.h header file, which is automatically included
whenever a program includes the stdio.h header file. Because all programs in this book include stdio.h,
you can proceed as if NULL were a built-in constant in C.
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whose value is NULL.
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references to memory
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part of the program,
which may in turn cause
the program to crash.



the parameter var would be initialized to a copy of whatever value was stored in x. The
assignment statement

var = 0;

inside the function sets the local copy to 0 but leaves x unchanged in the calling program.
One approach to fixing this problem is to pass the function a pointer to a variable

instead of the variable itself. Although adopting this strategy changes the structure of the
function, making this change is necessary for the function to work at all. The new coding is

void SetToZero (int *ip)
{

*ip = 0;
}

To use this function, the caller must supply a pointer to an integer variable. To set x to 0, for
example, you would need to make the following call:

SetToZero (&x);

Leaving out the & would be an error because x does not have the required type: SetToZero
requires a pointer to an integer and not the integer itself.

For the purpose of illustration, assume that SetToZero is called from the main program
and that the frame for main includes an integer variable named x. Before the main program
calls SetToZero, the frame for main looks like this:

Although frame diagrams do no typically include addresses, it is important to realize that
the variable x lives somewhere in memory. For example, if the variable is stored in address
1000, the concrete representation within memory is a frame that includes the word at that
address, as illustrated in this diagram:

When main calls SetToZero using the statement

SetToZero (&x);

a new frame is created for the SetToZero function. Its parameter is the variable ip, which is a
pointer to an integer. Making the call initializes ip to the value of the calling argument,
which is &x—the address of x. Thus, the frame for SetToZero looks like this:

?

main

x
?

main

main

SetToZero

ip
1000

1000
x



This frame also lives somewhere in memory, so the memory diagram might be1

The statement

*ip = 0;

has the effect of setting the value of the integer word addressed by ip to 0 as shown:

When the SetToZero function returns, the change made to address 1000 remains in effect, so
that the frame for main now looks like this:

The use of pointers as parameters makes it possible for functions to change values in the
frame of their caller. In C, you must indicate explicitly your intention to allow such changes
by declaring the parameter value as a pointer type and the passing addresses as arguments.
In many other languages, this mechanism is part of the language definition and is referred

?

1000

0

1000

1 There is no way to predict what addresses are actually assigned to these frames, or even the
relative orientation of the two frames. On most modern machines, the frame for SetToZero would appear at
a lower memory address than the frame for main, but understanding the memory structure does not
depend on any such assumption.

main

SetToZero

main

main

main

x
0

1000
x

1020
ip

1000
x

1020
ip
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. While the C approach is somewhat less convenient and takes more
time to learn, it does have some advantages. The most important advantage is that the
syntax of the function call itself indicates whether the values of the argument variables can
be changed during the execution of the function. For example, without knowing anything at
all about the function Mystery, you know that the value of a variable x is not changed by the
call

Mystery (x);

If Mystery is to change the value of x, the function would have to be redefined to take a
pointer parameter, and the call would then appear as

Mystery (&x);

This rule makes it easier to predict the effects of a function call.
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To illustrate how using call by reference affects the design of a program, let’s return to
the selection sort algorithm presented in Figure 12-5. The SortIntegerArray procedure itself is
implemented as follows:

void SortIntegerArray (int array[], int n)
{

int lh, rh;

for (lh = 0; lh , n; lh++) {
rh = FindSmalles tInteger (array, lh, n-1);
SwapIntegerElements (array, lh, rh);

}
}

On each cycle of the for loop, the procedure identif ies the index of the smallest value
remaining in the list and then exchanges that value with the element at index position lh.
The last statement in the for loop accomplishes the exchange operation by making the
following function call:

SwapIntegerElements (array, lh, rh);

At first glance, this function call seems poorly designed. What you would like to do at this
point is exchange two integers. It seems as if the code would convey the essential idea
more clearly if you could make the following call instead:

SwapInteger (array[lh], array[rh]); This can’t work

Unfortunately, as indicated in Chapter 11 when the SwapIntegerElements function was
introduced, it is impossible to define a function like SwapInteger in C because that function
would have to change the values of its calling arguments.

You can, however, use call by reference to accomplish the same effect. If you pass the
addresses of the arguments to SwapInteger rather than their values, it then becomes possible to
implement the function like this:

static void SwapInteger (int *p1, int *p2)



{
int tmp;

tmp = *p1;
*p1 = *p2;
*p1 = tmp;

}

The SwapInteger function takes pointers to two integers and exchanges the values in the
memory cells to which those pointers point.
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The most common situation for using call by reference arises when a function needs to
return more than one value to the calling program. A single result can easily be returned as
the value of the function itself. If you need to return more than one result from a function,
the return value is no longer appropriate. The standard approach to solving the problem is
to turn that function into a procedure and pass values back and forth through the argument
list.

For instance, let’s suppose that you want to write a function that converts a time given
in minutes into the appropriate number of hours and minutes. For example, 235 minutes is
equal to 3 hours and 55 minutes. As a function, this calculation takes in a single value
representing the total time in minutes and “returns” two values: the number of hours and
the number of leftover minutes, which is always in the range 0 to 59. Because this operation
has two results, you might choose to code it as a procedure that uses call by reference. That
implementation appears, along with a test program, in Figure 13-1.
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hours.c

/*
* File: hours.c
* ----------------
* This program converts a time given in minutes into
* separate values represen ting hours and minutes. The
* program is written as an illustration of C’s mechanism
* for simulating call by reference.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h”

/* Constants */

#define MinutesPerHour 60

/* Function prototypes */

static void ConverTimeToHM (int time, int *pHours, int *Minutes);

/* Test program */

main()
{

int time, hours, minutes;



printf (“Test program to convert time values\n”);
printf (“Enter a time duration in minutes: “ );
time = GetInteger ();
ConvertTimeToHM (time, &Hours, &minutes);

}

/*
* Function: ConvertTimeToHM
* Usage: ConvertTimeToHM (time, &hours, &minutes);
* ----------------------------------------------------------------------
* This function converts a time value given in minutes into
* an integral number of hours and the remaining number of minutes.
* Note that the last two argumen ts must be passed using their
* addresses so that the function can correctly set those value.
*/

static void ConvertTimeToHM (int time, int *pHours, int *pMinutes)
{

*pHours = time / MinutesPerHour;
*pMinutes = time % MinutesPerHour;

}

In Figure 13-1, the procedure ConvertTimeToHM takes three arguments. The first
argument (time) provides input data for the function; the second two (pHours and pMinutes)
permit the function to deliver its results to the calling program. In the calling program,
these last two arguments must specify the addresses into which the data should be stored,
so the call is

ConvertTimeToHM (time, &hours, &minutes);

Inside the implementation, these values are represented as pointers to the actual variables.
Thus, in order to compute the number of hours, the appropriate assignment statement is

*pHours = time / MinutesPerHour;

You need the * operator to ensure that the result is stored in the variable to which pHours

points.
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Although the call-by-reference strategy has valuable applications, it is easy to overuse
this approach. In most cases-particularly after you have learned how to use records, as
described in Chapter 16—you can redesign your programs so that all results are returned as
the values of functions. Value-returning functions are usually easier to use than procedures,
primarily because function calls can be nested. You can pass the result of one function as a
parameter to another, continuing this process to whatever level the application requires.
When you use procedures, you must call them one after another as separate statements. Any
values that must be communicated from one procedure to the next must be stored in a
variable and conveyed through the parameter list.

Consider, for example, how you might rewrite the hours.c program in Figure 13-1 to
eliminate the need for call by reference. In place of the procedure ConvertTimeTHM, you could
define two separate functions: an Hours function to return the integral number of hours and a
Minutes function to return the extra minutes. One of the main advantages of this approach is



that none of the functions have to use pointers at all. For example, the Hours function is
simply

int Hours (int time)
{

return (time / MinutesPerHour);
}

and the main program can be simplif ied to

main()
{

int time;

printf (“Test program to convert time values\n”);
printf (“Enter a time duration in minutes: “ );
time = GetInteger ();
printf (“HH:MM format: %d:%02d\n”, Hours (time), Minutes (time));

}

Two of the local variables (hours and minutes) have disappeared from the program because it
is possible to use the results of the functions directly without assigning them to variables
first.
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So far, the examples in this chapter have limited their use of pointers to those contexts
in which the pointer holds the address of a simple variable. Actually, a pointer can refer to
any lvalue. In particular, array elements are lvalues and therefoere have addresses. For
example, as you know from Chapter 11, the array declaration

double list[3];

reserves three consecutive units of memory, each of which is large enough to hold a value
of type double. Assuming that a double is eight bytes long, the memory diagram for this
array would look like the following:

Each of the three elements in the array has an address, which can be derived using the
& operator. For example, the expression

&list[1]

has the pointer value 1008 because the element list[1] is stored at that address. Moreover, the
index value need not be constant. The selection expression

1000 …………

…………

…………

list[0]

1008 …………

…………

…………

list[1]

1016 …………

…………

…………

list[2]



list[i]

is an lvalue, and it is therefore legal to write

&list[i]

which indicates the address of the it h element in list.
Because the address of the it h element in list depends on the value of the variable i , the

C compiler cannot compute this address when compiling the program. To determine the
address, the compiler generates instructions that take the base address of the array and add
the appropriate offset, which is computed by multiplying the value of i by the size of each
array element in bytes. Thus, the numeric calculation necessary to find the address of list[i] is
given by the formula

1000 + i × 8

If i is 2, for example, the result of the address calculation is 1016, which matches the
address shown in the diagram for list[2] . Because the process of calculating the address of an
array element is entirely automatic, you don’t have to worry about the details when writing
your programs.
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When the operators + and – were introduced in Chapter 2, you probably didn’t give
them a great deal of thought. After all, you have been using these operators since
elementary school. When the operands to + and – are numbers, the result is determined by
simple arithmetic. In C, you can also apply these operators to pointers. The results are
similar arithmetic operations in certain respects but different in others. The process of
applying addition and subtraction to pointer values is called pointerpointerpointer

pointer

arithmeticarithmeticarithmetic

arithmetic

.
The fundamental insight necessary to understand how pointer arithmetic works is

encapsulated in the following rule.

In other words, if you add an integer k to a pointer value, the result is the address of the
array element at index k for an array beginning at the original pointer address.

To illustrate the Pointer Arithmetic Rule, let’s suppose that a function contains these
variable declarations:

double list[3];
double *P;

Each of these variables is given space in the frame for this function. For the array variables
list, the compiler allocates space for the three elements in the array, each of which is large
enough to hold a double. For p , the compiler allocates enough space for a pointer, which will
be used to hold the address of some lvalue of type double. If the frame begins at location
1000, the memory allocation looks like this:
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If p is a pointer to the initial element in an array arr, and k is an
integer, the following identity always holds:
p + k is defined to be &arr[k]



Since no values have been assigned to any of these variables, you have no way of
determining their initial contents. However, you can assign values to them. For example,
you can use the following assignment statements to store arbitrary values in each of the
array elements:

list[0] = 1.0;
list[1] = 1.1;
list[2] = 1.2;

and initialize the pointer variable p to the beginning of the array by executing the
assignment statement

p = &list[0];

After these assignments, the memory cells hold the following values:

In this diagram, p now points to the initial address in the array list. If you add an integer k to
the pointer p, the result is the address corresponding to the array element at index position k.
For example, if a program contained the expression

p + 2
the result of evaluating this expression would be a new pointer value that references list[2] .
Thus, in the preceding diagram, in which p points to address 1000, p + 2 points to the address
of the element that appears two elements later in the array, which is at address 1016. It’s
important to note that pointer addition is not equivalent to traditional addition because the
arithmetic must take into account the size of the base type. In this example, for each unit
that is added to a pointer value, the internal numeric value must be increased by eight to
take account of the fact that each double requires eight bytes.

The C compiler interprets subtraction of an integer from a pointer in a similar way.
The expression
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…………

list[0]
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…………
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1016 …………

…………

…………

list[2]

1024 …………

…………
p

1000
1.0 list[0]

1008
1.1 list[1]

1016
1.2 list[2]

1024 1000 p



p – k

in which p is a pointer and k is an integer, computes the address of an array element located
k elements before the address currently indicated by p. Thus, if you had set p to the address
of list[1] using

p = &list[1];

the addresses corresponding to p –1 and p + 1 would be the addresses of list[0] and list [2],
respectively.

From your perspective as a programmer, it is important to realize that pointer
arithmetic is defined so that the size of the base type is automatically taken into account.
Given any pointer p and integer k, the expression

p + k

always means the pointer k elements farther along in the array past the current setting of p,
no matter how much memory the elements require. The size is only relevant for
understanding how the computer performs this calculation internally.

The arithmetic operations *, /, and % make no sense for pointers and cannot be used
with pointer operands. Moreover, the uses of + and – are limited. In C, you can add or
subtract an integer offset from a pointer, but you cannot, for example, add two pointers
together. The only other arithmetic operation defined for pointers is subtracting one pointer
from another. The expression

p1 – p2

whereboth p1 and p2 are pointers, is defined to return the number of array elements between
the current values of p2 and p1. For example, if p1 points at list[2] and p2 points at list[0] , as
indicated in the following diagram:

the expression

p1 – p2

has the value 2 since there are two elements between the current pointer values. Another
way to think about this definition is to notice that pointer subtraction is defined such that
the value assigned to the integer variable k by the assignment

k = p1 – p2;

is precisely the value necessary to make the following relationship hold:

1000
list[0]

1008
list[1]

1016
list[2]

1024 1016 p1

1028 1000 p2



p1 == p2 + k
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Before delving further into the mysteries of pointers, it makes sense to take a new look
at the increment and decrement operators, ++ and --, which were introduced in Chapter 3.
Up to now, the programs in this text have executed these operators only for the effect on
their operands—they either add or subtract 1 from the lvalue to which they are applied.

As it happens, these operators are much more complex than the previous examples
would suggest. First of all, each of these operators can be written in either of twoways. The
operator can come after the operand to which it applies, as in the familiar

x++

or before the operand, as in

++x

The first form, in which the operator follows the operand, is called the postfixpostfixpostfix

postfix

form, the
second, the prefixprefixprefix

prefix

form.
If all you do is execute the ++ operator in isolation—as you do if it acts as a separate

statement or as the increment operator in a for loop—the prefix and postfix operators have
precisely the same effect. The difference comes only if you use these operators as part of a
larger expression. Like all operators, the ++ operator returns a value, but the value depends
on where the operator is written relative to the operand. The two cases are as follows:

x++ Calculates the value of x first and then increments it. The value returned to the
surrounding expression is the original value before the increment operation is
performed.

++x Increments the value of x first and then uses the new value as the value of the ++

operation as a whole

The – operator behaves similarly, except that the value is decremented rather than
incremented.

For example, if you were to execute the following program:

main()
{

int x, y;

x = 5;
y = ++x;
printf (“x = %d, y = %d\n” , x, y);

}

the output would look like this:

x = 6, y = 6



If, on the other hand, the program had been written as

main()
{

int x, y;

x = 5;
y = x++;
printf (“x = %d, y = %d\n” , x, y);

}

the final result would be

The statement

y = x++;

does increment x so that it has the value 6, but the value assigned to y is the value prior to
the increment operation, which is 5.

You may wonder why would anyone use such an arcane feature. The ++ and --

operators are certainly not essential. Moreover, there are not many circumstances in which
programs that embed these operators in larger expressions are demonstrably better than
those that use a simpler approach. On the other hand, ++ and -- are firmly entrenched in the
historical tradition shared by C programmers. They are idioms, and programmers use them
frequently. Because these operators are so common, you need to understand them so that
you can make sense of existing code.

As an example, let’s suppose that you wanted to set the first n elements of an array arr

to 0. The straightforward approach is to use the for statement

for (i = 0; i < n; i++) arr[i] = 0;

Some programmers, however, might notice that the increment operation can be combine
with the selection operaion and instead write

for (i = 0; i < N; ) arr[i++];

This example requires the i++ form rather than ++i. You want to increment i, but you also
want to select the elements in the array numbered 0, 1, 2, and so forth. Thus, you need the
old value of i before it is incremented as the selection expression.

On some machines—most notably the PDP-11 machine on which C was
designed—the second coding is ever so slightly more efficient than the first. Even so, the
difference in efficiency is certainly no sufficient to warrant making the change, since the
latter coding violates the spir it of the for loop. The header of a for loop should tell you
exactly what you need to know in order to understand the behavior of the index variable on
each cycle of the loop.

Using the ++ operator as part of an expression can also lead to ambiguity. Suppose, for
example, that you wanted to set every element in arr to its own index number, so that, at the
end arr[0] contained 0, arr[1] contained 1, and so on. The overly clever programmer might
write

x = 6, y = 5
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for (i = 0; i < n; )arr[i] =i++; This statement is ambiguous.

reasoning that arr[i] will be set to i and that i is then incremented to prepare for the next loop
cycle. This interpretation, however, is not guaranteed in C. Given an expression involving
a binary operator, a C program can evaluate the operands to that operator in either order,
and usually chooses the order that is most convenient for the machine. Our overly clever
programmer is assuming that the program first calculates the address of arr[i] . Then
calculates i++, and finally goes on to assign the value of i++ (which is the old value of i) to
the address it computed earlier. However, the program may very well compute the value of
i++ first and then go on to compute the value of arr[i] . The value returned as the result of the
expression i++ is still the old value of i, but by the time the computer tries to figure out what
box arr[i] refers to, i has already been incremented. Thus, the program will assign the value
0 to the box numbered 1.

One way to avoid this kind of ambiguity is to make sure that any variable you use in
conjunction with ++ or -- does not appear anywhere else in the expression. The body of the
preceding for statement violates this principle because i appears both on the left and right
sides of the assignment. The best way to avoid this kind of ambiguity is to restrict the
increment and decrement operators to their standalone form and avoid using their value in
an expression.

IncrementingIncrementingIncrementing

Incrementing

andandand

and

decrementingdecrementingdecrementing

decrementing

pointerspointerspointers

pointers

This expanded understanding of ++ and --, coupled with the earlier definition of
pointer arithmetic, makes it possible to explain one of the most common idiomatic
constructions in C, which is the expression:

*p++

The first question you need to resolve in determining what this expression might mean is
what the order of operations is. Both the * operator and the ++ operator compete here for the
operand p. Depending on the precedence and associativity rules of the language, the
expression could be equivalent to either

(*p)++

or

*(p++)

As it happens, unary operators in C are evaluated in right-to-left order. Thus, the ++ takes
precedence over the *, so the second interpretation is correct. But you still need to
determine what the expression means.

The postfix ++ operator, as you have seen before, increments the value of p and then
returns the value that p had prior to the increment operation. Since p is a pointer, you need
to define the increment operation in terms of pointer arithmetic. Thus, in evaluating p+1,
you know that the resulting value should point to the next element in the array. If p
originally pointed to arr[0] , for example, the increment operation would cause it to point to
arr[1] . Thus, the expression



*p++

has the following meaning in English:

Dereference the pointer p and return as an lvalue the object to which it currently points.
As a side effect, increment the value of p so that, if the original lvalue was an element
within an array, the new value of p to the next element in that array.

To see why this operator might be useful, however, it is necessary to consider in more detail
how pointers and arrays relate to one another.
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arrays

Of the unusual characteristics of C, one of the most interesting is that the name of an
array is treated as being synonymous with a pointer to the initial element in that array. This
concept is most easily illustrated by example.

The declaration

int intlist[5];

allocates space for an array of five integers, which is assigned storage somewhere inside the
computer’s memory, as illustrated in the following diagram:

The addresses that appear to the left of the boxes are arbitrary; in this diagram, the initial
address is shown as 2000, but it could just as easily have been any other address.

The name intlist represents an array but can also be used directly as a pointer value.
When it is used as a pointer, intlist is defined to be the address of the initial element in the
array. For any array arr, the following identity always holds in C:

arr is defined to be identical to &arr[0]

Given any array name, you can assign its address to any pointer variable directly. The most
common example of this equivalence occurs when an array is passed from one function to
another. The called function typically declares the array using the syntax illustrated by the
Sort prototype from Chapter 12:

void SortIntegerArray (int array[], int n);

If you were to call Sort with the array intlist defined above, the value passed to the formal
parameter array within Sort would be the address of the first element in intlist . The Sort

function would work exactly the same way if the prototype has been written as

2000 intlist[0]

2004 intlist[1]

2008 intlist[2]

2012 intlist[3]

2016 intlist[4]



void SortIntegerArray (int *array, int n);

In this case, the first argument is declared as a pointer, but the effect is the same. The
address of the first element in intlist is copied into the formal parameter array and
manipulated using pointer arithmetic. Inside the machine, the declarations are equivalent
and the same operations can be applied in either case.

As a general rule, you should declare parameters in the way that reflects their usage. If
you intend to use a parameter as an array and select elements from it, you should declare
that parameter as an array. If you intend to use the parameter as a pointer and dereference it,
you should declare it as a pointer.

The crucial difference between arrays and pointers in C comes into play when
variables are originally declared, not when those values are passed as parameters. The
fundamental distinction between the declaration

int array[5];

and the declaration

int *p;

is one of memory allocation. The first declaration reserves five consecutive words of
memory capable of holding the array elements. The second declaration reserves only a
single word, which is large enough only to hold a machine address.

The implication of this difference is extremely important to you as a programmer. If
you declare an array, you have storage to work with; if you declare a pointer variable, that
variable is not associated with any storage until you initialize it explicitly.

Given your current level of understanding, the only way to use a pointer as an array is
to initialize the pointer by assigning the base address of the array to the pointer variable. If,
aftermaking the preceding declarations, you were to write

p = array;

the pointer variable p would then pointer to the same addresses used for array, and you
could use the twonames interchangeably.

The technique of setting a pointer to the address of an existing array is rather limited.
After all, if you already have an array name, you might as well use it. Assigning that name
to a pointer does not really do you any good. The real advantage of using a pointer as an
array comes form the fact that you can initialize that pointer to new memory that has not
previously be declared, which allows you to create new arrays as the program runs. This
important programming technique is described in the next section.
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Up to this point in the text, you have seen two mechanisms for assigning memory to
variables. When you declare a global variable, the compiler allocates memory space for that
variable that persists throughout the entire program. This style of allocation is called staticstaticstatic

static

allocationallocationallocation

allocation

because the variables are assigned to fixed locations in memory. When you
declare a local variable inside a function, the space for that variable is allocated on the
system stack. Calling the function assigns memory to the variable, which is then freed



when the function returns. This style of allocation is called automaticautomaticautomatic

automatic

allocationallocationallocation

allocation

...

.

There is
also a third way of allocating memory that permits you to acquire new memory when you
need it and to free it explicitly when it is no longer needed. The process of acquiring new
storage while the program is running is called dynamicdynamicdynamic

dynamic

allocationallocationallocation

allocation

.
When a program is loaded into memory, it usually occupies only a fraction of the

available storage. In most systems, you can allocate some of the unused storage to the
program whenever it needs more memory. For example, if you need space for a new array
while the program is running, you can reserve part of the unallocated memory, leaving the
rest for subsequent allocations. The pool of unallocated memory available to a program is
called the heapheapheap

heap

.
As part of the library interface stdlib.h , the ANSI C environment provides functions for

allocating new memory from the heap. The most important function is called malloc , which
has the effect of allocating a block of memory of a given size. The size of the block to be
allocated is given in bytes (as you recall, a byte is the memory unit large enough to hold a
character value). For example, if you want to allocate 10 bytes of memory, you call

malloc (10)

which return a pointer to a block of storage 10 bytes in size. In order to use the newly
allocated storage, you must store the result of malloc in a pointer variable, after which you
can use that pointer variable just like an array.
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void *

Before giving examples of the use of malloc , however, it is important to bring up a
potentially thorny issue. In C, pointers have types. If you declare a variable ip by writing

int *ip;

that variable has the conceptual type pointer-to-int. The declaration

char *cp;

introduces a variable cp whose type is pointer-to-char. In ANSI C, these types are distinct,
and the compiler will issue a warning message if you try to assign one of those pointers to
the other.

The idea that pointers have types raises the interesting question of what type of malloc
returns. The malloc function us used to allocate new storage for any type of value that the
caller desires and must therefore return a “general” pointer of an as-yet-unspecified type. In
C, the general pointer type is indicated as if were a pointer to the nonexistent type void,
which is also used to indicate functions that return no values or empty parameter lists. If
you declare a pointer to be of type pointer-to-void, as in

void *vp;

you can store a pointer value of any type in that variable but you are not allowed to use the *
operator to dereference vp. The compiler has no idea what base type to use for vp, and there
is thus no meaningful way to talk about the value to which vp points.

The type void * is nonetheless useful because it allows functions—malloc , in

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

Be sure you can
differentiate the
procedure prototype

void f(...);

from the function
prototype

void *f (...);

which declares a
function returning a
general pointer.



particular—to return general pointers whose actual types the caller can establish later. The
malloc function returns a pointer value of type void *, which means that its prototype is 1:

void *malloc (int nBytes);

Note that the result type of this function prototype is declared in much the same way that a
pointer variable is. The * indicating that the result is a pointer is syntactically associated
with the function name and not with the base type, even though the conceptual association
works the other way around. C’s syntax for functions that return pointer values can be
confusing until you get used to it.

ANSI C performs automatic conversions between the type pointer-to-void and pointer
types that specify an explicit base type. For example, if you declare the character pointer cp

as

char *cp;

you can assign the result of malloc to it directly , using the statement

cp = malloc (10);

Partly for historical reasons and partly because doing so makes the conversion between
pointer types explicit, many programmers write this statement using a type cast to convert
the result of malloc to a character pointer before making the assignment, as follows:

cp = (char *) malloc (10);

Whether or not the explicit type cast is used, this statement ahs the effect of allocating 10
bytes of new memory space and sorting the address of the first byte in cp.

DynamicDynamicDynamic

Dynamic

arraysarraysarrays

arrays

Form a conceptual perspective, an assignment of the form

cp = (char *) malloc (10);

creates the following configuration in memory;

The variable cp points to a set of 10 consecutive bytes that have been allocated in the heap.
Because pointers and arrays are freely interchangeable in C, the variable now acts exactly
as if it had been declared as an array of 10 characters.

Arrays that you allocate on the heap and reference using a pointer variable are called
dynamic arrays and play a signif icant role in modern programming. In general, allocating a
dynamic array consists of the following steps:

cp

1 The argument type to malloc is actually the type size_t, which is defined in the stdde f.h header file.
On some machines, the type int may not be large enough to represent the size of a large block of memory.
In any event, the argument is conceptually an integer



1. Declare a pointer variable to hold the base of the array.
2. Call malloc to allocate memory for the element of the array. Because different data

types require amounts of memory, the malloc call must request a byte count equal
to the number of elements in the array multiplied by the size in bytes of each
element.

3. Assign the result of malloc to the pointer variable.

For example, to allocate a new integer array of 10 elements and then assign that storage to
the variable arr, you must first declare arr using

int *arr;

and then allocate its storage by writing

arr = malloc (10 * sizeof (int));

The principal differences between declared arrays and dynamic arrays are that

 The memory associated with a declared array is allocated automatically as part of
the declaration process; when the frame for the function declaring the array is
created, all the elements of that array are allocated as part of the of the frame. In
the case of a dynamic array, the actual memory is not allocated until you call the
malloc function.

 The size of a declared array must be a constant in the program. Because their
memory comes form the heap, dynamic arrays can be of any size. Moreover, you
can determine the size of the array according to the amount of data. If you know
you need an array with precisely N elements, you can reserve just the right
amount of storage.
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Since all computer memory systems are finite in size, the heap will eventually run out
of space. When this occurs, malloc returns the pointer NULL to indicate its failure to allocate a
block of the requested size. As a conscientious programmer, you should check for this
possibility on every call to malloc . Thus, after allocating a dynamic array, you need to write
something like

arr = malloc (10 * sizeof (int));
if (arr == NULL) Error (“No memory available ”);

Since dynamic allocation tends to be used frequently in a wide class of programs error
checking—as important as it is—can become extremely tedious. It also has a tendency to
obscure the structure of the algorithm by cluttering the code with error messages. When
you run out of memory, there is usually nothing you can do about it; having the program
display an error message and halt is often the only reasonable option. Thus, it probably
makes sense to take the call to malloc and embed it within a new abstraction layer that
includes the out-of-memory test.



The genlib.h interface exports a function GetBlock that combines the action of malloc with
the test for the NULL result. If GetBlock detects the out-of-memory condition, it simply calls
the Error function. Thus, if you replace the preceding two lines of code with

arr = GetBlock (10 * sizeof (int));

the implementation of the GetBlock function combines the operations of allocating memory
and testing for errors. Because GetBlock tidies up the memory allocation operations and
makes the programs that use it easier to read, this text generally uses GetBlock instead of
malloc . Conceptually, the two functions performexactly the same job.

To simplify the process of allocating dynamic arrays still further, the genlib.h library
also defines the function NewArray, which takes the number of elements and the base type
and returns a pointer to a dynamic array of the specified size. Thus, to allocate a dynamic
array of 50 strings, you would call NewArray (50, stirng).

FreeingFreeingFreeing

Freeing

memorymemorymemory

memory

One way to help ensure that you don’t run out of memory is to free any storage you
have allocated when you are finished using it. The standard ANSI libraries provide a
function free, which returns to the heap memory that was previously allocated using malloc .
If, for example, you determine that you are completely finished using the storage allocated
for arr, you can free that storage for later reuse by calling

free (arr);

Because this text uses GetBlock to perform dynamic allocation, however, it makes more sense
to present a unif ied abstraction that includes compatibly name mechanisms for allocating
and freeing storage. For this purpose, the genlib.h interface also includes a FreeBlock function,
which is identical in operation to free .

As it turns out, knowing when to free a piece of memory is not such an easy task. The
central problem is that the operations of allocating and freeing memory are most naturally
situated on opposite sides of the interface boundary between an implementation and its
client. The implementation knows when to allocate memory and returns pointers to the
client. The implementation, however, does not know when the client is finished with the
allocated object so freeing the storage had to remain the client’s responsibility, even though
the client may not understand enough about the object’s structure to do so.

Given the size of most memories today, you can often allocate whatever memory you
need without ever bothering to free it again. Such a strategy works for almost all programs
that do not need to run for any signif icant amount of time. The problem of limited memory
only becomes consequential when you design an application that needs to run for a long
period of time, such as the operating system on which all the other facilities of the system
depend. In these applications, it is important to free memory when you no longer need it.

Some languages support a system for dynamic allocation that actively goes through
memory to see what part of it are in use, freeing any storage that is no longer needed. This
strategy is called garbagegarbagegarbage

garbage

collectioncollectioncollection

collection

. Garbage-collecting allocators exist for C, and it is
likely that their use will increase in coming years. If it does, the policy of ignoring



deallocation will become reasonable even in long-running applications because you will be
able to rely on the garbage collector perform the deallocation operations automatically.

For the most part, this text assumes that your applications fall into the class of
problems for which allocating memory whenever you need it is a workable strategy. This
assumption will simplify your lives considerably and make it easier for you to concentrate
on algorithmic details.

SUMMARYSUMMARYSUMMARY
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This chapter has introduced you to the concept of a pointer, which is defined to be the
address of data value in the computer’s memory. Pointers are useful because they

 Allow you to represent large data structures compactly
 Provide a facility for sharing data between different components of a program
 Make it possible to reserve new memory during program execution.
 Offer a powerfulmechanism for recording relationships among data items.

Although this chapter has illustrated some of these benefits, the examples in Chapters 14
and 16 give you further insight into what pointers are valuable in programming.

Important points introduced in this chapter include:

 An lvalue is any expression in C that refers to a memory location and therefore has an
address.

 The address of an lvalue is called a pointer and can be manipulated as data by a
program.

 Like other variables, pointer variables must be declared before they are used.
 The fundamental operators on pointers are & and *. The & operator takes an lvalue and

returns a pointer to it; the * operator takes a pointer and returns the lvalue to which it
points. The operation of moving from a pointer to the lvalue to which it points is
called dereferencing the pointer.

 Pointer assignment makes two pointers indicate the same location. Value assignment
copies the value from the address specified by one pointer into the address specified
by another.

 A special pointer value called NULL is used to indicate that a pointer does not currently
point to any data.

 Pointers can be used to allow a function to share data with its caller. This process is
termed call by reference.

 In C, pointers and arrays are closely associated. You can use pointers as if they were
arrays and vice versa. The relationship between pointers and arrays also makes it
possible to give sensible meanings to the arithmetic operators + and – in the pointer
domain.

 The operators ++ and -- can be written either before or after the operand to which they
apply. The ++x form first increments x and then returns the incremented value. The x++

form increments x but returns the value x had before the increment was performed.



 The type void * is used to indicate a general pointer type that is compatible with all
other pointer types.

 While a program is running, you can allocate new memory dynamically from a pool of
unused storage called the heap. The ANSI function malloc is used to allocate heap
memory, which is the available for use. When that memory is no longer needed, the
program can return it to the heap by calling the function free. In the programs in this
book, dynamic allocation is typically performed by the functions GetBolck and FreeBlock .
These functions are identical to malloc and free except that they handle the out-of-
memory error internally.

 You can use dynamic allocation to allocate arrays whose size if determined when the
program runs, not when it is compiled. Such arrays are called dynamic arrays .
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1. Define the terms pointer and lvalue.
2. What are the four uses of pointers outlined in the introduction to this chapter?
3. What declaration would you use to declare a variable named flagp as a pointer to a

Boolean value?
4. What are the types of the variables introduced by the declaration

double *p1, p2;

5. Explain the difference between pointer assignment and value assignment.
6. Assuming that variables of type double require eight bytes of memory and that a

pointer requires four, draw a memory diagram showing a portion of the stack frame
that contains the following declarations:

double d1;
double d2;
double *dp1;
double *dp2;

In your diagram, trace through the operation of these statements:

dp1 = &d1;
dp2 = &d2;
*dp1 = 3.14159;
d2 = 2.71828;
dp1 = dp2;
*dp1 -= d2;

7. True or false: For any variable x, the expression *&x is essentially a synonym for x.
8. True or false: For any variable x, the expression &*x is essentially a synonym for x.
9. What is the internal representation of the constant NULL?
10. What happens if you try to dereference a NULL pointer?
11. What does the phrase call by reference mean?
12. Without knowing anything about the function ApplySpecialOperation , determine which of

the integer variables x and y could possibly be affected by the call

ApplySpecialOperation (&x, y);



13. In what circumstances are you likely to use call by reference?
14. Assuming that intArray is declared as

int intArray[10];

and that j is a integer variable, describe the steps the computer would take to determine
the value of the following expression:

&intArray[j + 3];

15. If arr is declared to be an array, describe the distinction between the expressions

arr[2]

and

arr + 2

16. Assume that variables of type double take up eight bytes on the computer system you are
using. If the base address of the array doubleArray is 1000, what is the address value of
doubleArray + 5?

17. Suppose that the values of the integer variables x and y are 2 and 5, respectively. In
each of the following cases, determine the value of the expression and show the effect
of executing that expression on the values of x and y. (In answering this question, treat
each of the expressions as independent rather than cumulative. In other words, you
should assume that x and y have the values 2 and 5 prior to each calculation.)

a. x++
b. –x
c. x++ + ++y
d. y += x--

18. Give an example of an expression involving the ++ operator for which the results would
differ depending on the interpretation used by the machine.

19. True or false: If p is a pointer variable, the expression p++ adds 1 to the internal
representation of p.

20. Which operator, * or ++, is applied first in the expression

*p++

In general, what rule does C use to determine the precedence of unary operators?
21. True or false: Because C treats arrays as pointers to their initial element, declaring an

array variable is identical internally to declaring the same variable as a pointer.
22. What is the heap?
23. Describe the effect of the malloc function from your perspective as a client.
24. What is the purpose of the type void *?
25. How would you allocate a dynamic array called flags consisting of 100 Boolean values?
26. What is the difference between the malloc function and the GetBlock function exported by

genlib.h?
27. What is the purpose of the function free (or the identical genlib.h function FreeBlock)?
28. What is meant by the term garbage collection?
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1. In C, you can use printf to display the internal value of a pointer by using a type cast to
convert the pointer to a long and then displaying the resulting value with the printf format
code %lu. For example, if ip is a pointer, you can display its internal numeric
representation using the statement

printf (“ip = %lu\n”, (long) ip);

Write a program that displays the addresses for the global variables

int count;
double array[100];
char *cp;

What do the results tell you about where in memory these variables are allocated on
your computer?

2. Write a function GetDate with the prototype

void GetDate (int *dp, int *mp, int *yp);

that reads in a date from the user in the form

dd-mmm-yy

where dd is a one- or two-digit day, mmm is a three-letter abbreviation for a month, and
yy is a two-digit year. Your implementation should take apart the components of the
date and give them back to the caller in numeric form by assigning values to the three
arguments, each of which is passed by reference.

Test your function with a simple main program that is capable of generating this
sample run:

3. Design a function prototype that would allow a single function to find and return
simultaneously both the lowest and highest values in an array of type double. Implement
and test your function as shown in the following sample run:

Ente a date as dd-mmm-yy: 28-Aug-6328-Aug-6328-Aug-63

28-Aug-63





Day = 28
Month = 8
Year = 63



4. Rewrite the selection sort implementation presented in Figure 12-5 so that all of the
array references are changed into pointer references. When you finish, the square
bracket characters [and] should not appear in your source file. Even so, the
SortIntegerArray function should behave exactly as it did before.

5. Write a function IndexArray (n) that returns a pointer to a dynamically allocated integer
array with n elements, each of which is initialized to its own index. For example,
assuming that ip is declared as

int *ip;

the statement

ip = indexArray (10);

should produce the following memory configuration:

6. Write a function Tabula te (array, n) that takes an array of integers and its effective size and
writes out a tabulation showing the number of times each element appears. For
example, given the input array

your program should produce this tabulation:

ip

0 1 2 3 4 5 6 7 8 9

91 93 98 92 92 95 93 92 91 95 99 92 98

Enter the elemen ts of the array, one perline.
Use –1 to signal the end of the list.
? 676767

67





? 787878

78





? 757575

75





? 707070

70





? 717171

71





? 808080

80





? 696969

69





? 868686

86





? 656565

65





? 545454

54





? 767676

76





? 787878

78





? 707070

70





? 686868

68





? 777777

77





? –––

–

111

1





The range of values is 54-86

91: 2
92: 4
93: 2
95: 2
98: 2
99: 1



The difference between this problem and a more traditional histogram problem lies in
the fact that you don’t know the range of input values in advance. Here, the input
values lie between 91 and 99. For a different set of input data, the values might lie
between 600 and 625.

Because of this constraint, you cannot declare a counting array at the beginning of
the function and know that all the values in the data array will correspond to index
positions in the counting array. In this case, you should solve the problem by first
calculating the range of the data and then allocating an array the contains the
appropriate number of elements so that one index position corresponds to each of the
possible data items in that range.

7. Suppose that the C libraries did not provide a malloc function for dynamic allocation. To
a certain extent, you could achieve the same result by allocating a large global array at
the beginning of a program and giving out pieces of that array to clients who need to
use additional storage.

Design and implement an interface myalloc.h that exports a function MyGetBlock to
simulate the dynamic allocation process. Calling MyGetBlock (nBytes) should return a
pointer to a block of memory that is nBytes long. Each new memory block is taken from
the large global array, beginning wherever the last block left off. Make sure that your
implementation includes any static initialization necessary for the first call to MyGetBlock
to succeed.

Consider the memory you allocate to be assigned for the lifetime of the program.
Designing an allocation facility that allows clients to free memory is beyond the scope
of this text.

8. Write a program that reads simple data declarations and responds with the amount of
memory that would be allocated to that variable. For example, the following sample
run shows the output of the program for twopossible input lines:

Each input line should consist of

a. A type name, which must be one of the following: char , int , short, long , floa t, or
double . (You can obtain the sizes of these types by using the sizeof operator.)

b. One or more individual declaration specifications (as outlined below)
separated by commas.

c. A semicolon marking the end of the line.

Your program should exit if it reads a blank input line.
The individual declaration specifications must consist of a variable name, which

Enter variable declarations, ending with a blank line.
intintint

int

x,x,x,

x,

y;y;y;

y;





x requir es 2 bytes
y requir es 2 bytes
charcharchar

char

c,c,c,

c,

*cptr,*cptr,*cptr,

*cptr,

carray[80];carray[80];carray[80];

carray[80];





c requir es 1 bytes
cptr requir es 4 bytes
carray requir es 80 bytes



can be modified in either or both of the following ways:

 Preceded by an asterisk, to indicate a pointer variable
 Followed by an integer enclosed in brackets, to indicate an array

Although multiple levels of pointers or multidimensional arrays are legal in C, your
program should limit declarations to a single asterisk and subscript for each variable.

Your program will be much easier to write if you use the scanner module from
Chapter 10.
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And, hark! what discord follows;
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OBJECTIVES

 To understand the underlying representation of string data.
 To appreciate the differences between strings variables declared as arrays and those

declared as pointers.
 To be able to use the functions in the ANSI string library.
 To recognize how you can implement the strlib.h interface using the string.h functions.

YYY

Y

ou have been using string ever since Chapter 2 and have been able to perform

high-level string operations since Chapter 9. So far, however, the programs in this text
have used string only as an abstract type. As an abstract type, a value of type string acts as a
complete and indivisible entity. You pass strings to functions, return them as results, and
assign one string to another. If you want to select a character from a string or perform a
more complex string operation, you must call one of the functions exported by the srlib.h

interface.
As with any interface, one of the principal goals of strlib.h is to hide unnecessary detail

from the client. However, because string manipulation is an important aspect of many
programming applications, you must learn to work with strings at a lower level of detail.
To get a complete picture of how strings work, it is essential for you to look beyond the
abstraction barrier and consider the underlying representation.
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To use strings effectively in C, you must be able to think about them in three ways:

1. As an array of characters
2. As a pointer to an individual character
3. As a complete entity with conceptual integrity as a whole

These three views are not conflicting but complementary. Each view describes one
perspective on reality. Given a string stored within the computer, you can choose to think
about it in any of these three ways. The string itself does not change because you choose to
regard it differently. The only thing that changes is your conception of how that string is
represented.
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Internally, strings are represented as arrays of characters. Whenever a string is stored
in memory, the characters within it are assigned to consecutive bytes. For example, when
the compiler sees the string constant “Hello” in a program, it stores the characters that make
up the string in consecutive bytes of memory.

Storing the characters themselves, however, is not sufficient to represent all the
important information a string. Programs that manipulate string values must have some
way to determine where each string ends. If the compiler were to store the characters for
the string constant “there ” immediately after the characters in the string constant “Hello” ,
memory would look this:

The problem with this representation is that the two strings run together. If strings were
stored in this fashion, there would be no way to tell where one string ended and the next
began.

To avoid this problem, the C compiler always stores a null character in the byte that
immediately follows the last character of a string. As noted in the section on “Special
characters” in Chapter 9, the null character is written as \0 in string and character constants
and has 0 as its ASCII code. In a string, the null character serves as a sentinel marking the
end. Thus, if the string constants “Hello” and “ there” appear in a program, the C compiler
reserves six bytes of memory space for each string and initializes memory as follow:

1000 H

1001 e

1002 l

1003 l

1004 o
1005 t

1006 h

1007 e

1008 r

1009 e

1000 H

1001 e

1002 l

1003 l
1004 o

1005 t

1006 h

1007 e

1008 r

This diagram does
not correctly reflect
the way strings are
sorted in memory.



In C, you can use any character array to hold string data. For example, you can declare the
array carray and initialize it to hold the string “Hello”with the following code:

carray[0] = ‘H’;
carray[1] = ‘e’;
carray[2] = ‘ l’;
carray[3] = ‘ l’;
carray[4] = ‘o’;
carray[5] = ‘ \0’;

Because a string is an array, it is possible to choose the i th character from a string str using
the notation for array selection, as follows:

str[i]

Just as with any array, index numbers in a string begin at 0. Thus, if str contains the string
“Hello”, then str[0] has the value ‘H’, str[1] has the value ‘e’, and so on. Selecting characters from a
string is therefore similar to calling the IthChar function from the strlib library.

If you use array notation to do string processing, you need to learn a new set of idioms.
The standard idiom for processing every character in a string looks like this 1:

for (i = 0; str[i] != ‘ \0’; i++) {
…body of loop that manipulates IthChar (str, i)…

}

On each loop cycle, the selection expression str[i] refers to the ith character in the string.
Because the purpose of the loop is to process every character, the loop continues until str[i]
selects the null character marking the end of the string. This for loop is therefore equivalent
in function to the following idiom, introduced in Chapter 9, for the same purpose:

for (i = 0; i < StringLength(str); i++) {
…body of loop that manipulates IthChar (str, i)…

}

The array selection form is considerably more efficient than the version that uses the
functions from the strlib.h interface. For one thing, using array selection avoids the cost of
calling the IthChar function. Moreover, using

i < StringLength (str)

as the test condition in the for loop control line means that the program must recomputed
the length on every cycle of the loop, even though the length of he string does not usually
change. By checking for the sentinel character, the program can avoid these redundant
calculations.

1009 e

1 As you will discover if you ed existing C code, many C programmers use an idiom for procession
strings that is even more compact than the example. Because C treats the value zero as FALSE and any
nonzero value as TRUE, man C programmers leave the comparison out of the for loop control line, as
follows:

for (i = 0; str[i]; i++

Even though you will often encounter this shorthand form in existing C programs and therefore need to
recognize it, this text always includes the comparison explicitly to emphasize the conceptual distinction
between Boolean and integer data.



To see how the two styles compare, you can reemployment the FindFirstVowel function
introduced in the Pig Latin example in Figure 10-5 without using any functions from the
strlib.h interface. The original implementation from Chapter 10 appears in Figure 14-1.

FIGUREFIGUREFIGURE

FIGURE

14-114-114-1

14-1

Implementation of FindFirstVowelFindFirstVowelFindFirstVowel

FindFirstVowel

using abstract strings

int FindFirstVowel (string word)
{

int i;

for (I = 0; i < StringLength (word); i++) {
if (IsVowel (IthChar (word, i))) return (i);

}
return (-1);

}

If you write the same function using array notation, the implementation is that shown
in Figure 14-2
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Array-based implementation of FindFirstVowelFindFirstVowelFindFirstVowel

FindFirstVowel

int FindFirstVowel (char word[])
{

int i;

for (i = 0; i < StringLength (word); i++) {
if (IsVowel (IthChar (word, i ))) return (i);

}
return (-1);

}

Algorithmically, the two implementations are identical. They differ only in the details
of coding: how the end of the string is detected and how individual characters are selected.

StringStringString

String
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pointerspointerspointers

pointers

As with any array in C, a character array can also be interpreted as a pointer to its first
element. Moreover, given a pointer to a string value, you can use pointer arithmetic to refer
to individual characters within that string. Thus, FindFirstVowel can also be coded as shown in
Figure 14-3.
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Pointer-based implementation of FindFirstVowelFindFirstVowelFindFirstVowel

FindFirstVowel

int FindFirstVowel (char *word)
{

char *cp;

for (cp = word; *cp != ‘\0’ ; cp++) {
if (IsVowel (*cp)) return (cp – word);

}
return (-1);

}

In this case, the for loop control line



for (cp = word; *cp != ‘\0’ ; cp++)

begins by initializing the pointer variable cp to the base address of word and advances it
along the string until it pointers to the null character at the end. Inside the for loop, the
function checks each character to see if it is vowel. As soon as it finds one, the function
calculates the index of that character by subtracting the base address of the array from the
current value of cp. For example, if FindFirstVowel were called on the string “scram”, the
function would find the first vowel in the following position:

The result returned by the function is the difference between these two pointers, defined in
terms of element positions. Because cp pointer to word[3], the expression cp – word returns 3,
which is the index of the first vowel.
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Even though this chapter focuses on the underlying representation of string, it is still
valuable to think of strings abstractly. If you need to refer to the individual characters in a
string, you need to pay attention to its representation. In many cases, however, it is possible
to think of a string as a unified whole. Doing so makes the program easier to comprehend
because you need not be concerned with as many details. Up to now, this text has
encouraged you to think about strings only from this holistic perspective.

The genlib.h library defines a type named string primarily to emphasize that strings
make sense as a conceptually distinct type. The definition in genlib.h is

typedef char *string;

which makes string identical to the type char *. The two types mean exactly the same thing to
the compiler. The two type names, however, send different messages to human readers. If
you declare a variable to be of type char *, you reveal its underlying representation as a
pointer. On the other hand, if you declare the same variable to be of type string , you focus
the reader’s attention on the string as a whole.

StringStringString

String

parametersparametersparameters

parameters

From the caller ’s point of view, each of the three versions of FindFirstVowel presented in
Figures 14-1 through 14-3 works in exactly the same way. The caller provides a string
value, and FindFirstVowel returns an integer corresponding to the position of the first vowel.

word cp

s c r a m \0

0 1 2 3 4 5



The implementations, however, treat those strings differently, as reflected by the different
prototype. The original version presented in Figure 14-1 treat the string as an abstract
whole and refers to individual characters only through the functions defined in strlib.h . The
function emphasizes the abstract character of its formal parameter by declaring it to be of
the abstract type string , as illustrated by its header line

int FindFirstVowel (string word)

The implementation given in Figure 14-2 views word as an array of characters. Inside the
for loop, it selects individual characters using array subscript notation. Because this
implementation of the function uses array notation, its formal parameter is declared as a
character array, as follows:

int FindFirstVowel (char word[])

The implementation presented in Figure 14-3 treats its argument as a pointer, declaring it as
such with the following function header line:

int FindFirstVowel (char *word)

As far as the C compiler is concerned, the parameter declarations in the three function
headers are identical and call be used interchangeably. The value in choosing a particular
representation lies in the additional information it gives the reader. In general, you should
declarer formal parameters to match the style in which those parameters are used. If you
think of a string as an array of characters and select individual characters using square
brackets, you should declare the string as an array. If you think of the string as a pointer and
use * to dereference it, you should declare the string as a pointer. If you think of the string as
a complete entity that is more important than its component parts, the best approach is to
declare it using the type string .
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String

variablesvariablesvariables
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Despite the fact that arrays and pointers can often be used interchangeably in C, it is
essential to recognize that declaring a variable as an array is not the same as declaring it as
a pointer, unless that variable is a formal parameter as described in the preceding section.
For all other types of variables, your choice of declaration style determines how memory is
allocated.

If you declare an array by writing the line

char carray[MaxChars];

space is allocated for carray in the frame of the current function. You have MaxChars bytes that
you can use for character storage, as shown in this conceptual diagram:

carray

MaxChars elements



Because the storage is allocated explicitly, you can assign values directly to the
elements of carray . You can also pass the carray array to some other function, which is then
free to manipulate that storage.

If you instead declare a variable cptr using the declaration

char *cptr;

or, equivalently, as

string cptr;

no character memory is assigned at all. The variable cptr is simply a pointer variable:

Because this variable has not been explicitly initialized, its contents are undetermined.
It might contain 0 or 42 or any other random value left over from the last time that location
was used. Suppose that cptr just happens to contain 1729, as shown:

If you change the contents of cptr[0], you will change the value stored in address 1729.
Unfortunately, address 1792 might be used for a variable or a part of your program.
Making such assignments can easily corrupt critical data and cause your program to crash.

Before you can use cptr, you must provide the necessary character memory by
assigning it a pointer value that corresponds to the address of some usable region of
memory. One approach you can take is to assign to cptr the address of an existing array. For
example, if you execute the statement

cptr = carray;

The resulting conceptual picture looks like this:

cptr

carray

At this point, cptr and carray are synonymous.
A more common strategy for obtaining memory is to use GetBlock or malloc to allocate

that memory dynamically. The memory diagram of the statement

cptr = GetBlock (MaxChars);

is nearly identical to the preceding one. The only difference is that the character storage is
allocated dynamically from the heap and therefore looks like this:

cptr

cptr

cptr

1729
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When you declare a
pointer variable, be sure
that you initialize it so that
it points to real locations in
memory. Failure to
initialize pointers is a
common source of errors.
These errors are hard to
detec t because the
compiler cannot catch
them. The best approach
is to avoid them altogether.



memory allocated dynamically from the heap

After this assignment, you can use cptr as if it were a character array. It now has memory
associated with it, and you can safely refer to those individual elements as long as you do
not reference elements outside the boundaries of the allocated region of storage.
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In C, if you declare a pointer variable, it acts much like any other variable.
Conceptually, it represents a named box that holds the address of some other value. As with
any other variable, you give a pointer variable a new value by writing an assignment
statement. For example, once you have declared the pointer variable cptr by writing

char *cptr;

you can assign a value to the cptr box by writing a statement such as

cptr = NULL;

This statement assigns the value on the right-hand side to the memory cell that corresponds
to the cptr variable. In this respect, pointer variables act just like variables of the basic type.

If you declare an array, on the other hand, the situation is quite different. Conceptually
specking, an array declaration reserves many boxes, one for each element in the array. The
name of the array corresponds to the entire collection of boxes and not to any single box. As
such, the name of an array is not a simple variable and cannot be used like one. In particular,
the name of an array is not an lvalue in C and cannot appear on the left-hand side of an
assignment operation.

The fact that arrays are not lvalues has important implications in terms of string
manipulation. If you allocate string storage by declaring an array variable such as

char carray[6];

it is illegal to write an assignment statement like

carray = “hello ”; This statement is illegal

Because the variable carray is not an lvalue, you cannot assign a value to it.
There is no such restriction if you declare a string as a pointer. For example, after

making the declaration

char *cptr;

it is perfectly legal to write

cptr = “world” ;

The compiler puts the characters for “world” somewhere in memory, and the assignment
statement stores the address of the first character of the string in cptr . For example, if the
compiler placed the characters for “world” in memory locations beginning at 500, the effect of
executing the assignment to cptr could be diagrammed as follows:
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Array names are not
lvalues in C. It is therefore
illegal to assign a value to
any array, and you mus t
instead assign values to
individual array elemen ts.
In particular, if you declare
a string as an array of
characters, you cannot
assign string values
directly to that array.



The variable cptr is simply updated to point to a new position.
A similar restriction applies when you call a function. Even thought a function can

accept an array as a parameter, it is not legal in C for a function to return an array. Functions
can, however, return pointers, which allows you to achieve much the same effect. If you
have used dynamic allocation within a function to create storage for an array, you can return
a pointer to that storage as the value of the function, assign the result to a pointer variable,
and the use that pointer variable as if it were an array.

As an example, the CharToStirng function in the strlib library can be implemented as
follows:

string CharToStirng (char ch)
{

char *cptr;

cptr = GetBlock (2);
cptr[0] = ch;
cptr[1] = ‘ \0’;
return (cptr);

}

The first statement allocates two bytes of memory form the heap: one for the character and
on for the null character that must appear at the end every string. The next two statements
assign the correct values to those two bytes. The final statement returns the pointer to the
newly allocated storage as the value of he function. It is then legal for a client to write a
statement such as

star = CharToString (‘*’);

assuming that star is declared as a character pointer or, equivalently, as the abstract type
string.

It is important to realize that this approach works only if you allocate the array storage
dynamically. If you try to return a pointer to an array declared within a function, your
program will fail. The problem is that the memory assigned to an array declared as a local
variable is deallocated when that function returns.

To understand the problem, imagine that you had tried to implement CharToString using
the following incorrect approach:

strin CharToString (char ch)

500 w

501 o

502 r
503 l

504 d

505 \0

1000
500 cptr



{
char carray[2];

carray[0] = ch; This implementation is in error because it
carray[1] = ‘ \0’; returns a pointer to memory declared within
reuturn (carray); this function’s frame.

}

The contents of the array variable carray are correct at the moment the function returns. The
problem is that te memory for carray is allocated in the stack frame for CharToString . When
CharToStirng returns, all the memory in its stack frame is deallocated and made available for
use by other functions. The client program that received the result of the buggy
implementation of CharToString therefore has a pointer to memory whose contents will
myseriously change when another function uses that same memory at a later point.
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Whenever you use a string in a program, you must decide how to declare the variable
that holds that string. Should you declare it as an array and reserve the space for the
individual characters as part of the declaration? Or should you declare it as a pointer and
then allocate space for the characters as the program runs? To a large extent, the answer
depends on the tools you use to manipulate the string. Different library abstractions
incorporate different models of string behavior that determine which declaration style
makes sense for use with the particular package. If a library abstraction takes care of string
allocation for you—as the strlib library introduced in Chapter 9 does—you should use the
pointer style of declaration. On their own string storage—as the ANSI string library
described in the next section does—you have to ensure that memory is available before you
call the functions in that library. In most case, the easiest way to ensure that string storage
exists is to declare your string variables as arrays. Both approaches are reasonable. The key
to using strings successfully is to make sure that your declarations style matches the
discipline of the library you are using.
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So far, your use of strings has been limited to the operations defined in strlib.h , so that
you could work with strings before learning about their internal representation as arrays.
Commercially produced C programs do not have access to this library and instead rely on
the string.h interface, which is defined as part of the ANSI standard. The functions in string.h ,
though harder to use than those in strlib.h, are essential for practical work.

The relationship between the strlib.h and string.h interfaces was discussed in Chapter 9,
which introduced the concept of a layered abstraction. To review, the abstraction hierarchy
for strings looks like this:

the strlib.h interface

theANSI string.h interface

language-level operations

machine-level operations

increasing
detail

increasing
abstraction
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When you return a pointer
as the result of a func tion,
make sure that the storage
addressed by that pointer
is not part of the current
stack frame. Memory in the
current frame will be
dealloca ted when the
func tion returns and is thus
not available to clients.



The strlib.h interface presents the most abstract view of string data, in the sense that as much
detail as possible is hidden from the client. The string.h interface occupies the next level in
the abstraction hierarchy and provides the basis for the implementation of strlib.h .

The string.h interface exports a large number of functions, many of which are useful
only in certain relative ly specialized applications. The most important funcitons exported
by string.h are shown in Table 14-1.

At first glance, the functions in the ANSI string library look similar to those exported
by strlib.h . Both libraries include functions to find the length of a string, to compare one
string against another, to concatenate two strings, and to search a string for a particular
character or substring. Some of these functions are identical in their operation. For example ,
the strlen and strcmp functions are exactly the same as the StringLength and StringCompare
functions you have used since Chapter 9. However, even though the functions in the two
libraries perform similar tasks, learning how to use the string.h interface requires more than
learning a set of new function names. The string.h interface is based on a fundamentally
different model of how strings work that requires you to think about strings in a new way.

The biggest difference between the two string libraries lies in how memory for the
characters in a string is allocated. In the case of the strlib.h interface, the functions themselves
allocate whatever memory is required . As a client, you don’t have to worry about the
details of that allocation, which is what makes the strlib.h interface easy to use. The functions
in the string.h interface shift the new string, the client is responsible for providing that
memory. To do so, the client usually declares a character array large enough to hold the
result and passes it as argument to the library function. The implementation then writes the
new string data into the memory provided by the caller.
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The function strcpy in the string.h interface provides the simplest illustration of how
functions in that library return new string values to their caller. The strcpy function copies
characters from a string called the source into another string called the destination. To be
consistent with the assignment operator, in which copying proceeds from right to left, strcpy
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call

OperationOperationOperation

Operation

strcpy (dst, src) Copies characters from src into dst

strncpy (dst, src, n) Copies at most n characters form src into dst

strcat (dst, src) Appends characters from src to the end of dst
strnca t (dst, src, n) Appends at most n characters from src to dst
strlen (s) Returns the length of s
strcmp (s1, s2) Returns an integer indicating the result of the comparison
strncmp (s1, s2, n) Like strcmp but compares at most n characters
strchr (s, ch) Returns a pointer to the first instance of ch in s (or NULL)
strrchr (s, ch) Returns a pointer to the last instance of ch in s (or NULL)
strs tr (s1, s2) Returns a pointer to the first instance of s2 in s1 (or NULL)

TABLETABLETABLE

TABLE
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takes its destination argument first and has the following prototype1:

void strcpy (string dst, string src);

The strcpy function is useful if you want to manipulate a string while retaining its original
value. For example, suppose that the string variable line contains a line of text read in from
the user and that your application requires you to make some editing substitutions to the
characters in line. Using array selection to change the elements of line directly would
destroy the original contents of line, which you may need for some other purpose later. To
avoid changing line, you can copy the individual characters to another array and manipulate
them there.

An array used to hold an intermediate copy of data is called a bufferbufferbuffer

buffer

. What you need
in this situation is a character buffer into which you can copy the data from line. When you
work with the ANSI string library, the usual approach is to allocate such buffers explicitly
by declaring a character array with enough space to hold he largest string you expect to
encounter in that application. Thus, if the constant MaxLine contains the length of the longest
anticipated input line, you can declare the buffer by writing

char buffer[MaxLine + 1];

where the +1 leaves room for the null character at the end of a string that is exactly MaxLine

characters long.
It’s important to remember that you cannot copy the character from line into buffer by

writing an assignment statement like

buffer = line; This statement is illegal

Because arrays are not lvalues in C, they cannot appear on the left side of an assignment
statement. To copy the characters, you need to call the strcpy function as follows:

strcpy (buffer, line);

This call copies the characters from line into buffer until the null character is found at the
end of the source string. The strcpy function always copies the null character to the
destination string along with the rest of the characters to ensure that the new string is
properly terminated.

You can implement the strcpy function using either arrays or pointers. In the array
formulation, the implementation would look something like this:

void strcpy (char dst[], char src[])
{

int i;

for (i = 0; i src[i] != ‘ \0’; i++) {

dst[i] = src[i];
}
dst[i] = ‘\0’ ;

}

Although this implementation of the code is fairly easy to read, it is not the version that an

1 As it is defined in the library, the strcpy function actually returns the address of the destination array,
although most clients ignore this value. For simplicity of presentation, this text defines the strcpy function
as if it were a procedure with no result.



experienced programmer would most like ly generate. C programmers quickly become used
to thinking about strings as pointers and are encouraged by traditional practice to write most
string-processing functions using pointer manipulation. The traditional implementation of
strcpy is shownbelow:

void strcpy (char *dst, char *src)
{

while (*dst++ = *src++);
}

All the work for this function is done in the test for the while statement, which has a body
consisting only of a semicolon. The semicolon by itself constitutes the nullnullnull

null

statementstatementstatement

statement

—a
legal statement form in C that has no effect. The test first copies a character from the source
string into the destination buffer, updating each of the pointers to contain the address of the
next character, because C interprets any nonzero value as being equivalent to TRUE, the while
loop in the strcpy implementation continues as long as the result assigned is not 0. The loop
therefore terminates only when the null character is copied at the end of the string.

To become a successful C programmer, you must be able to red code that is as dense as
the preceding example. You will encounter similar code when you read existing programs
and must therefore know what it means. When you write you own code, however, your
should strive to make it as readable as you can. Dense coding styles that rely heavily on
shorhand operators then to work against this goal.

When you use strcpy , it is your responsibility as a client to allocate enough space to hold
the destination string and the terminating null character. If the strcpy function tires to write
more characters to the destination array than you allocated for it, your program can fail in
mysterious ways that can be difficult to track down. For example, suppose that you have
written a program that executes a call to strcpy in which the source string is larger than the
destination array, as follows:

char carray[6];

strcpy (carray, “A long strng ”);

Executing this program copies correctly the first six characters of “A long string ” into carray .
Unfortunately, the program goes on to copy the rest of the character into the bytes come
immediately after carray in memory. Thus, after the call to strcpy , memory looks like this:

1000 A
1001
1002 l
1003 o
1004 n
1015 g
1016
1017 s
1008 t
1009 r
1010 i
1011 n

COMMONCOMMONCOMMON

COMMON

PITFALLSPITFALLSPITFALLS

PITFALLS

When you call strcpy be
sure that the first
argument specifies a
character array large
enough to hold the
entire string value you
are copying, including
the terminating null
character. If you cannot
guarantee that the
necessary space is
available, you should
include explicit code to
catch this error.

carray

Who knows what



The bytes between addresses 1006 and 1013 presumably hold other variables or parts
of the program itself, so changing them is almost certain to cause the program to fail.
Writing data past the end of an array used as a buffer is a common programming error and is
called bufferbufferbuffer

buffer

overflowoverflowoverflow

overflow

.
An equally serious problem occurs if the destination string is a pointer variable that

has not been properly initialized. Suppose, for example, that you have declared a string
variable str using

string str;

You could not copy a string into that variable by using strcpy . If you tried to write

strcpy (str, ”A long strng”); This doesn’t work

without first initializing the variable str to pointer to a character array, the characters from
“A long string ” would be copied into some unpredictable region of memory.

As a programmer, it is your responsibility to make sure that these errors do not happen.
If you think the string space you have allocated to the destination might not be sufficient,
you have an obligation to check the length of the data before you copy it using strcpy . Thus,
before using strcpy to copy the contents of line into buffer, you should make sure that buffer
overflow cannot occur by testing the length of the line, as follows:

if (strlen (line) > MaxLine) Error (“Input line too long ”);
strcpy (buffer, line);

Failure to check for buffer overflow can have dire consequences. In 1988, graduate student
at Cornell University released a program that spread like a virus through computers
connected to a worldwide network called the Internet. This program, which became known
as the Internet worm, took advantage of the fact that a system utility program used on many
Internet computers failed to check whether character storage in an internal buffer had been
exhausted by the input data. By providing enough input data to use up the allocated storage,
the Internet worm was able to overwrite the system program itself and cause it to execute
commands on its behalf.
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strncpy functionfunctionfunction

function

To make it easier to avoid buffer overflow when you use the strcpy function, the ANSI
string library includes an alternative form of strcpy called strncpy . The strncpy function allows
the client to specify a length limit and has the following prototype:

void strncpy (string dst, string src, int n);

like strcpy , strncpy copies characters from the string specified by src into the character array
specified by dst. The difference is that strncpy will copy a maximum of n characters from src,
stopping earlier if a null character is encountered. By allowing you to specify the maximum
string size, strncpy makes it possible to guard against writing data past the end of a character

1012 g
1013 \0



array. For example, if you have declared the character array buffer by writing

char buffer[MaxLine+1];

you can safely copy string data from line into buffer using the function call

strncpy (buffer, src, MaxLine);

Because the call to strncpy guarantees that at most MaxLine characters will be copied, it is no
longer possible for the function call to overwrite data appearing after the end of buffer.

Unfortunately, the usefulness of the strncpy function is limited by the following design
flaws:

 When strncpy (dst, src, n) returns, the destination array will be terminated with a null
character only if the length of the source string is less than n. If src contains
exactly n characters, the call copies those characters to the dst array but does not
store a null character at the end. To ensure that the destination string is properly
terminated, you must allocate an extra element to dst and explicitly initialize dst[n]
to the null character.

 After copying the source string, the function strncpy (dst, src, n) writes null
characters in ever character position of dst until it fills up n positions. Thus, if
MaxLine were 1000, calling strncpy (bufer, line, MaxLine) would assign new values to the
first 1000 characters of buffer, even if line were extremely short. Having to fill
the rest of the destination array with null characters substantially reduces the
efficiency of strncpy .
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The ANSI string library includes functions for string concatenation, but these functions
are used quite differently from the Concat function in the strlib.h interface. The Concat function
returns a brand new string and does not change either of its arguments. In contrast, the
corresponding function in the ANSI library, strcat (s1, s2), works with the string storage
supplied by the client and appends the characters in s2 to the end of the string s1.

The strcat function is used frequently to assemble a larger string from smaller pieces.
Thinking back to the Pig Latin program in Figure 10-5, you could use strcpy and strcat

together to reassemble the components of a Pig Latin word. For example, suppose that the
variables head and tail contain the strings “src” and “am” , respectively. You could put these
strings together to form the string “amscray” using the following code:

char pigword[MaxWord+1];

strcpy (pigword, tail);
strcat (pigword, head);
strcat (pitword, “ay”);

Note that the first component of the new string is copied into pigword using strcpy , not strcat.
When pigword is declared, you have no way of knowing the initial contents of its elements,
and you cannot assume that it contains the empty string. By calling

strcpy (pigword, tail);



you ensure that the characters in tail are copied to the beginning of the pigword array, which at
third point has the following configuration:

When you call

strcat (pigword, head);

the strcat function finds the end of the current contents of pigword and starts copying the
contents of head there, which results in the following state:

In the final step, calling

strcat (pigword, “ay”);

completes the Pig Latin word, as follows:

As with strcpy , you must use care with the strcat function to avoid concatenating strnca t that
helps to a certain extent, but less than you might imagine. Calling strnca t (s1, s2, n) copies at
most n characters from s2 to the end of s1. Unfortunately, to determine what value you
should use for n, you need to check the current length of s1 so that you know how much
room remains in the buffer.
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The strlen and strcmp functions exported by string.h are identical to the functions
StringLength and StringCompare, which were introduced in Chapter 9. When you work with the
ANSI libraries, you can use strlen and strcmp just as you have used their counterparts up to
now.

The string.h interface, however, contains no direct counterpart to the StringEqual function.
To test whether two strings are equal, C programmers simply call strcmp and check to see
whether the result is 0. When programs compare the result to 0 explicitly, this approach
does not cause much confusion. Programs become difficult to read if programmers start to
rely on the fact that C interprets the integer 0 as equivalent to FALSE and all other integers as
equivalent to TRUE. For example, you will sometimes see if statements such as

if (strcmp (s1, s2)) {
…statements…

}

pigword

a m \0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pigword

a m s c r \0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pigword

a m s c r a y \0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



which executes the body of the if statement when s1 and s2 are different.
The following implementation of the FindStringInA rray function given in Figure 12-2

offers an even more cryptic example of dense coding styles:

int FindStringInA rray (string key, string array[], int n)
{

int i;

for (i = 0; i < n && strcmp (key, array[i]; i++);
if (i , n) return (i);
return (-1);

}

The for loop continues as long as i is less than n and the key does not match the current array
entry. When the for loop exits, there are two possibilities: either the elements in the array
have been exhausted or the loop has terminated with a match at index i. Because the for

control line includes all the required work, the body of the loop is simply a semicolon.
The string.h interface exports another string comparison function that is occasionally

quite useful: strncmp . Calling strncmp (s1, s2, n) is similar to calling strcmp (s1, s2) except that the
implementation considers at most n characters from the two strings. If the first n characters
of the strings are the same, strncmp returns 0 even if the strings differ at some later pointer.
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The string.h interface exports several functions for searching a string. The function strchr

(s, ch) serves the same purpose as FindChar (ch, s , 0). The main difference between the two is
that strchr returns a pointer to the matching character while FindChar returns the index of that
character. If the character is not found, strchr returns NULL. The function strrchr (s, ch) works
much like strchr except that it searches backward from the end of the string to find the last
instance of ch rather than the first. The string.h interface also includes the function strs tr (s1, s2),
which searches for the first occurrence of the string s2 in s1 and is therefore analogous to
FindString .

AnAnAn
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applicationapplicationapplication
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stringstringstring

string

functionsfunctionsfunctions

functions

If you go on to take a job in the computer industry, the programs you encounter will not
ordinarily make use of higher-level string libraries such as strlib.h. You will instead find
yourself using the functions in the string.h interface or, just as often, working directly with
the underlying representation of strings.

This section presents a simple example of string programming that does not use any of
the strlib.h functions. The problem is to convert a name written in conventional order, like
this:

First Middle Last

into inverted order, as follows:



Last, First Middle

Inverted order is useful if you want to arrange a list of names alphabetically.
Your goal in this example is to write a function InvertName that converts a name from

conventional order into the last-name-first form. If its design is to conform to the usual
discipline for working with strings in the ANSI library, InvertName must take two arguments,
one that contains the original name and one that provides space for the inverted result. To
maintain symmetry with strcpy , it makes sense to list the result argument first, as shown in
the following prototype:

static void InvertName (char result[], char name[]);

The implementation of InvertName is easy to write using the functions in the string.h interface.
Figure 14-4 shows one possible implementation together with a test program that reads in
names and prints out their inverted form, as illustrated by the following sample run:

FIGUREFIGUREFIGURE

FIGURE
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invert.c

/*
* File: invert.c
* ----------------
* This file implements a function InvertName (result, name)
* that takes a name in standard order (firs t middle last) an
* returns a new string in inverted order (last, firs t middle),
* which makes it easier to alphabe tize the names. The test
* program reads in names and prints out their inverted form,
* stopping when a blank line is entered.
*/

#include <stdio.h>
#include <string.h>
#include “genlib.h ”
#include “simpio.h ”

/*
* Constant
* ------------
* MaxName – Maximum number of characters in a name
*/

#define MaxName 40

/* Private function prototypes */

static void InvertName (char result[], char name[]);

/* Main program *

This program converts a name in standard order
into inverted order with the last name firs t.
Indicate the end of input with a blank line.
Name: CharlesCharlesCharles

Charles

BabbageBabbageBabbage

Babbage





Babbage, Charles
Name: AugustaAugustaAugusta

Augusta

AdaAdaAda

Ada

ByronByronByron

Byron





Byron, Augusta Ada
Name: J.J.J.

J.

PresperPresperPresper

Presper

EckertEckertEckert

Eckert





Ecert, j. Presper
Name: EuclidEuclidEuclid

Euclid





Euclid
Name: 





main()
{

char *standardName;
char invertedName[MaxName+1];

printf (“This program converts a name in standard order\n”);
printf (“into inverted order ith the last name firs t.\n”);
printf (“Indicate the end of input with a blank line.\n”);
while (TRUE) {

printf (“Name: “);
standardName = GetLine ();
if (strlen (standar dName) == 0) bereak;
InvertName (invertedName, standardName);
printf (“%s\n”, invertedName);

}
}

/*
* Function: InvertName
* Usage: InvertName (result, name);
* ----------------------------------------------
* This function inverts a name from its standard order
*
* First Middle Last
*
* into inverted order, which is
*
* Last, First Middle
*
* The client must supply an output array called result in which
* the inverted name will be stored. Tha t array must contain
* at least MaxName character positions, plus one for a
* termina ting null character. If storing the inverted name
* would exceed that limit, the function gener ates an error.
* The output is always one character longer than the input
* because of the comma, so it is possible to determine the
* output length immedia tely .
*
* The last name is assumed to consis t of all characters in the
* name string following the last space character. If there are
* no space characters in the word, the entire name is copied to
* the destination array unchanged.
*/

static void InvertName (char result[], char name[])
{

int len;
char *sptr;

len = strlen (name);
sptr = strrchr (name, ‘ ‘ );
if (sptr != NULL) len++;
if (len > MaxName) Error (“Name too long”);
if (sptr == NULL) {

strcpy (result, name);
} else {

strcpy (result, sptr + 1);
strcat (result, “, ” );
strnca t (result, name, sptr – name);
result[len] = ‘\0’;

}
}
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To complete the discussion of the abstraction hierarchy used to represent strings at
varying levels of detail, the rest of this chapter examines the implementation of the strlib.h

interface. As indicated earlier in the chapter, the principal purpose of strlib.h is to hide
complexity from the client by taking care of allocation details. When using this library,
clients no longer have to allocate character arrays of fixed sizes or worry about whether
they are exceeding the space bounds. All strings are represented as pointers to character
memory acquired form the heap through dynamic allocation.

ImplementingImplementingImplementing
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pass-thoughpass-thoughpass-though

pass-though
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functions

Of the functions exported by strlib.h , the simplest ones to implement are those that are
identical to functions in string.h : StringLength and StringCompare. The inclusion in strlib.h of
functions that are the same as those in a standard library may seem somewhat wasteful.
Instead of having you work with StringLength and StringCompare, this text could have introduced
strlen and strcmp initially, thereby giving you a head start on learning about the standard
interface.

As it happens, the technique of exporting functions from one interface that simply
rename functions in a lower-level interface is a common practice. Such functions are called
pass-throughpass-throughpass-through

pass-through

functions.functions.functions.

functions.

The pointer of providing a pass-through function—as opposed to
having clients use its lower-level counterpart—is to reduce the conceptual complexity for
the client. If you had to use some facilities from strlib.h and others from string.h , you would
need to include both library interfaces in your programs. More importantly, you would have
to understand both of those interfaces and the functions they provide. Defining strlib.h so that
is complete in itself frees you from having to learn anything about the lower-level interface
until you are ready to do so.

Implementing pass-through functions is extremely easy. The strlib.c versions of
StringLength and StringCompare are simply

int StringLength (string s)
{

return (strlen (s));
}

int StringCompare (string s1, string s2)
{

return (strcmp (s1, s2));
}

ImplementingImplementingImplementing
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functions

The main feature of most functions in the stlib.h interface is that they allocate memory
dynamically for any new strings they create. To centralize this phase of the operation, the
strlib.c implementation defines a private function CreateString (len) that allocates memory for a



string of size len, taking account of the fact that strings require an extra byte for the ‘\0’

character at the end. The implementation of CreateString , like most of the package, is
straightforward:

static string CreateString (int len)
{

return ((string) GetBlock (len + 1));
}

Once you have this function, you can use it to write all the functions in strlib that need to
allocate memory. For example, consider the following implementation of CharToString , which
allocates a string consisting of a single character:

string CharToString (char ch)
{

string result;

result = CreateString (1);
result[0] = ch;
resutl[1] = ‘\0’;
return (result);

}

The function dynamically allocates space to hold a one-character string and then initializes
that memory by assigning both the specified character and the terminating null.

Let’s look at a more substantial function, such as Concat. One approach is to code all the
copying explicitly. Again, the implementation begins by allocating space for the combined
string and then copies the character from each string in run, as follows:

string Concat (string s1, string s2)
{

string s;
int len1, len2, i;

len1 = strlen (s1);
len2 = strlen (s2);
s = CreateString (len1 + len2);
for (i = 0; i < len1; i++) s[i] = s1[i];
for (i = 0; i < len2; i++) s[i + len1] = s2[i];
s[len1 + len2] = ‘\0’ ;
return (s);

}

Although this implementation works, it does not take advantage of the functions in the
lower-level libraries. The functions in theANSI string library are usually engineered so that
they are as efficient as possible given the hardware characteristics of the computer on which
they run. If you use those functions in your implementation, the resulting code will often be
more efficient than an implementation that performs the character operations explicitly.
Thus, it makes sense to use strcpy as part of the implementation, which then looks like this:

string Concat (stirng s1, stirng s2)
{

string s;
int len1, len2;

len1 = str = strlen (s1);
len2 = strlen (s2);
s = CreateString (len1 + len2);



strcpy (s, s1);
strcpy (s + len1, s2);
return (s);

}

In many ways, this coding is even simpler than the earlier one, but it does include the
somewhat cryptic line

strcpy (s + len1, s2);

To understand this line, you need to remember that adding a pointer and an integer advances
the pointer by the indicated number of elements. In this example, since you’re working with
characters, the destination address is simply the address of an array that begins len1

character after s, which is precisely where the copy of s2 belongs. Calling strcpy (s + len1, s2) at
this point has the same effect as calling strcat (s, s2). The strcpy form is more efficient because
it avoids having to search for the end of s.

You can use the same techniques to implement most functions in the strlib.h interface.
Representative examples of these implementation problems are included in the
programming exercises.

SUMMARYSUMMARYSUMMARY

SUMMARY

In this chapter, you have learned to think about strings in new ways. Up to this point,
the details of string manipulation have been hidden by the strlib.h interface, which has
allowed you to work with strings as an abstract type. Looking beyond the abstraction barrier
to the underlying representation of strings as character arrays, you have had a chance to see
how strings are implementation of strings as character arrays, you have had a chance to see
how strings are implemented. This perspective gives you more flexibility in working with
strings and makes it easier for you to understand existing C code.

Along with the discussion of string representation, you have also learned to use the
ANSI strng.h interface, which provides a set of standard tolls for working with strings.
Although the functions in this interface are similar to those exported by strlib.h , the two
libraries differ markedly in their use of memory. When you call functions in strlib.h , the
implementation automatically allocates any memory required to hold the result. If you call
functions in string.h , you must allocate space for the result explicitly.

Important points raised in this chapter include:

 Strings may be regarded in three complementary ways: as an array of characters,
as a pointer to a character, and as an abstract entity with conceptual integrity as a
whole.

 In C, a string is represented internally as an array of characters terminated by a
null character.

 Because any array in C can also be interpreted as a pointer to its first element, you
can manipulate string values by using pointer operations.

 Declaring a variable to be an array of characters does not have the same effect as
declaring it to be a pointer to a character. Array declaration reserves space for the
specified number of elements; pointer declaration reserves only enough space for



the pointer. A string declared as a pointer must be initialized before you can select
its component characters.

 Like any array, a character array is not an lvalue in C and cannot appear on the
left-hand side of an assignment. It is also illegal for a function to return a
character array, although you can often achieve a similar effect by having a
function return a character pointer.

 The string.h interface contains several standard functions for manipulating strings.
As a client of string.h , you must take responsibility for allocating enough memory
space to hold the result.

 The strlib.h interface has a straightforward implementation that uses a combination
of dynamic allocation and the string.h functions.

REVIEWREVIEWREVIEW
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QUESTIONS

1. This chapter asks you to think about strings from three different perspectives.
What are they?

2. In terms of the underlying representation, how do you determine the end of a
string?

3. What idiom can you use to process each character in a string that you view as an
array of characters? How does the idiom change if you instead regard the string
as a pointer to a character?

4. True of false: Declaring a parameter to be a character array has the same effect as
declaring it to be a pointer.

5. True of false: declaring a local variable to be a character array has the same effect
as declaring it to be a pointer.

6. What restrictions does C place on the use of array variables?
7. Why is it an error to return a pointer to a local array as the value of a function?
8. What is the principal difference between the abstraction models presented by the

string.h and strlib.h interface?
9. If you call strcpy (s1, s2), which argument is the source and which is he does

destination?
10. Before you call strcpy , what responsibility do you assume as client?
11. What is meant by the term buffer overflow?
12. What two factors limit the utility of the function strncpy?
13. When you are using the ANSI string library, how do you accomplish the effect of

the StringEqual function?
14. What two functions in strlib.h are implemented as pass-through functions? Why

was it important to include these functions in the interface?
15. Why is it better to use the function strcpy in the implementation of Concat than to

write the for loops explicitly?
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EXERCISES

1. The simplest function in the string library is strlen , which calculates the length of a
string by finding the null character marking its end. Write an implementation of
strlen that treats its argument as an array of characters.

2. Rewrite your answer to exercise 1 so that the implementation of strlen works with
its argument as a pointer to a character and uses only pointer manipulation to look
at each character in the string.

3. Write an implementation of the function strcmp that works directly with the
underlying representation of its argument and calls no other functions. For extra
practice, implement this function in two forms: one using only array operations
and the other using only pointer operations.

4. The section entitled “Searching within a string” in Chapter 9 defines a function
Acronym (s) that returns a new word formed by combining the initial letters of each
word in the strings, which is assumed to consist of a series of words separated by a
single space. In its design, the Acronym function fits the strlib.h model because it
allocates and returns a new string. To fit the discipline of the string.h interface, such
a function must deliver its result by writing data into a character buffer supplied
by the caller. Design and implement a function to compute acronyms that uses this
strategy. Your implantation should not include strlib.h or use any of its functions.

5. Write a function ReverseString (carray) that reverses the characters in its argument. For
example, if carray originally contains the data

calling ReverseString (carray) should reverse the characters so that the contents of the
airway become

6. Rewrite the cipher program described in exercise 8 of Chapter 9 so that it uses the
ANSI string library rather than strlib.h .

7. Without using functions form the srlib.h interface, implement the function SubString

(s, p1, p2) from the strlib library, which returns the substring of s beginning at
position p1 and ending at position p2. Make sure that your function correctly
applies the following rules:

a. If p1 is negative, it is set to 0 so that it indicates the first character in the string.
b. If p2 is greater than strlen (s) – 1, it is set to strlen(s) – 1 so that it indicates teh last

character.
c. If p1 is ends up being greater than p2, SubString returns the empty string.

8. Using only functions form the string.h interface, implement the function FindStirng (s,

text, start) , which returns the index position of the first occurrence of s in text after

carray

A V C D \0

carray

D C B A \0



position start of returns –1 if no such match occurs.
9. Using only functions from string.h and ctype.h implement the function

ConvertToUpperCase (s), which returns a copy of s in which all alphabetic characters
have been converted to upper case.

10. Redesign the scanner.h interface presented in Figure 10-3 so that it uses a string-
handling discipline consistent with the ANSI string library. Reimplement the
interface without using any functions from strlib.h .

11. Using the revised scanner.h interface from exercise 10, reimplement the Pig Latin
program given in Figure 10-5 without using any functions form strlib.h . Your
program may continue to read the input line using GetLine , which is defined in
simpio.h .

12. Use the ANSI string library to write a program that plays the game of hangman. In
hangman, the computer begins by selecting a secret word at random form a list of
possibilities. It then prints out a row of dashes—one for each letter in the secret
word—and asks the user to guess a letter. If the user guesses a letter that appears
in the word, the word in redisplayed with all instances of that letter shown in the
correct positions, along with any letters guessed correctly on previous turns. If the
letter does not appear in the word, the player is charged with an incorrect guess.
The player keeps guessing letters until either (1) the player has correctly guessed
all the letters in the word or (2) the player this made eight incorrect guesses. A
sample run of the hangman program is shown in Figure 14-5.
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Sample run of the hangman program



As it is usually played, incorrect guesses are recorded by drawing an evolving
picture of the user being hanged on a scaffold. For each incorrect guess, a new
part of a stick-figure body—first the head, then the body, then each arm, each leg,
and finally each foot—is added to the scaffold until the handing is complete. For
example, the following diagrams show the drawing after the first incorrect guess
(just the head), after the third incorrect guess (the head, body, and left arm), and at
the tragic end of a losing game.

Let’s play hangman! I will pci a secret word.
On each turn, you guess a letter. If the letter
is in the sectet word, I will show you where it
appears. If you make an incorrect guess, part
of your body gets strung up on the scaffold.
The object is to guess the word before you are
hanged.
he word now looks like this: ----
You ahve 8 guesses left.
Your guess: AAA

A





Ther e are no A’s inthe word.
The word now looks like this: ----
You ahve 7 guesses left.
Your guess: EEE

E





Ther e are no E’s in the word.
The word now looks like this: ----
You have 6 guesses left.
Your guess: III

I





Ther e are no I’s in the word.
The word now looks like this: ----
You have 5 guesses left.
Your guess: OOO

O





Ther e are no’s in the word.
The word now looks like this: ----
You have 4 guesses left.
Your guess: UUU

U





Ther e are no’s in the word.
The word now looks like this: –U--
You have 4 guesses left.
Your guess: SSS

S





Ther e are no’s in the word.
The word now looks like this: -U--
You have 3 guesses left.
Your guess: NNN

N





Ther e are no’s in the word.
The word now looks like this: -UN-
You have 3 guesses left.
Your guess: KKK

K





Ther e are no’s in the word.
The word now looks like this: -UNK
You have 3 guesses left.
Your guess: HHH

H





Ther e are no’s in the word.
The word now looks like this: -UNK
You have 2 guesses left.
Your guess: BBB

B





Ther e are no’s in the word.
The word now looks like this: -UNK
You have only one guess left.
Your guess: JJJ

J





Ther e are no’s in the word.
The word now looks like this: JUNK
You win.



If you feel up to an additional challenge, use the graphics library described in
Chapter 7 to display the correct picture after each turn.
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To understand the concept of a text file and how such files provide permanent storage.
 To be able to open and close files using the functions fopen and fclose .
 To learn how to process files in character mode using the functions getc and putc .
 To be able to process files in character mode using the functions fgets and fputs .
 To understand the structure and operation of the scanf family of functions

PPP

P

rograms use variable s to store information: input data, calculated results, and
any intermediate values generated along the way. Such information, however, is ephemeral.
When the program stops running, the values of those variables are lost. For many
applications, it is important to be able to store data in some more permanent fashion.

Wherever you want to store information on the computer for longer than the running
time of a program, the usual approach is to collect the data into a logically cohesive whole
and store it on a permanent storages medium as a file, a concept that was introduced in
Chapter 1. Ordinarily, a file is stored on a disk, either a removable floppy disk or a hard
disk built into the machine. Occasionally, files are stored in another medium, such as a
magnetic tape or a CD, but the basic principles and modes of operation are the same. The
important point is that the permanent data objects you store on the computer—documents,
games, executable programs, source code, and the like—are all stored in the form of files.
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On most systems, files come in a variety of types. For example, in the programming
domain, you work with source files, object files, and executable files, each of which has a
distinct representation. When you use a file to store data for use by a program, that file
usually consists of text and is therefore called a texttexttext

text

filefilefile

file

. You can think of a text file as a
sequence of characters stored in a permanent medium and identified by a file name. The
name of the file and the characters it contains have the same relationship as the name of a
variable and its contents.

For example, suppose you had decided to collect a set of quotations from Shakespeare
and store each quotation in a separate file. Your collection might begin by storing the
following quotation from Hamlet in a file named hamle t.tx t:

To be, or not to be: that is the question.
Whether ‘tis nobler in the mind to suffer
The slings and arrow of outrageous fortune,
Or to take arms agains t a sea of troubles,
And by opposing end them?

As a second quotation, you might choose to store the following lines form Romeo and
Juliet in the file juliet. tx t:

What’s in a name?
Tha t which we call a rose
By any other name would sell as sweet.



When you look at a file, it often makes sense to regard it as a two-dimensional structure—a
sequence of lines composed of individual characters. For example, suppose that you have
added to your collection of quotations a new file witches. tx t containing the following lines
formMacbeth:

Double, double toil and trouble:
Fire burn and cauldron bubble.

It is easiest to think of witches. tx t as consisting of two lines. Internally, however, text files are
represented as a one-dimensional sequence of characters. In addition to the printing
characters you can see, files also contain the end-of-line character ‘\n’, which you have used
ever since Chapter 2. Thus, the witches. tx t file is perhaps more correctly viewed as having the
following form:

Double, double toil and trouble:\nFire burn and cauldron bubble.\n

In many respects, text files are similar to strings. A text file consists of an ordered
collection of characters, just as a string does. Moreover, they both have a definite endpoint.
In strings, the end of the data is indicated with a null character. A text file ends with a
special end-of-file marker indicating that no more characters occur after that point. For
example, the file witches. tx t ends after the \n character following the word bubble . When you
read characters from a file, you need to be able to detect this end-of-file marker so that you
know when there are no more characters to read.

On the other hand, strings and files differ in several important respects. Of these, the
most important difference is the permanence of the data. A string is stored temporarily in
the computer’s memory during the time that a program runs; a file is stored on a long-term
storage device and continues to exist until it is explicitly deleted or overwritten. But there is
also a difference in the way you use data in string and files. A string is an array of
characters. You can select characters in any order by specifying the appropriate index. In
the context of a program, a file is usually read or written in a sequential fashion. When a
program reads an existing file, it starts at the beginning and reads characters until it reaches
the end. When a program creates a new file, it starts by writing the first character and
continues in order with each subsequent character.
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In ANSI C, basic file operations are provided as part of the standard I/O library
interface stdio.h . You have used the standard I/O library since Chapter 2 but have had
relatively little opportunity to investigate the facilities it contains. The real power of the
standard I/O library is that it permits you to specify file operations in a portable way that is
nonetheless convenient and efficient.

To use a file in a C program, you

1. Declare a variable of type FILE *.
2. Associate the variable with an actual file by calling the fopen function. This

operation is called openingopeningopening

opening

the file. Opening a file requires you to specify the
name of the file and to indicated whether that file is used for input or output

3. Call the appropriate functions in stdio.h to perform the necessary I/O operations.
For an input file, these functions read data from the file into your program; for an
output file, the functions transfer data from the program to the file.

4. Indicate that the file operations are complete by calling fclose . This operation,
called closingclosingclosing

closing

the file, breaks the association between a FILE * variable and the
actual file.

The next four sections consider each of these steps in turn.

DeclaringDeclaringDeclaring

Declaring
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FILE * variablevariablevariable

variable



The standard I/O library defines a type called FILE, which is used to store the
information needed by the system to manage file processing activity. Because the structure
of file systems differs from machine to machine, the underlying representation of the type
FILE also differs. The main purpose of stdio.h is to make it possible to ignore those
differences. From your perspective as a programmer, you don’t need to know anything
about the underlying details. All you need to do to manipulate a file is keep track of a
pointer to a FILE structure—however it is defined for a particular machine—trusting in the
local implementation of stdio.h to manage the relevant details.

As with any pointer, you declare a FILE * variable in C by writing a line like
FILE *infile;

The variable infile is therefore of type pointer-to-FILE.
You must declare a separate FILE * variable for each of the files that may be open

simultaneously. For example, if your application requires you to read information from one
file, process it, and then write the processed data to a second file, you will need to declare
two FILE * variables. If you choose to call these variables infile and outfile, the appropriate
declaration would be

FILE *infile, *outfile;

When you later call a function to read data from the input file, you need to include the
variable infile as an argument to the function. Similarly, calls to functions used to write
output data need to specify the variable outfile. The FILE * parameter tells the function what
file is involved.
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When you first declare a FILE * variable, it is not yet associated with an actual file. To
make that association, you must call the function fopen , which has the following form:

file pointer variable = fopen (file name, mode);

The first argument to fopen is a string specifying the name of the file using the naming
conventions of the local system. The second argument is a string specifying the mode of
data transfer, which is ordinarily one of the following:

“r ” The file is open for reading. The file pointer variable returned by fopen can be used
only in input operations. The file must already exist.

“w” The file is open for writing .The resulting file pointer variable can be used only for
output operations. If the file does not yet exist, a new file is created with the specified
name. If there is already a file with that name, its contents are erased.

“a” The file is open for appending. This mode is similar to “w” mode in that the resulting
file pointer is available for output operations. The only difference occurs if the
specified file already exists, in which case any new information written to the file
appears at the end of the existing data.

For example, if you wanted to open the file juliet. tx t for input and associate it with the
variable infile , you would write

infile = fopen (“juliet. tx t”, “ r”);

This statement establishes the association of the variable infile with the file juliet. tx t and makes
it possible for you to begin reading data.

It is, of course, possible for this operation to fail. For example, there might not be a
file named juliet. tx t. If the requested input file is missing or if other errors are detected, the
fopen call returns the pointer value NULL to indicate that an error has occurred. As a
programmer, you have a responsibility to check for this error and report it to the user. One
approach is to report the failure by calling the Error function, as follows:

infile = fopen (“juliet. tx t”, “ r”);
if (infile == NULL) Error (“Can’ t open the file juliet. tx t”);



Not being able to find an input file is particularly likely when the program reads that file
name from the user because the user can easily make typographical errors. Rather than
have the whole program stop, it is usually better to give the user another chance to enter a
valid name, as the following code does:

while (TRUE) {
printf (“Input file name: “);
filename = GetLine ();
infile = fopen (filename, “r’);
printf (“Can’t open the file %s. Try again.\n” , filename);

}

PerformingPerformingPerforming
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Once you have opened a file, the next step is to read or write the actual data. To do so,
you can choose any of several strategies, depending on the application. At the simplest
level, you can read or write files character by character using the functions getc and putc . In
many cases, however, it is more convenient to process files line by line. For that purpose,
the stdio.h interface provides the functions fgets and fputs , but it is often simpler to use the
function ReadLine from simpio.h, which solves a number of problems that arise when using the
ANSI standard functions. At a still higher level, you can choose to read and write formatted
data using fscanf and fprintf. Doing so allows you to intermix numeric data with strings and
other data types. The functions mentioned in this paragraph are described later in the
chapter. The discussion is organized so that functions that use the same basic discipline are
considered together.
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No matter which strategy you choose for the I/O operations, you should be sure to
close any files you open. Closing a file is accomplished by calling the function fclose with
the appropriate file pointer. Thus, to close the files corresponding to the variables infile and
outfile, you would write

fclose (infile);
fclose (outfile);

Even though exiting from a program automatically closes any open infles , it is good to get
into the habit of closing files explicitly because

 It will be much easier for readers of your program to determine precisely when a
file is in use and when that file is no longer needed.

 It will be easier to incorporate your code into a larger program that may open and
close files on its own.

StandardStandardStandard

Standard
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The standard I/O library defines three special identifiers—stdin , stdou t, and stderr—that
act as FILE * constants and are available to all programs. These constants are referred to as
standardstandardstandard

standard

filesfilesfiles

files

. The constant stdin designates the standard input file, which is the source for
user input. The constant stdou t indicates standard output and represents the device on which
output data is written to the user. The constant stderr represents the standard error file and is
used to report any error messages the user should see. Typically, the standard files all refer
to the computer console. When you read data from stdin , the input comes form the keyboard;
when you write data to stdou t or stderr, the output appears on the screen. Some systems,
however, make it easy to change these associations so that standard input comes

Even if the system you are using does not provide the ability to change the assignment



of the standard files, their existence is nonetheless useful because it means that any of the
functions described in this chapter can be used directly with the console. By using the
names stdin, stdou t, and stderr , you can read or write characters, lines, or formatted data.
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The simplest approach to file processing is to go through files character by character.
The stdio.c interface defines a function getc (infile) that reads the next character in a file and
returns it to its caller. It also defines a function getchar () that reads from the standard input
file and is therefore equivalent to getc (stdin) .

The idea of getc seems simple enough, but there is a confusing aspect in its design. If
you look at the formal definition of getc , its prototype looks like this:

int getc (FILE *infile);

At fist glance, the result type seems odd. The prototype indicates that getc returns an integer,
even though the function conceptually returns a character.

The reason for this design decision is that returning a character would make it
impossible for a program to detect the end-of-file mark. There are only 256 possible
character codes, and a data file might contain any of those values. There is no value—or at
least no value of type char—that you could use as a sentinel to indicate the end-of-file
condition. By extending the definition so that getc returns an integer, the implementation
can return a value outside the range of legal character codes to indicate the end-of-file
condition. That value is given the symbolic name of EOF in stdio.h and usually has the value
–1 , although you should never depend on the fact that EOF has a particular internal value.

To write a single character, you use the function putc (ch, outfile) , which writes its first
argument to the specified output file. The stdio.c interface also includes a function putchar (ch),
which is defined to be the same as putc (ch, stdou t).

As an example of the use of getc and putc, you can copy one file to another using the
copyfile.c program shown in Figure 15-1.
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copyfile.c

/*
* File: copyfile.c
* -------------------
* This program copies one file to another using character I/O.
*/

#include <stdio.h>
#include “genlib.h ”
#include “simpio.h ”

/* Private function prototypes */

static void CopyFile (FILE *infile, FILE *outfile);
static FILE *OpenUserFile (string promp t, string mode);

/* Main program */

main()
{
FILE *infile, *outfile;

printf (“This program copies one file to another.\n ”);
infile = OpenUserFile (“Old file: “, “ r”);
outfile = OpenUserFile (New file: “, “w”);
CopyFile (infile, outfile);
fclose (infile);
fclose (outfile);

}

/*

COMMONCOMMONCOMMON

COMMON
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Remember that getc
returns an int , not a char.
If you use a variable of
type char to store the
result of getc, your
program will e unable to
detect the end-of-file
condition.



* Function: CopyFile
* Usage: CopyFile (infile, outfile);
* -----------------------------------------
* This function copies the contents of infile to outfile. The
* client is responsible for opening these files before calling
* CopyFile and for closing them afterward.
*/

static coid CopyFile (FILE *infile, FILE *outfile)
{
int ch;

while ((ch = getc (infile)) != EOF) {
putc (ch, outfile);

}
}

/*
* Function: OpenUserFile
* Usage: filep tr = OpenUserFile (promp t, mode);
* --------------------------------------------------------------
* This function promp ts the user for a file name using the
* promp t string supplied by the user and then attemp ts to
* open that file with the specified mode. If the file is
* opened successfully , OpenUserFile returns the appropriate
* file pointer. If the open operation fails, the user is
* informed of the failur e and given an oppor tuni ty to enter
* another file name.
*/

static FILE *OpenUserFile (string promp t, string mode)
{
string filename;
FILE *result;

whil (TRUE) {
printf (“%s”, promp t);
filename = GetLine ();
result = fopen (filename, mode);
if (result != NULL) break;
printf (“Can’t open the file \”%s\”\n”, filename);

}
return (result);

}

The while loop in CopyFile is highly is highly idiomatic and deserves some consideration.
The test expression for the while loop uses embedded assignment to combine the operations
of reading in a character and testing for the end-of-file condition. When the program
evaluates the while condition, it begins by evaluating the subexpression

ch = getc (infile)

which reads a character and assigns it to ch. Before executing the loop body, the program
then goes no to make sure the result of the assignment is not EOF. The parentheses around
the assignment are required; without them, the expression would incorrectly assign to ch the
result of comparing the character against EOF. The effect of the loop is thus the same as the
longer expression

while (TRUE) {
ch = getc (infile);
if (ch == EOF) break;
putc (ch, outfile);

}

In most C programs you will encounter, this loop is written in its abbreviated form.
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The copyfile.c program shown in Figure 15-1 makes an exact duplicate of a file with
different name. Instead of making a duplicative copy, you can easily use the same basic
structure to write a program that transforms the characters as they go by. For example, the
following loop copies data form infile to outfile , converting all characters to upper case:

whil ((ch = getc (infile)) != EOF) {
putc (toupper (ch), outfile);

}

If you used this loop as the body of the CopyFile procedure in Figure 15-1, the resulting
program would take one file and generate an uppercase copy as a separate file.

In many cases, however, you don’t really want a second file. What you want to do is
modify an existing one. The process of changing an existing file is called updatingupdatingupdating

updating

the file
and is not as simple as it might seem. On most systems, it is not legal to open a file for
output if that file is already open for input. Depending on how files are implemented on a
particular system, the call to fopen may fail or end up destroying the original contents of the
file.

The most common way to update a file is to write the new data into a temporary file
and then replace the original file with the temporary one after you have written the entire
contents of he updated file. Thus, if you wanted to write a program to change all the
characters in a file to upper case, that program would execute the following steps:

1. Open the original file for input.
2. Open a temporary file for output with a different name.
3. Copy the input file to the temporary file, substituting uppercase characters for an

lowercase characters encountered.
4. Close both files.
5. Delete the original file.
6. Rename the temporary file so that it once again has the original name.

Suppose, for example, that you wanted to update the file witches. tx t by converting all its
characters to upper case. At the beginning, all you have is the original file witches. tx t, as
shown:

witches. tx t
Double, double toil and trouble:
Fire burn and cauldron bubble.

The next step is to create a temporary file and open it for output. Initially, the temporary
file is empty, as indicated in the following diagram:

witches. tx t
Double, double toil and trouble:
Fire burn and cauldron bubble.

temp file

Because the two files are separate, it is easily to copy the data from one file to another,
transforming characters as you go, which leads to the following state:

witches. tx t
Double, double toil and trouble:
Fire burn and cauldron bubble.

temp file
DOUBLE, DOUBLE TOIL ANDTROUBLE:
FIRE BURN ANDCAULDRON BUBBLE.



At this point, temp file has the desired final contents. If you delete the old file named witches. tx t

and then rename temp file as a new withces.tx t file, you are left with a single file that contains
exactly what it’s supposed to, as follows:

witches. tx t

DOUBLE, DOUBLE TOIL ANDTROUBLE:
FIRE BURN ANDCAULDRON BUBBLE.

To write the code necessary to implement this strategy, you need to use three new
functions from the stdio.h interface—tmpnam, remove, and rename—each of which is
described in the remainder of this section.

Although you are certainly free to choose our ownname for a temporary file, the stdio.h

interface includes a function called tmpnam that generates temporary file names. The
conventions for naming files differ from machine to machine. Calling the function tmpnam

(NULL) returns a string whose value is a temporary file name suitable for use on that
machine1. Thus, you can create and open a new temporary file using the following code:

temp = tmpnam (NULL);
outfile = fopen (temp, “w”);

To delete a file, all you have to do is call the function remove (name), wherename is the name
of the file. Renaming a file is just as simple and is accomplished by calling rename (old
name, new name). Like many functions in the ANSI libraries, remove and rename each return
0 if they are successful and a nonzero value if they fail. Although you will certainly
encounter code in which these functions are used as if they were procedures, it is safer to
test their return value to make sure that the operation has succeeded.

These three functions give you everything you need to write the program ucfile.c shown
in Figure 15-2, which converts a file to upper case.
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ucfile.c

/*
* File: ucfile.c
* ----------------
* This program upda tes the contents of a file by converting all
* letters to upper case.
*/

#include <stdio.h>
#include <ctype.h>
#include “genlib.h ”
#include “simpio.h ”

/* Private function prototypes */

static void UpperCaseCopy (FILE *infile, FILE *outfile);

/* Main program */

1 When it is called with NULL as its argument, the tmpnam function returns a pointer to memory that
is private to the implementation of the standard I/O library.As a result, it is not safe to use tmpnam to
generate a second temporary file name before you have finished with the first. If you need to do so, you
can copy the result of tmpnam into new memory using CopyString of strcpy .



main()
{
string filename, temp;
FILE *infile, *outfile;

printf (This program converts a file to upper case.\n”;
while (TRUE) {

printf (“File name: “);
file name = GetLine ();
infile = fopen (filename, “r”);
if (infile != NULL) break;
printf (“File %snot found -- try again.\n”, filename);

}
temp = tmpnam (NULL);
outfule = fopen (temp, “w”);
if (outfile == NULL) Error (“Can’t open temporary file” );
UpperCaseCopy (infile, outfile);
fclose (infile);
fclose (outfile);
If (remove (filename != 0 || rename (temp, filename) != 0) {

Error ( “Unable to rename temporary file ”);
}

}

/*
* Function: UpperCaseCopy
* Usage: upperCaseCopy (infile, outfile);
* ---------------------------------------------------
* This function copies the contents of infie to outfile,
* converting alphabe tic characters to upper case as it does so.
* The client is responsible for opening and closing the files.
*/

static void UpperCaseCopy (FILE *infile, FILE *outfile)
{
int ch;

whil ((ch = getc (infile)) != EOF) {
putc (toupper (ch), outfile);

}
}
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On many occasions when you are reading data from an input file, you will find
yourself in the problematic position of not knowing that you should stop reading characters
until you have already read more than you need. For example, suppose that you were
reading characters from a file looking for a number composed of decimal digits. As long as
you read digit characters from the file, you should go on and read the next character. Thus,
the loop that reads characters until you get a non-digit might look like this (using the isdigit

function from ctype.h):

while (isdigit (ch = getc (infile)))…

But what happens when you are finished? You only know that you are done with the
number when you read the first non-digit. That non-digit signals the end of the loop but
may well be part of the next value you’re trying to read from that file. By calling getc, you
have already read that character into the variable ch and taken it out of the input stream.



What you would like to do at this point is to say something akin to “Whoops! I didn’t
really mean to read in that character. Here, just put it back in the file stream and forget that I
ever saw it.” C provides a function, unge tc (ch, infile), that does exactly that. The effect of this
call is to “push” the character ch back into the input stream so that it is returned on the next
call to getc . However, the C libraries only guarantee the ability to push back one character
into the input file, so you should not rely on being able to read several characters ahead and
then push them all back. Fortunately, being able to push back on character is sufficient in
the vast majority of cases.

To appreciate how the unge tc function can be useful, suppose you wanted to write a
program that copies a program form one file to another, removing all comments as it does
so. As you know, a comment in C begins with the character sequence /* and ends with the
sequence */...

.

A program to remove them must copy character until it detects the initial /*
sequence and then read characters without copying them unit it detects the */ at the end.

The only aspect of this problem that poses any difficulty at all is the fact that the
comment markers are twocharacters long. If you are copying the file a character at a time,
what do you do when you encounter a slash? It might be the beginning of a comment, in
which case you should not copy it to the output file. On the other hand, it might be the
division operator. The only way to determine which of these cases applies is to look at the
next character. If it is an asterisk, you need to ignore both characters and make note of the
fact that a comment is in progress. If it not, however, the easiest thing to do is to push the
character back into the input stream and copy it on the next cycle. The CopyRemovingCommen ts

function shown in Figure 15-3 implements this strategy.
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CopyRemovingComments

static void CopyRemovingCommen ts (FILE *infile, FILE *outfile)
{

int ch, nch;
bool commetFlag;

commentFlag = FALSE;
while (( ch = gtch (infile)) != EOF) {

if (commen tFlag) {
if (ch == ‘*’) {

nch = getc (infile);
if (nch == ‘/’) {

commentFlag = FALSE;
} else {

unge tc (nch, infile);
}

}
} else {

if (ch == ‘/’) {
nch = getc (infile);
if (nch == ‘*’) {

commentFlag = TRUE;
} else {

unge tc (nch, infile);
}

}
if (!commentFlag) ptc (ch, outfiel);

}
}

}



1-41-41-4

1-4

Line-orientedLine-orientedLine-oriented

Line-oriented

I/OI/OI/O

I/O

Because files are usually subdivided into individual lines, it is often useful to read an
entire line of data at a time. The function in stdio.h that perfumes this operation is called fgets

and ahs the following prototype:

istring fgets (char buffer[], int bufSze, FILE *infile);

The effect of this function is to copy the next line of the file into the character array buffer.
Ordinarily, fgets stops after reading the first newline character but returns earlier if the size
of the buffer, as specified by the parameter bufSize, would otherwise be exceeded. Thus, the
last character in buffer before the terminating null character will be a newline unless the
line form the file is too long to fit in the buffer. Irrespective of whether it reads the entire
line or a part of it, fgets ordinarily returns a pointer to the character array given as the first
argument. If fgets is called at the end of the file, it returns NULL.

The corresponding function for output is called fputs and has the prototype

void fputs (string str, FILE *outfile);

Calling fputs copies character form the string to the output file until the end of the string is
reached.

You ca also use fgets and fputs to implement the CopyFile function introduced in the
section on “Character I/O” earlier in this chapter in this chapter, as follows:

static void CopyFile (FILE *infile, FILE *outfile)
{

char buffer[MaxLine];

while (fge ts (buffer, MaxLine, infile) != NULL) {
fputs (buffer, outfile);

}
}

When you use fgets , you must supply a buffer for the input line. In the CopyFile example, the
array is allocated explicitly in the current frame by the declaration

char buffer[MaxLine];

It is important to remember that the memory space for this buffer will be deallocated when
the function returns. If you want to store the characters in the line more permanently, you
need to copy the data into memory that persists after the call. In some cases, that memory
may consist of a global character array or an array passed down from a calling function, but
it is often easier to allocate the memory dynamically from the heap.

You also need to allocate new memory if you use the same temporary buffer for more
than one fgets call. Assignment alone is not sufficient. For example, the following code
appears to read two lines form an input file, storing the data in the string variables sline1 and
line2 :

void ReadTwoLines (FILE *infile);
{

string line1, line2;
char buffer[MaxLine];
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fgets (buffer, MaxLine, infile); This code leaves line1 and
line1 = buffer; line2 with the same contents.
fgets (buffer, MaxLine, infile);
line2 = buffer;
… rest of program…

}

The problem is that the variable buffer, though conceptually a sting in many respects,
occupies specific locations in memory, and the assignment

line1 = buffer;

only copies the address of buffer to the variable line1. When the program goes on to reuse
this space to read the second line, the same memory is used to hold that second string. The
variables line1 and line2 end up pointing to the same memory and therefore contain the same
string.

One solution to this problem is to sue the function CopyString from the strlib library to
copy each of these strings into its ownmemory in the heap, like this:

void ReadTwoLines (FILE *infile)
{

string line1, line2;
char buffer[MaxLine];

fgets (buffer, MaxLine, infile);
line1 = CopyString (buffer);
fgets (buffer, MaxLine, infile);
line2 = CopyString (buffer)
… rest of program…

}

Another solution is to use the ReadLine function defined in simpio.h, which also avoids the
following problems associated with fgets :

 There is no easy way to know how big the buffer limit should be. Some files
contain very long lines, and it is difficult to pick a buffer size that works for all
files.

 It is hard to tell whether the buffer limit has been exceeded. Specifying a
maximum size in the fgets call means that data will not be written past the end of
the allocated buffer, but it is still useful to know if the fgets call has read a
complete line. The only way to do so when using fgets is to look through the
characters in the buffer to see if they include a newline character.

 The fact that fgets stores the newline character is usually an annoyance. In most
applications, the newline character serves only as a sentinel marking the end of
the line; it is not actually part of the data. Using fgets means that you have to take
the extra steps necessary to remove the newline charger from the buffer.

The ReadLine function is similar in operation to the GetLine function introduced in Chapter 2.
The only difference is that the input data comes from a data file supplied as an argument.
ReadLine offers the following advantages over fgets:

 ReadLine allocates its own heap memory as needed, making it impossible to
overflow the buffer.



 ReadLine removes the newline used to signal the end of the line, so that the data
returned consists simply of the character on the line.

 Each string returned by ReadLine is stored in its own memory, so that no confusion
can occur as to whether a string needs to be copied before it is stored.

The ReadLine function returns NULL when it encounters the end-of-file marker.
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Of all the facilities provided by the standard I/O library, none are more emblematic of
C than the formatted I/O functions printf and scanf. You have used printf since Chapter 2 but
have only scratched the surface of what you can do with it. The next few sections provide
more background on the printf/scanf family of functions and are included so you can use
these functions more effectively in your own code and make sense of other programs that
use them.

TheTheThe

The

threethreethree

three

formsformsforms

forms

ofofof

of

printf

The printf function comes in three different forms:

printf (control string, …);
fprintf (output stream, control string, …);
sprintf (character array, control string, …);

The printf form always writes its output to standard output. The fprintf function is identical,
except that it makes a FILE pointer argument as its first argument and writes its output to that
file. The sprintf form takes a character array as its first argument and writes the characters
that would have been displayed by a printf call into that array. It is the responsibility of the
caller to ensure that there is sufficient space in the array to contain the output data.

Other that the destination to which the output is directed, all three of the printf forms
work in the same way: they take a string called the control string and copy it, character by
character, to the indicated destination. If the string contains a percent sign (%), that
character is treated as the beginning of a format code, which is replaced by a string
representation of the test available argument in the printf call. The nature of the formatting is
indicated by the letter that comes at the end of the format code, which may also include
modifiers that specify field width, precision, and alignment. The most common printf options
are described in the section on “Formatted output” in Chapter 3.
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The scanf functions provide an input counterpart to printf that is intended to make it
easier for programs to read in values of the various basic types. Presumably, the designers
of the C library once had the idea that printf and scanf would be symmetric mechanisms.
Unfortunately, partly because of the rules of C and partly because one uses different



conversions in the input direction, printf and scanf have a number of asymmetries that make
their use confusing.

The most important asymmetry between printf and scanf comes form the fact that printf
needs to be able to take multiple values from its caller whereas scanf needs to return multiple
values to its caller. The operation of returning multiple values is not well supported in C
and requires extensive use of pointers. Leaving out the address-of operator (&) in calls to
scanf is a common error in C programs that use this facility—an error made all the more
serious by the fact that the compiler cannot recognize the omission as an error. The
compiler accepts the incorrect scanf call, but then the program fails mysteriously later on.

Like printf, scanf comes in three different forms:

scanf (control strng,…)
fscanf (input stream, control string,…)
sscanf (character string, control string,…)

The first reads values from standard input, the second from the FILE pointer indicated by the
input stream parameter, and the third from the specified character string. Each of these
forms reads characters from the source and converts them according to the specifications in
the control string. The data values themselves are stored in memory provided by the caller
through additional arguments.

Because scanf must return information to its caller, the arguments after the control
string must use call by reference, as described in Chapter 13. Each of the arguments after
the control string must therefore be a pointer. In most cases, you simply include the
address-of operator (&) in front of a variable name to convert that variable to its address, but
it is important to remember that the names of character arrays are already pointers and
therefore do not require the &.

The control string for scanf consists of three different classes of characters:

 Characters that appear as blank space, which cause scanf to skip ahead to the next
nonblank character. Such characters are called white-spacewhite-spacewhite-space

white-space

characterscharacterscharacters

characters

in C and
consist of those characters for which the isspace predicate function in the ctype.h

interface returns TRUE. The most common white-space characters are the space,
tab, and newline characters. In the scanf control string, any amount of white space
matches any amount of white space in the input.

 A percent sign followed by a conversion specification.
 Any other character, which must match the nest character in the input. This

facility allows the program to check for required punctuation, such as a comma
between twonumbers, and so forth.

Conversion specifications are structurally similar to their printf analogues, but the set of
available options is different. A conversion specification for scanf is composed of the
following options, listed in the order in which you must specify them:

 An optional assignment-suppression flag indicated by an asterisk (*), which
specifies that the value from the input should be discarded rather than stored
through one of the argument pointers.
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 An optional numeric field width indicating the maximum number of characters to
be read for the field.

 An optional size specification consisting of either the letter h , which indicates an
integer value of type short, or the letter l, which indicates either an integer value of
type long or a floating-point value of type double .

 A conversion specification letter, which is ordinarily one of those shown in Table
15-1.

CodeCodeCode

Code

InterpretationInterpretationInterpretation

Interpretation

All forms of scanf return the number of conversions successfully performed, not counting
those that were suppressed using the * specification. If the end-of-file condition is detected
before any conversions occur, scanf returns the value EOF.

ReadingReadingReading

Reading

stringsstringsstrings

strings

withwithwith

with

scanf

%d The next value from the input is scanned as a decimal integer. That
integer value is then stored in the memory cell addressed by the next
pointer argument. It is crucial that the size of the variable match the
size indicated by the specification.

%f
%e
%g

The next input value is scanned as a floating point value and stored in
the memory cell indicated by the next pointer in the argument list. If
the target of the pointer type is float, the conversion specification
should be %f. The %e and %g codes are identical to %f and are included
for symmetry with printf.

%c The next character is read and stored at the address indicated by the
next argument, which must be a character pointer. In contrast to the
other specifications, the %c specification does not skip whiter-space
characters before conversion.

%s Character are read from the input and stored in successive elements of
the character array indicated by the next argument. The caller must
ensure that enough space has been allocated in the array to
accommodate the value being read. Input is terminated by the first
white-space character.

%[…]
%[̂ …]

The conversion specification may consist of a set of characters
enclosed in square brackets. In this case, a string is read up to the first
character that is not in the bracketed set. The string is stored at the
address specified by the next argument to scanf, which must be a
character array. If the set of characters begins with a circumflex (^),
the characters that follow are instead interpreted as those that are not
permitted in the input. For example, the specification %[0123456789]

reads in the next sequence of digits as a string; the specification %[̂ .!?]

reads a string of characters up to the next end-of-sentence mark
(period, exclamation point, or question mark).

%% No conversion is done; a percent sign must follow in the input.

TABLETABLETABLE

TABLE
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Table 15-1 includes several conversion characters—the forms “%s”, “%[…], and
“% [̂ …]”—that are used to read string values. With each of these conversion specifications,
the caller is responsible for allocating sufficient space to hold the data. The scanf argument
used to receive the string should therefore be a character array declared by the caller. For
example, in order to read in a string bounded by white space, you must first declare an array
to hold that string, using a declaration such as

#define MaxWord 25

char word[MaxWord];

Once space for the result has been set aside, your program can then red a string with the
statement

fscanf (infile, “%s”, word);

Note that there is no & character before the variable name. The fscanf functions requires that
all of its arguments be pointers to the space into which the values are stored. The name of
an array is already a pointer to its first element, so you do not use the & operator.

One major problem with this example is that you could easily overflow the available
space. If you fail to allocate enough memory, fscanf keeps writing into the next several
memory locations, destroying whatever values were there. To guard against this type of
buffer overflow, you can specify a field width to indicate the maximum number of data
characters you are willing to read in:

fscanf (infile, “%24s”, word);

This call stores only the first 24 characters into the array, thereby ensuring that no space is
overwritten beyond the array. Because MaxWord is defined to be 25, you also have room to
store the final ‘\0’ character marking the end of the string1.

The “%[…]” and “% [̂ …]” conversion options can be particularly useful in reading
formatted input. For example, in order to read an entry of the form

name: value

wherename is a string and value is an integer, you could use the following call to fscanf:

fscanf (infile, “% [̂ :]: %d”, name,&value);

Unfortunately, you cannot use this statement repeatedly to read several input lines in the
same form. The problem is that, after the program reads the integer corresponding to value,
the newline that terminates the number remains in the input stream, where it will be read as
part of the next word. Adding a newline character at the end of the control string, as in

fscanf (infile, “% [̂ :]: %d\n”, name,&value);

1 You can avoid using the constant 24 in the scanf control string, although doing so is rather clumsy
and can make the program harder to read. To make this constant depend on the value of MaxWord, you
need to generate the scanf control string by calling sprintf as follow:

char controlS tring[MaxControlS tring];

sprintf (controlStirng, “%%%ds”, MaxWord –1);
fscanf (infile, controlS tring, word);

when fscanf is called , the character array controlS tring contains the string “%24s”.



often solves the problem, but not for the reason that you might expect. The inclusion of the
newline character does not force fscanf to match a newline character at that point in the input.
Instead, the newline is treated as a white-space character, which causes scanf to read past
any white-space characters in the input file. If you assume that a newline character always
occurs immediately after the number, everything is fine. If, on the other hand, you want
your program to test for the possibility of an improperly formatted input file, you have to
use a different approach.

A safer solution is to read an additional character in the fscanf call and then to rest it to
make sure it’s a newline, as shown in this loop:

while (TRUE) {
nscan = fscanf (infile, “% [̂ :]: %d%c”, name, &value, &termch);
if (nscan == EOF) break;
if (nscan != 3 || termch != ‘\n’) Error ( “Bad input line ”);

}

When you use this strategy, the code also checks to make sure the fscanf call reads exactly
three items: the name, the value, and the terminating character.

If you need to know how much of the file has been read when an error occurs, it is
often best to read an entire line using fgets and then call sscanf to convert the fields in the
resulting string, as follows:

while (fge ts (line, MaxLine, infile) != NULL) {
nscan = sscanf (infile, “% [̂ :]: %d%c”, name, &value, &termch);
if (nscan != 3 || termch != ‘\n’) Error ( “Bad input line ”);

}
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To appreciate how scanf works, it is essential to work through examples of its use and
practice writing similar applications of your own. For example, suppose that you wanted to
red the data contained in the file elemen ts.dat, which lists the following information for each
of the chemical elements:

 The element name, which is never more than 15 characters long
 The chemical symbol , which is never more than two characters long
 The atomic number, which is an integer indicating the number of protons in the

nucleus
 The atomic weight, which is a floating-point number (this value specifies the relative

weight of this element averaged over the naturally occurring isotopes, but the details
are unimportant for the example).

The first 10 lines of the file would then look like this:

Hydrogen, H, 1, 1.008
Helium, He, 2, 4.003
Lithium, Li, 3, 6.939
Beryllium, Be, 4, 9.012
Boron, B, 5, 10.811
Carbon, C, 6, 12.011



Nitrogen, N, 7, 14.007
Oxygen, O, 8, 15.999
Fluorine, F, 9, 18.998
Neon, Ne, 10, 20.183

Now let’s suppose you want to read in the data from this file and display it in the following
tabular form:

In the output, the atomic number appears first, followed by the name and symbol together
in a fixed-width field, followed in turn by the atomic weight.

Your first task is to design a control string for fscanf that correctly reads in the data for a
single line from the file. The input line begins with the element name, which is a string
terminated by a comma. The easiest way to read this field is to use the conversion
specification %15[^,] to read a string consisting of any characters up to the first appearance of
a comma. The field width of 15 ensures that the elemen tName buffer does not overflow. After
the specification for the element name, the control string contains a comma to match its
counterpart in the input, followed by a space to skip over any spaces that follow the comma.
The symbol field is read using the specifications %2[^,], which is just like the first
specification except for the smaller field width. The last two fields on the line are of type int

and double, respectively. To scan these fields, the control string must contain the
specifications %d and %lf. The conversion specification used to read the atomic weight must
include the letter l because the corresponding variable is a double rather than a floa t. At the
end of the line, it is useful to read the character after the atomic weight to make sure it is a
newline. Thus, the complete fscanf call is

nscan = fscanf (infile, “%15[^,], %2[^,], %d, %lf%c”, elemen tName,
elemen tSymbol, &atomicNumber, &atomicWeigh t, &termch);

The first two variables in the fscanf call are character arrays are already treated as addresses.
The atomicNumber , atomicWeigh t, and termch variables are not arrays and must therefore be
preceded by an & to obtain their addresses.

The formatted I/O functions are also useful in generating the output table. In the table,
the element name and its corresponding symbol are displayed together in a single field. To
align the atomic weight column correctly, you have to make sure that the field. To align the
atomic weight column correctly, you have to make sure that the field combining the name
and symbol maintains a constant width. You can do so explicitly by computing the width of
each string using strlen and then writing out the appropriate number of spaces. Alternative ly,
you can combine the fields together into a single string using sprintf and then use the
standard field width facilities of printf to generate the correct output. This approach is

Element (symbol) Atomic Weigh t
1. Hydrogen (H) 1.008
2. Helium (He) 4.003
3. Lithium (Li) 6.939
4. Beryllium (Be) 9.012
5. Borom (B) 10.811
6. Carbon (C) 12.011
7. Nitrogen (N) 14.007
8. Oxygen (O) 15.999
9. Fluorine (F) 18.998
10. Neon (Ne) 20.183



illustrated by the elemen ts.c program shown in Figure 15-4.
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elements.c

/*
* File: elemen ts.c
* ---------------------
* This program copies the informa tion form the elemen ts.dat
* file into a table formatted into fixed-width columns. The
* data values in the file are read using fscanf.
*/

#include <stdio.h>
#include “genlib.h ”
#incldue “simpio.h”

/*
* Constants
* -------------
* ElementFile -- Name of the elemen ts data file
* MaxElemen tName -- Maximum length of elemen t name
* MaxSymbolName -- Maximum length of elemen t symbol
*/

#define ElementFile “elemen t.dat”
#define MaxElemen tName 15
#define MaxSymbolName 2

/* Main program */

main()
{
FILE *infile;
char elemen tName[MaxElemen tName+1];
char elemen tSymbol[MaxSymbolName+1];
char namebuf[MaxElemetName+MaxSymbolName+4];
int atomicNumber;
double atomicWeigh t;
char termch;
int nscan;

infile = fopen (ElementsFile, “ r”);
if (infile == NULL) Error (“Can’ t open %s”, ElementsFile);
printf (“ Element (symbol) Atomic Weigh t\n”);
printf (“-----------------------------------------------------\n“);
while (TRUE) {

nscan = fscanf (infile, “%15[^,], %2[^,], %d, %lf%c”,
elemen tName, elemen tSymbol,
&atomicNumber, &atomicWeigh t, &termch);

if (nscan == EOF) break;
if (nscan != 5 || termch != ‘\n’) {

Error ( “Bad iput line”);
}
sprintf (namebu f, “%s(%s)” , elemne tName, elemen tSymbol);
printf (%3d. %-20s %8.3f\n”, atomicNumber, namebuf, atomicWeigh t);

}
}
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The principal advantage of scanf is that it provides a convenient way to read input data



written in a consistent format. By choosing the right conversion specifications, you can
often read and interpret many data items in a single function call. Particularly if you are
writing code to test an application and need to read some test data and know exactly how it
is formatted.

The scanf function, however, is less useful when the input comes from a source that you
do not directly control. If the input data might contain errors, you program must test the
input to make sure it is in the correct form. If you are using scanf, however, it is often
impossible to check input data as thoroughly as you should. As a result, scanf is not used
extensively in commercial C programs, for which such error-checking is critical. P.J.
Plauger, who chaired the committee to standardize the ANSI C libraries, issues the
following warning1:

You will find that the scan conversion specifications are not as complete as the print conversion
specifications. Too often, you want to exercise control over an input scan. Or you may find it impossible to
determine where a scan failed well enough to recover properly from the failure…Be prepared…to give up
on the scan functions beyond a point. Their usefulness, over the years, has proved to be limited.

SUMMARYSUMMARYSUMMARY

SUMMARY

When you want to store information that persists after a program completes its
execution, you must store it in a file on a secondary storage device that supports permanent
storage, such as a disk. The most common type of file used in programming consists of
character data and is called a text file. Text files can be used for input or output and are
usually processed sequentially.

The stdio.h interface provides several functions for input/output operations that allow
you to choose among several different strategies. For example, you can process files
character by character, line by line, or as collections of formatted fields.

Important points considered in this chapter include:

 To use a text file within a program, you must first declare a variable of type FILE * to
hold whatever information the system needs to keep track of the operations on that file.

 You establish the link between the FILE * variable by calling fopen and later break that
connection by calling fclose .

 The stdio.h interface defines three standard files—stdin , stdou t, and sterr—that make it
possible to apply any of the I/O functions to the console itself.

 If you choose to process a file one character at a time, fundamental operations are the
functions getc and putc . The standard I/O library also defines a function unge tc, which
allows you to push a character back into the input stream.

 If you choose to process a file a line at a time, you can call the functions fgets and fputs
defined in stdio.h as long as you are careful about memory allocation. It is often more
convenient, however, to use the ReadLine function from simpio.h , which performs any
necessary memory allocation automatically.

 The printf function has an input counterpart called scanf that allows you to read
formatted data. The functions fprintf and fscanf allow you to perform formatted I/O

1 P.J. Plauger, The Standard C Library, Englewood Cliffs, NJ: Prentice Hall, 1992, p.268.



operations on files, and the functions sprintf and sscanf provide an equivalent facility for
working with character buffers.
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1. Which representation more closely corresponds to the internal representation of a text
file: (a) a two-dimensional array consisting of a sequence of lines or (b) a one-
dimension sequence of character?

2. What is meant by the phrase opening a file?
3. What is the purpose of the type FILE *? Is understanding the underlying structure of this

type important to most programmers?
4. The second argument to fopen is usually one of the following string: “ r”, “w” or “a”. What

is the signif icance of this argument and what do each of these values mean?
5. How does the fopen function report failure to its caller?
6. When a program exits, all open files are automatically closed. Why should you bother

to close files explicitly?
7. The stdio.h interface automatically defines three standard files. What are their names?

What purpose does each one serve?
8. True or false: The function getc returns a value of type char.
9. When you are using the getc function, how do you detect the end of a file?
10. What steps are involved in the process of updating a file?
11. If you call the function rename (f1, f2), does the name of the file f1 change to become f2 or

is it the other way round?
12. What is the purpose of the function unge tc?
13. The function fgets takes three arguments. What are they?
14. What are the major differences between fgets and ReadLine?
15. The formatted printing function comes in three forms: printf, fprintf, and sprintf. What are

the differences?
16. True or false: Every argument to scanf after the control string must be a pointer.
17. True or false: Every argument to scanf after the control string must be preceded with an

ampersand (&).
18. How are white-space characters defined?
19. What does it mean if a white-space character appears in a scanf control string?
20. If the variable i is declared as an int and the variable d as a double, what is wrong with the

following scanf call:

scanf (“%d, %f”, &i, &d);

21. What is the effect of the scanf specification “%10[^,:]”?
22. True or false: Over the years, the scanf function has proven to be an extremely valuable

feature of the standard I/O library.
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1. Write a program wc.c that reads a file and report how many lines, words, and character
appear in it. For the purposes of this program, a word consists of a consecutive
sequence of any characters except white-space characters. For example, if the file
lear. tx t contains the following passage from King Lear,

Poor naked wretches, wheresoe ’er you are,
Tha t bide the pelting of this pitiless storm,
How shall your houseless heads and unfed sides,
Your loop ’d and window’d raggedness, defend you
Form seasons such as these? O, I have ta’en
Too little care of this!

your program should be able to generate the following sample run:

2. On occasion, publishers find it useful to evaluate layouts and stylistic designs without
being distracted by the actual words. To do so, they sometimes typeset sample pages in
such a way that all of the original letters are replaced by random letters. The resulting
text has the spacing and punctuation structure of the original, but no longer conveys
any meaning that might get in the wayof the design. The publishing term for text that
has been replaced in this way is greek, presumably after the old saying “It’s all Greek
to me,” which is itself adapted from a line from Julius Caesar .

Write a program greek.c that reads characters form an input file and displays them
on the console after making the appropriate random substitutions. Any uppercase
character in the input should be replaced by a random uppercase character and every
lowercase character by a random lowercase one. Nonalphabetic characters are
displayed without change. For example, if the input file troilus.da t contains the text from
Troilus and Cressida,

Ay, Greek; and that shall be divulged well
In characters as red as Mars his heart
Inflamed with Venus:

your program should generate output that looks something like this:

3. Some files use tab characters to align data into columns. Doing so, however, can cause
problems for certain applications that are unable to work directly with tabs. For these
applications, it is useful to have access to a program that replaces tabs in an input file

File: lear. tx t 
Lines: 6
Words: 43
Chars: 254

Hb, Jwkyqt; cwqocgs lsosn jo hadricyoc lino
Dm bzongsmdrv uj qew ya Okor umj umj ioyvq
Ipqpqnpj vrvy Snszv:



with the number of spaces required to reach the next tab stop. In programming, tab
stops are usually set at every eight columns. For example, suppose that the input file
contains a line of the form

abc ━━┫nopqr ━┫xyz

where the ━━┫ symbol represents the space taken up by a tab, which differs
depending on its position in the line. If the tab stops are set every eight spaces, the first
tab character must be replaced by five spaces and the second one by three.

Write a program untabi fy .c that reads a file name form the user and updates the file
so that all the tabs are replaced by enough spaces to reach the next tab stop.

4. Because text files consist only of ASCII characters, they do not allow you to represent
a document with multiple fonts and styles. To get around the limitations of ASCII,
people have developed a variety of conventions to represent certain typographical
styles. For example, people sometimes use asterisks in ASCII files to mark a region of
text that should be underlined. For example, to note that The C Programming
Language is a title and not just an otherwise ordinary collection of words, a text file
might contain the following line:

*The C Programming Language* by Kernighan and Ritchie

Even if they lack more advanced typographical features, such as italics, some printers
can underline text by sing the backspace character (indicated as ‘\b’ in C). If you print
an underscore character (‘_ ’), followed by a backspace, followed by some other
character, what appears on the page is an underlined character.

Write a program that reads characters from one file to another, converting text
enclosed within asterisks into underlined character sequences. When your program
encounters the first asterisk, it should start underlining characters; it should stop
underlining when it reaches the next one. Form there on, it should continue in the same
fashion, turning underlining on and off, until the end-of-file is reached. Your program
must also handle the following two special conditions:

a. As required by most style guides, all characters in an underlined passage,
including spaces and punctuation, should be underlined. If, however, you read in
a newline (because a title is split onto more than on line as shown in the example
below), the newline character should not be underlined.

b. If the asterisk that would ordinarily start the underlining process is followed
immediately be a white-space character, the asterisk is considered to be a regular
asterisk. In this case, the asterisk should appear unchanged without triggering the
underlining process.

As an example, suppose the file kander. tx t has the following contents:

According to the table on page 53 of the C
Programming Language by Kernighhan and Ritchie,
the operator * has a higher precedence than +, and



the precedence of * is equal to that of /.

Given this input file, your program should produce an output file that looks like this
when printed:

According to the table on page 53 of the C
Programming Language by Kernighhan and Ritchie,
the operator * has a higher precedence than +, and
the precedence of * is equal to that of /.

5. Particularly now that computer memories tend to be reasonably large, it is often easiest
to read in the contents of a file all at once and then to begin processing its data. Write a
function with the prototype

string *ReadFile (FILE *infile)

that reads the entire contents of infile and returns it in the form of a dynamic array of
strings, one for each line of the file, followed by an extra element containing the value
NULL to mark the end of the file. For example, suppose that the file prosper o.tx t contains
the following lines formThe Tempest:

What seest thou else
In the dark backward and abysm of time?
If thou remember ‘st augh t ere thou camest here,
How thou camest here thou mayst.

If you open prosper o.tx t for input as infile and call ReadFile (infile) , the function returns a
pointer to a dynamic string array, as this diagram shows:

The most interesting question in the design of the ReadFile implementation is how much
space to allocate for the dynamic array. The problem is that you don’t know many lines
will be in the file before you start to read them. To solve this problem, the most general
approach is to allocate an array of some arbitrary initial size and then allocate
additional space later on if more space is needed. If you do need to allocate more
space, you will have to perform the following steps:

a. Allocate a new dynamic array larger than the old one.
b. Copy the previously stored elements from the old array to the new one.
c. Free the old array.
d. Assign the new array pointer to the variable used to refer to the array.

Put the implementation of ReadFile in a separate readfile.c file and design a readfile.h
interface that gives clients access to it. Use the readfile.h interface to write a mina
program that displays the lines in a file in reverse order. For example, given the
prosper o.tx t file as input, the output of the program should be

“What seest thou else”
“In the dark backward and abysm of time? ”
“If thou remember ’st augh t ere thou camest here, ”
How thou camest here thou mayst.

NULL



6. In the 1960s, entertainer Steve Allen often played a game called Madlibs as part of his
comedy routine. Allen would ask the audience to supply words that fit specific
categories—a verb, an adjective, or a plural noun, for example—and then use these
words to fill in blanks in a previously prepared text that he would then read back to the
audience.

To illustrate the process, suppose that the hidden text consists of the following
lines from Hamlet with certain key words removed, as shown:

To (a verb) or not to (the same verb): that is the question.
Whether ‘tis nobler in the mind to suffer
The slings and arrows of (an adjective) fortune,
Or to take arms against a sea of (a plural noun ),
And by opposing end them?

The audience fills in the blanks with words of the appropriate type without knowing
what the original texts. Depending on what words are chosen, the result can be funny,
although the adjective silly probably applies more often.

In this exercise, our task is to write a program that plays Madlibs with the user.
The text for the story comes form a text file that includes occasional placeholders
enclosed in angle brackets. For example, the input file hamle t.mad that contains Hamlet’s
soliloquy would look like this:

To <verb>, or not to <same verb>: that is the question.
Whether ‘tis nobler in the mind to suffer
The slings and arrows of <adjective> fortune,
Or to take arms agains t a sea of <plural noun>,
And by opposing end them?

Your program must read this file and display it on the console, giving the user the
chance to fill in the blanks. The following sample run illustrates a possible session
with the program:

Note that the user must provide all the substitutions before any of the text is displayed.

How thou camest here thou mayst.
If thou remember ’st augh t ere thou camest here,
In the dark backward and abysm of time?
What seest thou else

Input file: hamlet.madhamlet.madhamlet.mad

hamlet.mad





verb: programprogramprogram

program





same verb: programprogramprogram

program





adjective: randomrandomrandom

random





plural noun: bugsbugsbugs

bugs





To program, or not to program: that is the question.
Whether ‘tis nobler in the mind to suffer
The slings and arrows of random fortune,
Or to take arms agains t a sea of bugs,
And by opposing end them?



This design complicates the program structure slightly because it is impossible to
display the output text as you go. The simplest strategy is to write the output to a
temporary file fist and then copy the contents of the temporary file back to the screen.

7. Write a program that read a file and keeps track of the number of times each word
appears in that file. When your program finishes reading the file, it should generate an
alphabetical table showing each word and the number of times it appears. For example ,
if the input file malvolio. tx t contains the following lines from Twelfth Night:

Some are born great, some achieve greatness,
and some have greatness thrust upon them.

the program should generate the following table:

Note that the program converts all characters in each word to lower case so that Some
and some are not treated as different words.

In designing your solution, think carefully about modular decomposition. What
modules would be helpful? In particular, are there any existing modules already used
for other applications that you can also apply to this problem?

8. Write a program that transforms a file containing a list of computer equipment you
would like to buy into a nicely formatted order form. The input file consists of several
lines, each of which contains the following fields:

 A part number, which consists of up to six characters, extending from the
beginning of the line to the first blank space.

 A product name, which consists of up to 20 characters. This field begins after the
part number and continues to the first slash character (/), which must appear in
every input line.

 The number of units, which is an integer.
 The unit price, which is a floating-point value separated from the number of units

by a commercial at-sign(@).

Additional white space may occur between any of the fields, but each line must
include all four of the data fields and the required separators. The format of the input
file is illustrated by the file order.dat, as follows:

NC271x Notebook computer / 1 @ 1729.00
LP552 Laser printer / 1 @ 1499.00
TC552V Toner cartridge / 2 @ 99.00
DS42 3.5” diskettes / 10 @ 2.99

Word frequency tables:
achieve 1
and 1
are 1
born 1
great 1
greatness 2
have 1
some 3
them 1
thrust 1
upon 1



CC542 Carrying case / 1 @ 27.99

Your program should read the input file and redisplay each of the fields in a fixed-
width column. In addition, your program should display the total price for each line
item (the number of units times the unit price) as well as the grand total for the entire
order. Given the data above, the output of your program should look like this:

9. Using the graphics library form Chapter 7, write a program that displays polygons on
the screen. The coordinates form the vertices of a polygon are stored in a data file, one
coordinate pair per line. Each coordinate consists of two floating-point numbers
enclosed in parentheses and separated by a comma. The input file may contain vertex
coordinates for several different polygons; each polygon is separated from the
preceding one by a blank line in the file. For example, the file polygon.da t contains the
coordinates for a square and a triangle, as follows:

(0.5, 0.5)
(1.0, 0.5)
(1.0, 1.0)
(0.5, 1.0)

(2.0, 0.5)
(3.0, 0.5)
(2.0, 1.0)

Your program should read the input file and draw the polygons on the screen. Given
the input file polygon.da t, the display should look like this:

Order file: order.datorder.datorder.dat

order.dat





NC271x Notebook computer 1 @ 1729.00 = 1729.00
LP552 Laser printer 1 @ 1499.00 = 1499.00
TC552V Toner cartridge 2 @ 99.00 = 99.00
DS42 3.5” diskettes 10 @ 2.99 = 2.99
CC542 Carrying case 1 @ 27.99 = 27.99
-----------------------------------------------------------------------------------
TOTAL 3483.89
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OBJECTIVES

 To understand the concept of a record and its importance to programming.
 To recognize the difference between defining a record type and declaring a record

variable.
 To be able to manipulate records and pointers to records using the . (dot) and ->

operators.
 To be able to allocate new record storage dynamically.
 To understand the process of database design.

When you learned about arrays in Chapter 11, you took the first steps toward

understanding an extremely important idea in computer programming: the use of
compound data structures to represent complex collections of information. When you
declare an array in the context of a program, you are able to combine an arbitrarily large
number of data values into a single structure that has conceptual integrity as a whole. If
you need to do so, you can select particular elements of that array and manipulate them
individually. But you can also treat the array as a unit and manipulate it all at once.

The ability to take individual values and organize them into coherent units is one of
the fundamental features of modern programming languages. Procedures and functions
allow you to unify many independent operations under a single name. Compound data
structures—of which arrays are only one example—offer the same facility in the data
domain. In each case, being able to aggregate the tiny pieces of a program into a single,
higher-level structure provides both conceptual simplification and a signif icant increase in
your power to express ideas in programming. The power of unification is hardly a recent
discovery; it has given rise to social movements and to nations, as reflected in the labor
anthem that proclaims “the union makes us strong” and the motto “E Pluribus
Unum”—“out of many, one”—on the Great Seal of the Unite States.

Using arrays is a powerful strategy when you are trying to model a real-world
collection of data that has two fundamental properties. First, the data must be ordered, in
the sense that you can refer to individual elements by some index number. Second, the data
must be homogeneous, in the sense that all elements have the same basic type. When the
real-world situation you are trying to model consists of a list or collection of similar things,
arrays are usually the perfect tool. On the other hand, it is also important to be able to take
a collection of unordered, homogeneous values and think of it as a single unit. In C, such a
collection is called a structurestructurestructure

structure

; in computer science generally, it is usually called a recordrecordrecord

record

.



This text uses the term record most of the time, reserving the term structure for contexts in
which it is important to highlight the specific implementation of records in C.
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To understand the idea of a record, imagine for a moment that you are in charge of the
payroll system for a small company. You need to keep track of various pieces of
information about each employee. For example, in order to print a paycheck, you need to
know the employee’s name, job title, Social Security number, salary, withholding status,
and perhaps some additional data as well. These pieces of information, taken together,
form the employee ’s data record.

What do employee records look like? It is often easiest to think of records as lines in a
table. For example, consider the case of the small firm of Scrooge and Marley, portrayed in
Charles Dickens’s A Christmas Carol, as it might appear in this data of Social Security
numbers and withholding allowances. The employee roster contains two records, which
might have the following values:

Name Job title Soc Sec. # Salary # With.

Each record is broken up into individual components that provide a specific piece of
information about the employee. Each of these components is usually called a fieldfieldfield

field

,
although the term membermembermember

member

is also used, particularly in the context of C programming. For
example, given an employee record, you can talk about the name field or the salary field.
Each of the fields is associated with a type, which may be different for different fields. The
name and title field are strings, the salary field might well be represented as a floating-
point number, and the number of withholding exemptions is presumably an integer. The
Social Security number could be represented as either an integer or a string; because Social
Security numbers are too big to fit within the limits imposed on integers by many systems,
they are represented here as strings.

Even though a record is made up of individual fields, it must have meaning as a
coherent whole. In the example of the employee roster, the fields in the first line of the
table represent a logically consistent set of data referring to Ebenezer Scrooge; those in the
second line refer to Bob Cratchit. The conceptual integrity of each record suggests that the
data for that employee should be collected into a compound data structure. Moreover, since
the individual fields making up that structure are of different types, arrays are not suited to
the task. In cases such as this, you need to define the set of data for each employee as a
record.

It makes sense to use a compound data structure whenever you need to represent real-
world information that has more than one component but nonetheless has integrity as a
whole. If the components are ordered and homogeneous, you should declare the structure
as an array. If the components are logically unordered, you should declare it as a record,
even if the component types happen to be the same.

Ebenezer scrooge Partner 271-82-8183 250.00 1
Bob Cratchit Clerk 314-15-9265 15.00 7



1-21-21-2

1-2

UsingUsingUsing

Using

recordsrecordsrecords

records

ininin

in

CCC

C

To create record data in c, you use a two-step process.

1. Define a new structure type. Before you declare any variables, you must first
define a new structure type. The type definition specifies what fields make up the
record, what the names of those fields are, and what type of information the
fields contain. This structure type defines a model for all objects that have the
new type but does not by itself reserve any storage.

2. Declare variables of the new type. Once you have defined the new type, your
next step is to declare variables of that type so that you can store actual data
values.

These two steps are fundamentally different operations. New programmers often forget that
both steps are required. After defining a new type, they imagine that the new type is itself a
variable and try to use it as such. The structure type is only a template for use in declaring
other variables and has no storage of its own.

DefineDefineDefine

Define
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a

newnewnew

new

structurestructurestructure

structure

typetypetype

type

Although there are other ways to defined structures in C, this
text uses the definition form shown in the syntax box on the left.
The name of the new type goes on the last line and is preceded by
descriptions of the fields that comprise the structure. The fields are
defined by writing a set of field declarations that look exactly like
variable declarations in a function. For example, the following
code defines a new structure type called employeeT to represent
employee records:

typedef struct {
string name;
string title;
string ssnum;
double salary ;

int withholding;
} employeeT;

This definition provides a template for all objects that have the new type employeeT. Each
such object will have five fields, starting with a name field, which is a string, and continuing
through a withholding field, which is an int .

DeclaringDeclaringDeclaring

Declaring

structurestructurestructure

structure

variablesvariablesvariables

variables

Now that you have defined a new type, the next step is to declare variables of that
type. For example, given the type eimpoyeeT, you can declare emp to be a variable of that

SYNTAXSYNTAXSYNTAX

SYNTAX

forforfor

for
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structurestructurestructure

structure

type:type:type:

type:

typedef struct {
field-declarations

} nwe-type-name;

Where:
field-declarations are standard variable

declarations used here to define the fields
of the structure

new-type-name indicates the name of the
newly defined type



type by writing

employeeT emp;

If you want to illustrate this variable using a box diagram, you can choose to represent
it in either of two ways. If you take a very general view of the situation—which
corresponds conceptually to looking at the diagram from a considerable distance—what
you see is just a box named emp:

If, on the other hand, you step close enough to see the details, you discover that the box
labeled emp is composed internally of five individual boxes:

RecordRecordRecord

Record

selectionselectionselection

selection

Once you have declared the variable emp by writing

employeeT emp;

you can refer to the record as a whole simply by using its name. At some point, however,
you will need to open up the record structure and manipulate its individual fields. To refer
to a specific field within a record, you write the name of the complete record, followed by
a period, followed by the name of the field. Thus, to refer to the job ti tle of the employee
stored in emp, you need to write

emp. titile

When used in this context, the period is invariably called a dot, so that you would read
this expression aloud as “emp dot ti tle.” Selecting a field using the dot operator is called
recordrecordrecord

record

selectionselectionselection

selection

.
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As with any other type of variable, you can initialize the contents of a record variable
by assigning values to its components. The dot operator returns an lvalue, which means that
you can assign values to a record selection expression. For example, if you were to execute
the statements

emp.name = “Ebenezer Scrooge”;
emp. title = “Partner”;
emp.ssnum = “271-82-8183 ”;
emp.salary = 250.00;
emp.withholding = 1;

you would create the employee record for Ebenezer Scrooge used in the earlier examples.
If a record variable is declared as a static global variable, you can also initialize its

contents statically using the same syntax described for arrays in the section in the order in
which they appear in the structure definition. Thus, you could declare and initialize a static
global record named manager that contains the data for Mr. Scrooge, as follows:

static employeeT manager = {
“Ebenezer Scrooge ”; “Partner ”; “271-82-8183 ”; 250.00; 1;

};

SimpleSimpleSimple

Simple

recordsrecordsrecords

records

Although records can be extremely large and complex, it is important to remember
that record types can be useful even when they are simple. To appreciate the power of
simple record definitions, think back to the structure of the graphics library presented in
Chapter 7. When you use this library, you work extensively with x and y coordinate values.
Many of the functions exported by the interface therefore take as arguments both an x and a
y value. This design is certainly easy enough to use. Nevertheless, it is not your only
options. At a conceptual level, the functions don’t work with individual coordinates as
much as they do with points. A point consists internally of an x and a y coordinate but also
acts as a coherent entity in its own right. It therefore makes sense to combine the individual
coordinates into a record. If you do so, you can then treat the point as a single entity, which
makes it easier to use.

To make it possible to represent a point as a single entity, the first step is to define the
type pointT as a part of coordinate values, as follows:

typedef struct {
double x, y;

} pointT;

You can then write procedures and functions that manipulate pointT values. For example, the
following function takes two coordinates and combines them into a pointT value:

pointT CreatePoint (double x, double y)
{

pointT p;

p.x = x;
p.y = y;
return (p);



}

You can use this function to initialize a variable of type pointT , as the following code does:

pointT orighin;

origin = CreatePoint (0, 0);

This example illustrates an important difference between records and arrays. In C, a
record variable is an lavlue; an array variable is not, When you assign one record to another,
both records must be of the same type. The effect of the assignment

rec1 = rec 2;

is that all fields in rec2 are copied to the corresponding fields of rec1.
Records can also be passed as arguments to functions. Consider, for example, the

functions AddPoint, which is defined as follows:

pointT AddPoitn (poin tT p1, pointT p2)
{

pointT p;

p.x = p1.x + p2.x;
p.y = p1.y + p2.y;
return (p);

}

If you call AddPoit (p1, p2), where p1 and p2 are values of type pointT , the function returns the
pointT whose coordinates are obtained by adding together the corresponding coordinates of
p1 and p2.

When you call a function that takes a record argument, the value of the record
argument is copied to the corresponding formal parameter. If a function changes the value
of the formal parameter or the value of any of its internal fields, the calling argument
retains its original value. This behavior is consistent with the way C treats all parameters
except arrays.
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One of the most important features of a modern programming language is that, once
you have a type, you can use it to create new, more sophisticated types. To do so, it is often
useful to define arrays of records and records that contain array. These new types can in
turn be used to create additional types in an ever more complex hierarchy.

For example, the section on “Defining a new structure type” earlier in this chapter
introduced a type called employeeT. Once that type has been defined, you can use it to
declare an array whose elements are of type employeeT. Just as

int scores[10];

declares scores to be an array of 10 integers, the declaration

employeeT staff[10];

declares staff to be an array of 10 employee. The employee records for Ebenezer Scrooge
and Bob Cratchit fit nicely into such an array, which would fill up the first two elements of



staff as follows:

You can select the individual components of the staff array just as you do with any other
array. For example, you can use the expression staff[1] to select the entire employee record
containing the data for Bob Cratchit:

From this record, you can make further selections by indicating the appropriate field name.
For example,

staff[1].name

selects Bob Cratchit’s name:

Depending on the application, selecting the name may be sufficient. On the other hand,
there is nothing that prohibits you from making further selections. The value of the name

field is a sting, so you can select its elements. Thus, if you wanted to select the first initial
of the employee in position 1 of the staff array, you would write the following selection
expression:

staff[1].name[0]

Given the example record above, this expression returns the character ‘B’ in the string “Bob
Cratchit”. In programs that work with complex data structures, you will often see long
chains of selection operations, selecting fields from records and elements from arrays, as
appropriate.

As with any array, the usual approach to declaring an array of records is to allocate
space for some maximum size and then to keep track of the effective size in a separate
integer variable. For example, if you define the constant MaxEmployees by writing

#define MaxEmployees 100

you can then declare the variables staff and nEmployees , as follows:

employeeT staff[MaxEmployees];
int nEmployees;

Your program can now handle a staff of up to 100 employees, even though at any
given time there will typically by fewer employees than this maximum, with the current
number stored in the variable nEmployees . Thus, if you wanted to represent just the two
records shown above, you would store the relevant data in the first two records and indicate
the number in nEmployees:

staff
0 Ebenezer scrooge Partner 271-82-8183 250.00 1
1 Bob Cratchit Clerk 314-15-9265 15.00 7

Bob Cratchit Clerk 314-15-9265 15.00 7

Bob Cratchit

staff
0 Ebenezer scrooge Partner 271-82-8183 250.00 1
1 Bob Cratchit Clerk 314-15-9265 15.00 7
2



nEmployees

Once you have defined a compound data structure such as the array of employees
stored in staff, you can write procedures and functions to manipulate it. For example, the
following function lists all the employee names along with their job titles:

static void ListEmployees (employeeT staff[], int nEmployees)
{

int i;

for (i = 0; i < nEmployees; i++) {
printf (“%s(%s)\n”, staff[i].name, staff[i].ti tle);

}
}

If you were to execute this procedure using the values of staff and nEmployees shown in the
preceding diagram, your program would generate the sample run

As another example, the following function returns the average salary of all
employees:

static double AverageSalary (employeeT staff[], int nEmployees)
{

double total;
int i;

total = 0;
for (i = 0; i < nEmployees; i++) {

total += staff[i].salary ;
}
return (total / nEmployeees);

}

You can easily define other functions that would e useful in he context of an employees
database system.
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Although small records are sometimes used directly in C, variables that hold
structured data in C are usually declared to be pointers to records rather then the records
themselves. A pointer to a record is usually smaller and more easily manipulated than the
record itself. More importantly, if you pass a pointer to a record to a procedure, that
procedure can change the contents of the record. If you try to pass the record itself, the
record will be copied (just as an integer is copied), and you will then be unable to make any
permanent changes. As you discovered in Chapter 11, the fact that C use pointers to lass
array variables means that you can change the components of an array within the context of
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a function. Similarly, passing a pointer to a record allows functions to manipulate the fields
of those records.

To give yourself f practice using pointers to records, you can start by declaring pointer
to the employeeT record defined earlier in the chapter as

typedef struct {
string name;
stirng title;
stirng ssnum;
double salary ;
int withholding;

} employeeT;

Given that definition, you can declare a variable of type pointer-to-employeeT by writing

employeeT *empptr;

which declare the variable empptr as a pointer to an object of type employeeT. When you do so,
space is reserved only for the pointer itself . Before using empptr, you still need to provide
the actual storage for the fields in the complete record.

Before getting into the question of how to create storage f or the record, however, it
makes sense to consider an alternative approach. In the foregoing example, you defined a
record type representing an employee and then declared a pointer to that type. This style of
operation requires you to keep track of two different conceptual types: the type employeeT

and the type pointer-to-employeeT. It would be easier on your memory if you could work
with a single type that also provides the advantages of working with pointers as opposed to
entire records.

DefiningDefiningDefining

Defining

aaa

a

pointer-to-recordpointer-to-recordpointer-to-record

pointer-to-record

typetypetype

type

In the preceding section, the type employeeT is defined to be a record, so variables
declared as pointers to that type must include the * operator in their declaration. In most
cases, you can adopt an alternative declaration strategy. As long as you are willing to refer
to any value of the record type by its address, you can define the type employeeT to be the
pointer rather than the record itself. To do so, you need to make a minor adjustment to the
preceding type definition for employeeT, as follows:

typedef struct {
string name;
stirng title;
string ssum;
double salary ;
int withholding;

} *employeeT;

The only difference between this type definition and the previous one is the asterisk before
employeeT. This definition indicates that the type employeeT points to a record of the given
description, even though that record type itself has no explicit name.

Once you have established the new type definition, you can declare employeeT objects
in the same way that you did earlier. The declaration



employeeT emp;

once again defines the variable emp to be of type employeeT. The difference is that this type is
now a pointer type rather than a record type.

As you read through this chapter, you may at first be confused by the fact that I have
chosen to apply the name employeeT to two different types, one of which is a record, the
other a pointer. I could have chosen to give the two types different names, such as
employeeRec and employeeP tr. The problem is that changing the name of the type would
obscure an important point. In most applications, you do not want to work with two
different types. You want a single style that represents an employee. You want the type
employeeT. You do, however, have a choice as to how you define the type employeeT: you can
define it as a record or as a pointer to a record. To decide which of these two
representations is better for a particular application, you need to consider these factors:

 The size of the record type. Whenever you pas a record to a function or assign it
to a record variable, all the fields in the record must be copied. For small records,
the copying time is not signif icantly greater than the required for an integer or
any other atomic value. If, on the other hand, the record is large, copying the
record can take considerable time. If you work instead with pointers to records,
you can avoid making these copies. Thus, the larger a record is, the greater the
advantage in using a pointer to refer to it.

 The cost of memory allocation. Although using a pointer to a record rather than
the record itself can reduce the need for data copying, using pointers forces you
to think more carefully about how you allocate memory for the underlying data .
The process of allocating memory can complicate the logic of your program.

 The discipline used by functions that manipulate the type. When you define a
new data type, you will usually define additional functions to manipulate values
of theta type. If you pass a record as an argument to a function, the function
cannot change its value. If you pass a pointer instead, theta function has direct
access to the underlying data. If you need to be able to change the components of
record from within a function, you must declare the type as a pointer. If you do
not need to do so, defining the type as a record provides a measure of safety
because you know that no function will be able to overwrite the values passed as
arguments

In the case of the employeeT definition, it is probably best to use the pointer definition,
primarily because the record is large. As is often the case, however, either choice would
work.
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Although you can usually choose either the record or pointer-to-record option when
you define a new type, the choice you make determines how the resulting variables are
used. If you define the type employeeT using



typedef struct {
string name;
string title;
string ssnum;
double salary ;
int withholding;

} *employeeT;

and then declare a variable of that type by writing

employeeT emp;

the compiler reserves space only for the pointer. There is no storage allocated for the actual
record itself. Before you can make use of the variable emp, you must make sure that the
pointer actually points to a usable address in memory.

The easiest way to provide storage for the record is to use dynamic allocation as
described in Chapter 13. To determine how much space you need to hold the employee
record itself, you can use the sizeof operator in the following idiomatic way:

emp = (employeeT) GetBlock (sizeof *emp);

This statement uses GetBlock to request enough storage to hold value of the type to which emp
points.

Even though the idiom using GetBlock and sizeof is short and reasonably clear, the
operation of allocating space for a new record is so fundamental to record-based
programming that it pays to define an even simpler form. For that reason, the genlib.h

interface defines a function New that takes the name of a pointer type as argument and
returns a pointer to a newly allocated area of memory large enough to hold the underlying
value. Thus, if you write

emp = New (employeeT);

the system allocates space for an employee record in the heap and returns a pointer to that
record.

The effect of this operation can be illustrated as follows. Before you execute the call
to New, the variable emp holds a pointer value that is not yet initialized. The variable emp is
therefore not associated with any record storage and can be diagrammed as an empty box.

emp

The assignment statement

emp = New (employeeT);

allocates space for the underlying record and assigns the pointer address to emp, which
results in the following diagram:

emp
name
title

ssnum

salary
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Even though you will often think of variables like emp as complete entities, you will at
some point need to refer to the individual fields within the record. In a record declared
without using pointers, you select an individual field using the dot operator. If you have
declared a pointer to the record instead, how can you refer to an individual field?

In seeking an answer, it is easy to be misled by your intuition. Given the declaration

emplooyeeT emp;

it is not appropriate to write, for example

*emp.salary This is incorrect

Contrary to what you might have expected, this statement does not select the salary
component of he object to which emp points, because the precedence of the operators in the
expression does not support that interpretation. The selection operator takes precedence
over dereferencing, so the expression has the meaningless interpretation

* (emp.salary)

rather than the intended

(*emp).salary

The latter form has the desired effect but is much too cumbersome for everyday use.
Pointers to structures are used all the time. Forcing the user to include parentheses in every
selection would make records much less convenient.

For this reason, C defines the operator -> so that it combines the operations of
dereference and selection into a single operator. Thus, the conventional way to refer to the
employee’s salary is to write

emp->salary
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Data structures that hold collections of structured objects—particularly when those
structures are also stored in a data file —are often called databasesdatabasesdatabases

databases

. Earlier in this chapter,
you learned how to store information about employees in a company by using an array of
employeeT values. The staff array, coupled with the number of active elements sorted in
nEmployees , constitutes a simple database.

There is, however, a certain amount of clumsiness in having to pass two
variables —the array itself and its effective size—whenever you want to give another
function access to the data. It would be better to bundle the effective size together with the
data records as a single object. You can do so by defining a new structure type that includes
both values. Because the resulting structure contains the entire array of employees and is

withholding



therefore rather large, it is more efficient to define the new type as a pointer to a record
rather than simply as a record. Thus, an appropriate structure for the entire employee
database is

typedef struct {
employeeT staff[MaxEmplooyees];
int nEmployees;

} *employeeDB;

This definition introduces a new type called employeeDB . You can then declare a variable of
type employeeDB by writing the declaration

employeeDB db;
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As of yet, the variable db consists only of the memory space for the pointer, and there
is no storage allocated to it. You still have to provide storage for the components of this
record, as well as storage for all the individual employee records within it. To get an idea of
what you need, it helps to begin by drawing a picture of he structure you want to create. As
in procedural decomposition, it often works best to draw that picture from the top down,
refining each level of the structure in turn.

At the highest level of detail, the database is simply a pointer to a record whose
contents you do not yet have to understand:

emp

To refine this picture, you need to look at the details of the employeDB record, where
you discover that the dotted box can be replaced by a structure containing both an array of
MaxEmployees elements and the actual number of employees, as shown:

emp



 staff

nEmployees



Finally, each of the elements in the staff array—according to the most recent
definition of the type employeeT—is a pointer to a record, so the complete picture will
include pouters to individual employeeT structures, as shown:

emp

To create this structure, you need to be able to build it up from its parts. For each box
in the structure that is referenced by a pointer, there must be a call to the function New to
create the storage for that record.

To make this example more concrete lets suppose you want to write a program that
reads in an employee database from the user. For each individual record, the program must
request the five pieces of data required about an employee. A blank name field will sever as
a sentinel that the database is complete. The individual records must be stored in the
database along with the record count.

The operation of reading the database is certainly large enough and sufficiently well-
contained that it makes sense to define it as a function. Because the database is a pointer,
ReadEmployeeDa tabase can simply allocate the necessary storage internally and return a
pointer to it. Thus, the main program declares the database by writing

employeeDB db;

and then reads it in by calling

db = ReadEmployeeDa tabase ();

The implementation of ReadEmployeeDa tabase is straightforward, particularly if you use
stepwise refinement to break it down into two functions: the function ReadEmployeeDa tabase
itself, which creates the database structure, and a function ReadOneEmployee , which reads in
the data for a single employee. Because ReadOneEmployee is responsible for reading the data
from the file, that function must also detect the end-of-file condition and pass that
information back to ReadEmployeeDa taabase by returning a special sentinel value. Because the
ReadOneEmployee function returns a value of the pointer type employeeT, the best choice for the
end-of-data sentinel is the pointer value NULL.

The code for the ReadEmployeeDa tabase function is

static employeeDB ReadEmployeeDa tabase (void)
{

employeeDB db;
employeeT emp;
int nEmployees;

 staff name title

ssnum ssalary withholding




name title

ssnum ssalary withholding
nEmployees



db = New (employeeDB);
nEmployees = 0;
printf (“Enter employee data (use blank name to stop).\n”);
while ((emp = ReadOneEmployee ()) != NULL) {

db->staff[nEmployees] = emp;
nEmployees++;

}
db->nEmployees = nEmployees;
return (db);

}

The ReadOneEmployee function allocates space for an employee and fills in its fields, as
shown in the following implementation:

static emplyeeT ReadOneEmployee (void)
{

employeeT emp;
string anme;

printf (“Name: “);
name = GetLine ();
if (StringLeng th (name) == 0) return (NULL);
emp = New (employeeT);
emp->name = name;
printf (“Titile: “ );
emp-> title = GetLine ();
printf (“SSNum: “);
emp->ssnum = GetLine ();
printf (“Salary : “ );
emp->salary = GetReal ();
printf (“Withholding: “);
emp->withholding = GetInteger ();
return (emp);

}
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Once you have created the database, you can use it as the source of data for programs
that generate a report or calculate statistics. For example, you can rewrite the ListEmployees

procedure introduced earlier to use the new database structure, a follows:

static void ListEmployes (employeeDB db)
{

int i;
for (i = 0; i , db->nEmployees; i++) {

printf (“%s(%s)\n”, db->staff[i]->name, db->staff[i]->title);
}

}

Moreover, because employeeDB is represented as a pointer, you can also write functions that
change the internal data. The following procedure doubles the salary of every employee
with five or more withholding allowances:

static void GiveRaise (employeeDB db)
{

int i;

for (i = 0; i < db->nEmployees; i++) {
if (db->staff[i]->withholding >= 5) {



db->staff[i]->salary *= 2;
}

}
}
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Twenty years or so ago, when computers were just starting to be used as general
purpose tools, there was a movement within the educational community to use computers
as part of the teaching process. One of the proposed techniques for doing so is called
programmedprogrammedprogrammed

programmed

instructioninstructioninstruction

instruction

, a process in which a computerized teaching tool asks a series of
questions so that previous answers determine the order of subsequent questions. If a student
is getting all the right answers, the programmed instruction process skips most of the easy
questions and moves quickly on to more challenging topics. For the student who is having
trouble, the process moves more slowly, leaving time for repetition and review.

Let’s suppose you have been assigned the problem of writing an application that
makes it possible to present material in a programmed instruction style. In a nutshell, your
program must be able to

 Ask the student a question
 Get an answer from the student
 Move on to the next question, the choice of which depends on the student’s

response

Such a program will likely be much simpler than a commercial application, but you can
easily design a program that illustrates the general principles involved.
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It is possible to design a programmed instruction application as a set of procedures.
Each procedure asks a question, reads in an answer, and then calls another procedure
appropriate to the answer the student supplies. Such a program, however, would be difficult
to change. Someone who wanted to add questions or design an entirely new course would
need to write new procedures. Writing procedures is simple enough for someone who
understands programming, but not everyone does. Most programmed instruction courses
are designed by teachers in a specific discipline; those teachers are usually not
programmers. Forcing them to work in the programming domain limits their ability to use
the application.

As the programmer on the project, your goal is to develop an applications that presents
a programmed instruction course to the student but allows teachers without programming
skills to supply the questions, expected answers, and cross-reference information so that
your application can present the questions in the appropriate order. To do so, the best
approach is to design your application as a general tool that takes all data pertaining to the
programmed instruction course from a file. If you adopt this approach, the same program
can present many different courses by suing different data files.



In designing the application, you need to begin by considering broad questions about
the design, such as these:

 What are the overall requirements of the general problem? In particular, you
need to understand the set of operations your program must support, apart from
any specific domain of instruction.

 How can you represent the data for the programmed instruction course in the
context of your program? As part of the design phase, you need to develop an
appropriate data structure consisting of some combination of records and arrays.

 What should a course data file look like? As you make this decision, you need to
keep in mind that the data file is being edited by nonprogrammers whose
expertise is in the specific domain under consideration.

 How do you convert the external representation used in the data file into the
internal one?

 How do you write the program that manipulates the database?

The rest of this chapter considers each of these questions in turn.
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At one level, it is easy to outline the operation of the program. When your program
runs, its basic operation is to execute the following steps repeatedly:

1. Ask the student the current question. A question consists of one or more lines of
text, which you can represent as string.

2. Request an answer from the student, which can also be represented as a string.
3. Look up the answer in a list of possibilities provided for that question. If the

answer appears in the list, consult the data structure to choose what question
should become the new current question. If the student’s answer does not match
any of the possibilities provided by the database, the student should be informed
of that fact and given another chance at the same question.

Many details are missing from this outline, but it is a start. Even at this level, the outline
provides some insight into the eventual implementation. For example, you know that you
need to keep track of what the “current question” is. To do so, it makes sense to number the
questions and then store the current question number in a variable.

Writing the program itself turns out to be one of the easier pieces of the task; the
harder problems arise in representing the database. For the program to be general and
flexible, all the information that pertains to an actual course must be stored in a data file,
not built directly into the program. The program’s job is to read that data file, store the
information in an internal data structure, and then process that structure as outline earlier in
this section. Thus, your next major task is to design the data structures required for the
problem so that you have a context for building the program as a whole.

The process of designing the data structure has two distinct components. First, you
have to design an internal data structure for use by the program. The internal data structure



consists of type definitions that combine arrays and records so that the resulting types
mirror the organization of the read-world information you seek to represent. Second, you
must design an external data structure that indicates how the information is stored in the
data file. These two processes are closely related, mostly because they each represent the
same information. Even so, the two structures are tailored to meet different purposes. The
internal structure must be easy for the programmer to use. The external structure must
make it easy for someone to write a course, without making it too difficult for the program
to manipulate.
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The first step in the process is to design a data structure that incorporates the
necessary information. As with the employeeDB type presented in the section on “Creating the
employee database” earlier in the chapter, it helps to design the data structure form the top
down, starting with the highest-level structure and then refining it by specifying more and
more of the details.

In designing a database, one of the most important concepts in that of encapsulationencapsulationencapsulation

encapsulation

,
which is the process of combining related pieces of data into structures that can be treated
as complete units. For a large database, the encapsulation process is hierarchical and must
be considered at varying levels of detail. At the highest level, you want to think of the
entire database as a single variable, which contains all the information you will need. Thus,
the following diagram represents the database as a pointer to a structure whose details you
will fill in later:

db

Whenever you need to pass the entire database to a function or a procedure, all you have to
do is pass the variable db, which is a small, easily manipulated pointer that gives you access
to the other data. It is only when a function or procedure needs to manipulate the individual
fields of the database that it has to look inside the structure to see its details.

Given that your current purpose is to design the internal structure, however, you do
need to understand what is contained within the dotted box in the diagram above.
Intuitively, you know that the database as a whole contains a list of questions, although it
may make sense to include other information as well, such as the title of the course. The
questions themselves are an array of some as-yet-undefined structure that defines a single
question. Thus, the database structure at the current level of decomposition looks like this:

db



 staff questions



Although you don’t yet know the details of the underlying type used to represent a
question, you can nonetheless convert this diagram into a data structure definition. You
know the types of the other fields and can therefore put together an appropriate record
definition, such as

typedef struct {
string title;
questionT questins[MaxQuestions+1];

} *courseDB;

The constant MaxQuestions is the largest question number your program will allow. Because
array numbering always begins at 0 even though the course will presumably begin with
question 1, you need to allocate an extra element in the array so that there is a question 1,
you need to allocate an extra element in the array so that there is a question numbered
MaxQuestions .

The definition of courseDB makes it possible for you to declare a variable db that holds
the entire database, as follows:

courstDB db;

By itself, however, this declaration only reserves storage for the pointer and thus
corresponds to the dotted-box picture earlier in this section. When you create the structure
in your program, it is necessary to allocate space for the structure by writing

db = New (courseDB);

At this point, you need to supply some of the missing details. For example, you have
not yet provided a definition for the type questionT used in the definition of courseDB . To write
the complete data structure, you need to flesh out this aspect of the design. A question
consists of the text of the question, which may include multiple lines, and a list of answers.
Both of these structures are arrays. The question text is an array of strings representing the
individual lines in the question. The expected answers are stored in an array whose
structure is a little more complicated. For now, you can declare the answers as an array of
values to type answerT and fill in the details on your next refinement step.

As is often the case, you need to provide some mechanism for keeping track of the
effective size of the array, which is usually less than the allocated size. There are two
possible strategies for recording the effective size:

 You can store a sentinel value after the last data value in the array.
 You can store the number of elements explicitly in an integer variable, which then



becomes part of the record.

Deciding which strategy is better for a particular application depends on how the array is
used and whether it is possible to choose an appropriate sentinel value.

To illustrate both modes of operation, the sample program uses both strategies in the
definition of questionT. The lines representing the text of the questions are stored as an array
of strings, which are simply pointers to the characters making up the string. For pointer data,
the constant NULL provides a natural sentinel value. Because the elements of the answers

array are of type answerT, which you have not yet defined, it is harder to know what a
sentinel would look like. Hence, it seems more appropriate in this case to store the number
of answers explicitly as part of the structure.

The structure for an individual question can therefore be diagrammed as follows:

Because this structure is large and because it makes sense to think about a question as a
single unit, it is appropriate to declare this structure as a pointer type, as follows:

typedef struct {
string qtext[MaxLinesPerQues tion+1];
answerT ansewrs[MaxAnswersPerQuestion];

} *questionT;

Declaring the structure as a pointer means that you need to call New to allocate space for
each question.

The last step in designing the data structure is to define the type answerT. An answer
consists of the following pair: the expected answer and the question to which you should
move if that answer is given .The expected answer is a string, and the next question can be
represented by an integer used to hold the question number. Thus, the answer structure
looks like this:

The corresponding structure is a record pairing a string and an integer, as follows:

typedef struct {
string ans;
int nextq;

} answerT;

In this case, the structure is small enough that it makes sense to define it as a record rather

qtext answers

nAnswers

ans nextQ



than a pointer.
This last definition makes it possible for you to diagram the entire data structure, as

follows:

db

ti tle questions qtext answers

nAnswers
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Once you have defined the structure used for the internal data, you must then decide
how to represent the same information within the data file. Files are simply text, and the
organization provided by the data structure hierarchy in C must be expressed in the design
of the file format. The file structure design must also make it easy for someone to write and
edit, even if that person is not a programmer. Thus, you should choose a representation that
is as simple as possible. In this case, it seems easiest to write out each question, one after
another, along with its like ly answers. So that the computer can tell where the answers to
one question stop and the next question begins, you must define some convention for
separating the question-and-answer units. A blank line works well in this context, as it does
in most file structures. Thus, in individual units separated by blank lines, you have the data
for each question and its answers.

But what goes into each question-and-answer unit? First of all, you need the text of the
question, which consists of individual lines from the file. You also need some way to
indicate the end of the question text, and the easiest way, both for you and for the course
writer, is to define a sentinel. In this program, I have arbitrarily chosen a line of five dashes
to indicate the end of the question text. Furthermore, you must allow the course writer to
specify the answer/next-question pairs. Here, I have chosen to represent both of these
values on a single data line consisting of the answer text, followed by a colon, followed by
the index of the next question. I could have chosen other formats, but this design seems as
if it would be easy for a novice to learn. Thus, the data for an individual question entry in
the file looks like this:

True or false: The earth revolves around the sun.
-----
true: 3
false: 2



The question text consists of a single line, after which there are two acceptable answers. If
the user types in false, the program should go to question 2; if the user types in true, it
should move on to question 3.

This example brings up an interesting question. How do you assign question numbers
to each of these entries? One approach would be to arrange the questions in the file and
number them sequentially. This strategy makes life easy for you as the programmer. The
problem is that it makes life difficult for the person writing a course.

To understand why this is so, suppose that the course writer wants to add a new
question near the beginning of an existing course. All subsequent questions move down by
one, all the question number change, and the course writer has to spend a considerable
amount of time renumbering all the next-questions indicators. A better approach is to let the
person who writes the question give it a number. For example, if the sample question about
the earth and sun were question #1 in the database, its entry in the file would begin with its
question number, as follows:

1
True or false: The earth revolves around the sun.
------
true: 2
false: 3

The advantage of allowing the course writer to supply question numbers is that it makes
editing the course much easier. Someone who wants to add a new question can just give it a
question number that hasn’t been used before. None of the other question numbers need to
change. The course writer can then insert the new question anywhere in the data file,
because there is no longer any reason that he question numbers need to be consecutive.
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Once you have defined the internal data structure and the external file format, the
process of writing the code for the teaching machine program is surprisingly
straightforward, as long as you decompose the entire task into simpler functions using
stepwise refinement. The complete program is contained in the file teach.c shown in Figure
16-1.
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teach.cteach.cteach.c

teach.c

/*
* File: teach.c
* -----------------
* This program executes a simple programmed instruction course.
* The course is specified by a data file containing all the
* course informa tion. The data structures and the format of
* the data file are described in Chapter 16.
*/

#include <stdio.h>
#include <string.h>
#include <ctype.h>



#include “genlib.h ”
#include “strlib.h ”
#include “simpio.h ”

/*
* Constants
* -------------
* MaxQuestions -- Maximum question number
* MaxLinesPerQues tion -- Maximum number of lines per question
* MaxAnswersPerQuestion -- Maximum answers per question
* EndMarker -- String marking end of question text
*/

#define MaxQuestions 100
#define MaxLinesPerQues tion 20
#define MaxAnswersPerQuestion 10
#define EndMarker “-----“

/* Data structures */

/*
* Type: answerT
* --------------------
* This structure prov ides space for each possible answer
* to a question.
*/

typedef struct {
string ans;
int nextq;

} answerT;

/*
* Type: questionT
* ---------------------
* This structure prov ides space for all the informa tion
* needed to store one of the indiv idual question records.
* Because this structure is large ad it makes sense
* to refer to it as a single entity , questionT is defined
* as a pointer type.
*/

typedef struct {
string qtext[MaxLinesPerQues tin+1];
answerT answers[MaxAnswersPerQuestion];
int nAnswers;

} *questionT;

/*
* type: courseDB
* --------------------
* This type is used to define the entire database, which is
* a pointer to a record containing the title and an array of
* questions.
*/

typedef struct {
string title;
questionT questings[MaxQuestions+1];

} *courseDB;

/* Private function declarations */

static courseDB ReadDa taBase (void);
static bool ReadOneQuestion (FILE *infile, courseDB course);
static void ReadQues tionText (FILE *infile, questionT q);
static void ReadAnswers (FILE *infile, questionT q);



static FILE *OpenUserFile (string promp t, string mode);
static void ProcessCourse (courseDB course);
static void AskQuestion (questionT q);
static int FindAnswer (string ans, questionT q);

/* Main program */

main()
{
courseDB course;

course = ReadDa taBase ();
ProcessCourse (course);

}

/* Section 1 – Functions to read the data file */

/*
* Function: ReadDa taBase
* Usage: ReadDa taBase ();
* ----------------------------------
* This function asks the user for a file name and reads
* in the database for the course. The file is formatted
* as discussed in the section “Designing the external
* structures” in Chapter 16.
*/

static courseDB ReadDa taBase (void)
{
FILE *infile;
courseDB course;

infile = OpenUserFile (“Enter name of course: “, “r” );
course = New (courseDB);
course->title = ReadLine (infile);
while (ReadOneQues tion (infile, course));
fclose (infile);
return (course);

}

/*
* Function: ReadOneQuestion
* Usage: while (ReadOneQues tion (infile, course));
* ----------------------------------------------------------------
* This function reads in a single question from infile into the
* course data structure. As long as the complete question is
* read successfully , this function returns TRUE. When the end
* of the file is encoun tered, the function returns FALSE.
* Thus, the “Usage ” line above reads the entire data file.
*/

static bool ReadOneQuestion (FILE *infile, courseDB course)
{
questionT question;
string line;
int qnum;

line = ReadLine (infile);
if (line == NULL) return (FALSE);
qnum = StirngToInteger (line);
if (qnum < 1 || qnum > MaxQuestions) {

Error ( “Question number %dout of range ”, qnum);
}
question = New (questionT);
ReadQues tionText (infile, question);
ReadAnswers (infile, question);
course->ques tions[qnum] = question;



return (TRUE);
}

/*
* Function: ReadQues tionText
* Usage: ReadQues tionText (infile, question);
* ----------------------------------------------------------
* This function reads the text of the question into the
* question data structure which must have been allocated
* by the caller. The end of the question text is signaled
* by a line matching the string EndMarker.
*/

static void ReadQues tionText (FILE *infile, questioT q)
{
string line;
int nlines;

nlines = 0;
while (TRUE) {

line = ReadLine (infile);
if (StringEqual (line, EndMarker)) break;
if (nlines == MaxLinesPerQues tion) {

Error ( “Too many lines”);
}
q->qtext[nlines] = NULL;
nlines++;

}
}

/*
* Function: ReadAnswers
* Usage: ReadAnswers (infile, question);
* ----------------------------------------------------
* This funtion reads the answer pairs for the question
* from the input ifle. Each answer consis ts of a stirng
* followed by a colon, followed by the number of the next
* question to be read. The end of the answer list is
* signaled by a blank line or the end of the file.
*/

static void ReadAnswers (FILE *infile, questionT q)
{
string line, ans;
int len, cpos, nextq, nAnswers;

nAnswers = 0;
while ((line = ReadLine (infile)) != NULL && (len = StringLength (line)) != 0) {

cpos = FindChar (‘ :’ , line, 0);
if (cpos == -1) Error (“ Illegal answer format”);
ans = SubString (line, 0, cpos – 1);
nextq = StringToInteger (SubString (line, cpos+1, len-1));
q->answer[nAnswers].ans = ConverToUpperCase (ans);
q->answer[nAnswers].nextq = nextq;
nAnswers++;

}
q->nAnswers = nAnswers;

}

/*
* Function: OpenUserFile
* Usage: filep tr = OpenUserFile (promp t, mode);
* --------------------------------------------------------------
* This function promp t the user for a file name using the
* promp t string supplied by the user and then attemp ts to
* open that file with the specified mode. If the file is
* opened successfully , OpenUserFile returns the appropriate



* file pointer. If the open operation fails, the user is
* informed of the failur e and given an oppor tuni ty to enter
* another file name.
*/

static FILE *OpenUserFile (string promp t, string mode)
{
string filename;
FILE *result;

while (TRUE) {
printf (“%s”, promp t);
filename = GetLine ();
result = fopen (filename, mode);
if (result != NULL) break;
printf (“Can’t open the file \”%s\”\n”, filename);

}
return (result);

}

/* Section 2 – Functions to process the course */

/*
* Function: ProcessCourse
* Usage: ProcessCourse (course);
* -------------------------------------------
* This function processes the course supplied by the caller.
* The basic operation consis ts of a loop that (a) prints out
* the curren t question, (b) reads in an answer, (c) looks up
* the answer in the database, and (d) goes to a new question
* on the basis of that answer. In this implementation, the
* variable qnum holds the index of the question and the
* variable q holds the actual question data structure. The
* course always begins with question #1, after which the
* order is determined by the answers.
*/

static void ProcessCourse (courseDB course)
{
questionT q;
into qnum;
string ans;
int index;

printf (“%s\n”, course->title);
qnum = 1;
while (qnum != 0) {

q = course->ques tions[qnum];
AskQuestion (q);
ans = ConvertToUpperCase (GetLine ());
index = FindAnswer (ans, q);
if (index == -1) {

pprin tf (“ I don’ t understand that.\n”);
} else {

qnum = q->answers[index].nextq;
}

}
}

/*
* Functin: AskQuestion
* Usage: AskQuestion (q);
* --------------------------------
* This function asks the question indicate by the questionT
* specified by q. Asking the question consis ts of display ing
* each of the lies that comprise the question text.
*/



static void AskQuestion (questionT q)
{
int i;

for (i = 0; q->qtext[i] != NULL; i++) {
pirntf (“%s\n”, q->qtext[i]);

}
}

/*
* Functions: FindAnswer
* Usage: FindAnswer (ans, q)
* -------------------------------------
* This function looks up the string ans in the list of answers
* for question q. If the answer is found, its index in the
* answer list is returned. If not, the function returns –1.
* The function uses a simple linear search algorithm to look
* though t the array.
*/

static int FindAnswer (stirng ans, questionT q)
{
int;

for (i = 0; i , q->nAnswers; i++) {
if (StringEqual (ans, q->answers[i].ans)) return (i);

}
return (-1);

}

It is worth spending some time going through the teach.c program to make sure that you
understand the following points:

1. How the program initializes the internal data structures from the data in the file
2. How the program then uses those data structures to process the individual

questions
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The teach.c program in Figure 16-1 takes all its data from the course data file. The
questions it asks, the answers it accepts, and ever the sequencing of the questions are
supplied by the data file, not by the program. Programs that control their entire operation
on the basis of information form a database are said to be data-drivendata-drivendata-driven

data-driven

. Data-driven
programs are usually shorter, more flexible, and easier to maintain than programs that
incorporate the same information directly into the program design.

To illustrate just how flexible a data-driven system like teach.c can be, it is useful to
show the program in operation. According to the initial goals of the project, the teach.c

program would be used for a traditional programmed instruction course, such as the file
cs.dat whose first few questions appear in Figure 16-2. When the teach.c program is used in
conjunction with this data file, a student might see the sample run also shown in Figure 16-
2.

Because it is data-driven, the same program can be used in completely different
contexts. For example, Figure 16-3 contains the first few lines from the data file advent.dat,



which is adapted from the original computer adventure game enveloped by Willie Crowther
in the early 1970s. As the sample run shown someone who uses the teach.c program in
conjunction with the file advent.dat will perceive the program’s purpose very differently than
someone who runs it with the cs.data file. Even though the teach.c program has not changed at
all, the programmed instruction course has become an adventure game. The only difference
is the data file.
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cs.datcs.datcs.dat

cs.dat

andandand

and
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samplesamplesample

sample

runrunrun

run

C programming rev iew
1
Would you like help with int or bool type?
-----
int: 2
bool: 10

2
True or false: Integers can have fractional parts.
-----
true: 3
false: 5

3
No. Floating- poin t numbers have fractional parts;
integers do not.
True or false: Integers can e nega tive.
-----
true: 5
false: 4

4
No. You should go back and rev iew the text.
Would you like to quit?
-----
yes: 0
y: 0
no: 1
n: 1

… file continues with additional questions…
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advent.datadvent.datadvent.dat

advent.dat

andandand
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samplesamplesample

sample

runrunrun

run

Enter name of course: cs.dat 
C programming rev iew
Would you like help with int or bool type?
int 
True or false: Integers can have fractional parts.
true
No. Floating- poin t numbers have fractional parts;
integers do not.
True or false: Integers can be nega tive.
false 
No. You should go back and rev iew the text.
Would you like to quit?
yes 



Welcome to ADVENTURE!
1
You are standing at the end of a road before a
small brick building. A small stream flows out
of the building and down a fully to the south.
A road runs up a small hill to the west.
-----
south: 2
north: 8
in: 8
west: 9

2
Your are in a valley in the forest beside a stream
tumbling along a rocky bed. The stream is flowing
to the south.
-----
south: 3
down: 3
north: 1

3
At your feet all the water of the steam splashes
down a two-inch slit in the rock. To the south,
the streambed is bare rock.
-----
north: 2
south: 4
down: 4

…file continues with additional rooms…

SUMMSUMMSUMM

SUMM
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As you learned in Chapter 11, arrays make it possible to store ordered collections of
homogeneous values. This chapter had introduced the equally important concept of a
record, which permits you to store unordered, heterogeneous components as a single

Enter name of course: advent.dat 
Welcome to ADVENTURE!
You are standing at the end of a road before a
small brick building. A small stream flows out
of the building and down a gully to the south.
A road runs up a small hill to the west.
south 
You are in a valley in the forest beside a stream
tumbling along a rocky bed. The stream is flowing
to the south.
down 
At your feet all the water of the stream splashes
down a two-inch slit in the rock. To the south,
the streambed is bare rock.



collection. Arrays are ordinarily used to model a collection of objects in the real world;
records are used to model single objects composed of identifiable parts. You can use arrays
and records together to form hierarchical structures of arbitrary comple xity. A complete
structure used to represent a collection of data is called a database, particularly when it has
an external representation as a data file.

Important points considered in this chapter include:

 A record is composed of individual components called fields. In C, a record is
often called a structuture and its components are called members.

 Declaring a record is a two-step process. You first define a type that serves as a
template for the record, after which you can declare variables of that type.

 Given a record, you select its individual fields using the . (dot) operator.
 In many cases, it makes sense to use pointers to records rather than the records

themselves. Using pointers is more efficient in terms of space and makes it
possible for functions to modify the underlying record data.

 If you have a pointer to a record, you use the -> operator to combine the
operations of dereference and field selection.

 You can dynamically allocate memory space for a record by calling the function
New defined in genlib.h . The New function takes a pointer type and returns the
address of a newly allocated object of the underlying type.

 Database design is a complex process that uses stepwise refinement in much the
same way that program design does.

REVIEWREVIEWREVIEW

REVIEW
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QUESTIONS

1. Define the terms record and field. What terms are often use by C programmers to
refer to each of these concepts?

2. True or false: The types of each element in an array must be the same.
3. True or false: The types of each field in a record must be different.
4. What steps are necessary to declare a record variable?
5. What operator is used to select a field from a record? If you read the name of that

operator aloud, what word do you use for it?
6. True or false: Fields of a record are lvalues in C.
7. True or false: A record is itself an lvaluse in C.
8. Suppose that the first two elements of staff have been initialized to contain the

following values, just as in the chapter:

Starting with the variable staff, how would you select the field corresponding to
Bob Crachit’s salary? How would you select Ebenezer Scrooge’s first initial?

9. In this chapter, employeeT is defined first as a record type and later as a pointer to a
record. What syntactic change was necessary to implement the change in

staff
0 Ebenezer scrooge Partner 271-82-8183 250.00 1
1 Bob Cratchit Clerk 314-15-9265 15.00 7



representation?
10. What factors should you consider in deciding whether to define a new type as a

record or as a pointer to a record?
11. What function exported by genlib.h helps to simplify dynamic allocation of

records?
12. If the variable p is declared as a pointer to a record that contains a field called cost,

what is wrong with the expression

*p.cost

as a means of following the pointer from p to its value and then selecting the cost
field? What expression would you write in C to accomplish this dereference-and-
select operation?

13. What is a database?
14. When you want to store a database in a file, you must define both an internal and

an external representation. Why are both representations necessary? What factors
must you consider in the design of each one?

15. In the teach.c program, it would certainly be possible for the computer to number
the questions automatically as it reads the data file. In the design presented in this
chapter, however, the course writer supplies the question number as part of the
data file. What is the reason for this design decision?

16. What is mean by the term data-driven design? What are the advantages of using
such an approach?

PROGRAMMINGPROGRAMMINGPROGRAMMING
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EXERCISES

1. Write a program that generates weekly payroll checks for a company whose
employment records are stored in a database of type employeeDB , as defined in this
chapter. Each employee is paid the salary given in the employee record, after
deducting taxes. Your program should compute taxes as follows:

 Deduct $1 from the salary for each withholding exemption. This figure is
the adjusted income. (If the result of the calculation is less than 0, use 0 as
the adjusted income.)

 Multiply the adjusted income by the tax rate, which you should assume is a
flat 25 percent.

For example, Bob Cratchit has a weekly income of $15. Because he has seven
dependents, his adjusted income is $15-(7×$1), or $8. Twenty-five percent of &8
is $2, so Mr. Cratchit’s net pay is $15-$2, or $13.

The checks should include the name of the employee, the net pay, and a note
showing the gross pay and taxes, as shown in the following sample run:



Your job includes printing the border around the check and formatting the
internal information.

2. Suppose that you have been assigned the task of computerizing the card catalog
system for a library. As a first step, your supervisor has asked you to develop a
prototype capable of storing the following information for each of 1000 books:

 The title
 A list of up to five authors
 The Library of Congress catalog number
 Up to five subject headings
 The publisher
 The year of publication
 Whether the book is circulating or noncirculating

Design the data structures that would be necessary to keep all the information
required for this prototype library database. Given your definition, it should be
possible to write the declaration

libraryDB libda ta;

and have the variable libda ta contain all the information you would need to keep
track of up to 1000 books. Remember that the actual number of books will
usually be less than this upper bound.

Write a procedure SearchBySubject that takes as parameters the library
database and a subject string. For each book in the library that lists the subject
string as one of its subject headings, SearchBySubject should display the title, the
name of the first author, and the Library of Congress catalog number of the book.

3. Write a function MidPoint (p1, p2) that returns the midpoint of the line segment
between the points p1 and p2. The argument and the result are each of type pointT,
which was defined in the text as follows:

+-----------------------------------------------------------------+
| Scrooge and Marley Ltd. |
| |
| Pay to the order of: Ebenezer Scrooge 187.75 |
| |
| |
| 250.00 gross – 62.25 tax E. Scrooge |
+-----------------------------------------------------------------+

+-----------------------------------------------------------------+
| Scrooge and Marley Ltd. |
| |
| Pay to the order of: Bob Cratchit 13.00 |
| |
| |
| 15.00 gross – 2.00 tax E. Scrooge |
+-----------------------------------------------------------------+



typedef struct {
double x, y;

} pointT;

4. Design an interface ptgraph.h that uses points rather than individual coordinates to
specify coordinates and relative displacements. For example, instead of calling
MovePen (x, y), clients of ptgraph.h might call MovePenToPoint (pt), where the parameter
pt is a value of type pointT as defined in exercise 3. In your interface, you need not
redefine any functions that do not take coordinate values as arguments, such as
initGraphics or DrawArc. Implement the ptgraph.h interface as a layered abstraction on
top of graphics.h .

5. A rationalrationalrational

rational

numbernumbernumber

number

is one that can be expressed as the quotient of two integers.
Thus, the number 1.25 is a rational number because it is equal to 5 divided by 4.
Many numbers, such as π or the square root of 2 are not rational, although
proving that fact is beyond the mathematical scope of this course. Computation
using rational numbers has an important advantage over floating-point arithmetic:
unlike floating-point numbers, rational numbers are exact. It would therefore be

useful to design a package for manipulating rational numbers, which are not one
of C’s predefined types.

Design and implement an interface rational.h that permits simple operations
on rational numbers. At a minimum, your interface should export the following
entries:

 The type rationalT , which can be used to represent a rational value.

 A function CreateRational (num, den) , which returns the rational .
den
num

 A function AddRational (r1, r2), which returns the sum of two rational numbers.
The sum of two rational numbers is given by the following formula:
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 A function MultiplyRational (r1, r2), which returns the product of two rational
numbers. The product of two rational numbers is given by the following
formula:
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 A function GetRational (r), which reads a retinal number from the user in the
from num/den.

 A function PrintRational (r), which displays the number as a fraction on the
screen.

All computation using rational numbers should reduce their results to lowest
terms. For example, multiplying ½ by ⅔ should result in the rational number
whose internal presentation is ⅓, not 2/6

Use the rational.h interface to write a program that adds a list of rational



numbers and displays their sum, as illustrated in the following sample run:

6. In Roman numerals, characters of the alphabet are used to represent integers as
shown in this table:

SymbolSymbolSymbol

Symbol

ValueValueValue

Value

III

I

111

1

VVV

V

555

5

XXX

X

101010

10

LLL

L

505050

50

CCC

C

100100100

100

DDD

D

500500500

500

MMM

M

100010001000

1000

Each character in a Roman numeral stands for the corresponding value.
Ordinarily, the value of the Roman numeral as a whole is the sum of the
individual character values given in the table. Thus, the string “LXXVI” denotes
50+10+10+5+1, or 76. The only exception occurs when a character
corresponding to a smaller value precedes a character representing a larger one,
in which case the value of the first letter is subtracted form the total, so that the
string “IX” correspond to 10–1, or 9.

Write a function RomanToDecimal (roman) that takes a string representing a
Roman numeral and returns the corresponding decimal number. To find the
values of each Roman numeral character, your implementation should look up
the value in a statically initialized data structure that includes the data in the
Roman numeral conversion table. If the argument string contains characters that
are not in the table, RomanToDecimal should return –1.

7. Suppose that you have been hired as a programmer for a bank to automate the
process of converting between different foreign currencies at the prevailing rate
of exchange. Every data, the bank receives a data file called exchange.da t

containing the current exchange rates. The file is composed of lines in the
following form:

dollar 1.00
yen 0.0078
francq 0.20
mark 0.68
pound 1.96

Each line consists of the name of a particular kind of currency, at least one space,
and the dollar equivalent of one unit of that currency. Thus, the sample input file
tells us that the British pound is worth $1.96 and the German mark is wroth 68
cents. (Note that the file includes a line for dollars, for which the exchange rate is

This program adds a list of rational numbers.
Signal end of list with a 0.
? 1/31/31/3

1/3





? 1/1/1/

1/





? 000

0





The total is 1/2



always 1.00. The presence of this line means that U.S. dollars need not be treated
as a special case.)

Write a program that performs these steps:

a. Read in the exchange.da t data file into a suitable internal data structure.
b. Ask the user to enter two currency names: that of the old currency being

converted and of the new currency being returned.
c. Ask for a value in the original currency.
d. Display the resulting value in the second currency. The easiest way to

compute this value is to convert the original currency to dollars and then
convert the dollars to the target currency.

The following sample run illustrates the operation of this program using the data
in the exchange.da t file:

8. In many applications, it is extremely useful to be able to associate a string with a
definition in much the same way that a dictionary does. At one point in the
program, you can enter a definition for a particular string; at a later point, you can
look up that string to find its definition. More formally, what you need is a
package that allows you to associate a value with a particular key (the Define

operation) and, later, to retrieve any value associated with that key (the Lookup

operation).
The interface dict.h shown in Figure 16-4 provides such a capability. By

calling Define (key, value) , you make it possible to retrieve that value at a later point
by calling Lookup (key). Using arrays of records to represent the data, implement
the dict.h interface.
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dict.hdict.hdict.h

dict.h

/*
* File: dict.h
* --------------
* This interface exports functions for defining and looking
* up words in a dictionary. The dictionary is maintained in
* static storage private to the implementation.
*/

#ifnde f _dic t_h
#define _dic t _h

#include “genlib.h ”

/*
* Function: InitDic tionary
* Usage: InitDicitionary ();
* This function initializes the dictionary to ge empty and must be
* called before any of the other operations are used.
*/

Convert from: markmarkmark

mark





Into: yenyenyen

yen





Howmany units of type mark? 200200200

200





200 mark = 17435.9 yen



void InitDic tionary (void)

/*
* Function: Define
* Usage: Define (word, definition);
* ------------------------------------------
* This function defines the word, using the indicated definition.
* Any prev ious definition for word is lost. If defining this
* word would exceed the capacity of the dictionary, and error is
* gener ated.
*/

void Define (string word, string definition);

/*
* Function: Lookup
* Usage: str = Lookup (word);
* -------------------------------------
* This function looks up the word in the dictionary and returns
* its definition. If the word has not been defined, lookup
* returns NULL.
*/

string Lookup (string word);

#endif

9. Although the Madlibs program in exercise 6 of Chapter 15 was originally
presented as a game, the same programmable used in more practical contexts,
particularly if you use the dictionary facility from exercise 8 to extend the
program’s capabilities. For example, elected officials could use the program to
generate form letters in responses to mail from their constituents. All a staff
person would need to do is fill in the appropriate blanks in a form stored as a file,
as illustrated by the following general-purpose response form sorted in formlet. tx t:

Dear <name>:

Think you for taking the time to express your interest in
<topic>. Since being elected to Congress,
<topic> has been my to priority .

Because your <message type> means so much to me, I have
taken the time to respond personally . I hear from many
constituen ts every day, but your <message type> on
<topic> moved me deeply .

Please be assured that I will do all I can to figh t the
special interests that oppose us on this critical issue.

Sincerely yours,

Your Congressperson

Note that even though the placeholders <topic> and <message type> appear more than
once in the file, the program should request a value only once for each
placeholder, as shown in the following sample run:



Extend the Madlibs program so that it stores each substitution in a dictionary and
replaces it in the text every time it appears.

10. The teach.c program in Figure 16-1 can sometimes produce confusing output
because of a flaw in its design. As the course database file in Figure 16-1
illustrates, the feedback that the student gets from the program about an incorrect
answer has to be combined with the next question. For example, the text of
question 3 in the cs.dat file is

No. Floating- poin t numbers have fractional parts;
integers do not.
True or false: Integers can be nega tive.

The first two lines constitute the response to the previous question; the last line is
the next question in the series.

The fact that these two pieces are conjoined leads to certain problems. For
example, if the student responds to question 3 with some unrecognized answer,
the computer repeats the text of the question. Unfortunately, the text of the
question includes the feedback generated in response to the previous answer,
which no longer makes sense. Thus, if the student were to respond with the string
“maybe”, the screen would look like this:

Think about how you might redesign the teach.c program to avoid this problem;
then implement and test your new desig.

Input file: formlet.txtformlet.txtformlet.txt

formlet.txt





name: Dr.Dr.Dr.

Dr.

RobertsRobertsRoberts

Roberts





topic: thethethe

the

misusemisusemisuse

misuse

ofofof

of

computerscomputerscomputers

computers





message type: e-maile-maile-mail

e-mail

messagemessagemessage

message





Dear Dr. Rober ts:

Think you for taking the time to express your interest in
the misuse of computers. Since being elected to Congress,
the misuse of computers has been my to priority .

Because your e-mail message means so much to me, I have
taken the time to respond personally . I hear from many
constituen ts every day, but your e-mail message on
the misuse of computers moved me deeply .

Please be assured that I will do all I can to figh t the
special interests that oppose us on this critical issue.

Sincerely yours,

Your Congressperson

True or false: Integers can be nega tive.
maybemaybemaybe

maybe





I don ’t understand that.
No. Floating- poin t numbers have fractional parts;
integers do not.
True or false: Integers can be nega tive.
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OBJECTIVESOBJECTIVESOBJECTIVES

OBJECTIVES

 To recognize the power of recursion and be able to apply it in simple cases.
 To be able to define a new abstract type and specify its concrete underlying

representation.
 To be able to evaluate the computational complexity simple algorithms and express

that complexity using big-0 notation.
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fter completing the first 16 chapters of this text, you have learned the

fundamentals of C programming along with many important concepts from computer
science. Computer science, however, is a large and ever-expanding field, and you still have
much to lea rn. This chapter introduces three topics that you must master if you continue
your study of computer science:

 Recursion
 Abstract data types
 Algorithmic analysis

Because these topics are central to modern computer science, many schools introduce
them in the first programming course. To make sure that this text meets the needs of a wide
range of institutions, this chapter offers and overview of each of these topics. Even if you
are not required to learn this material for a class, reading through this chapter will help you
if you continue in computer science. When you encounter these ideas in a more advanced
course, they will not be entirely new, and you will be able to pick them up more quickly.

1-11-11-1
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RecursionRecursionRecursion

Recursion

Most algorithmic strategies used to solve programming problems have counterparts
outside the domain of computing. When you perform a task repeatedly, you are using
iteration. When you make a decision, you exercise conditional control. Because these
operations are familiar, most people learn to use the control statements for, while and if with
relatively little trouble.



Before you can solve many sophisticated programming tasks, however, you will have
to come to grips with a powerful problem-solving strategy that has few direct counterparts
in the real world. That strategy, called recursionrecursionrecursion

recursion

, is defined as any solution technique in
which large problems are solved by reducing them to smaller problems of the same form.
The italicized phrase is crucial to the definition, which other wise describes the strategy of
stepwise refinement introduced in Chapter 5. Both strategies involve decomposition. What
makes recursion special is that the subproblems in a recursive solution have the same form
as the original problem.

If you are like most new programmers, the ideal of breaking a problem down into
subproblems of the same form does not make much sense when you first hear it. Unlike
repetition or conditional testing, recursion is not a concept that comes up in day-to-day life.
Because it is unfamiliar, learning how to use recursion can be difficult. To do so, you must
develop the intuition necessary to make recursion seem as natural as all the other control
structures. For most students of programming, reaching that level of understanding takes
considerable time and practice. Even so, learning to use recursion is definitely worth the
effort. As a problem-solving tool, recursion is so powerful that it at times seems almost
magical. In addition, using recursion often makes it possible to write complex programs in
simple and profoundly elegant ways.
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recursion

To gain a better sense of what recursion is, imagine that you have been appointed as
the funding coordinator for a large charitable organization that, like many such
organizations, is long on volunteers and short on cash. Your job is to raise $1,000,000 in
contributions so that the organization can meet its expenses.

If you know someone who is willing to write a check for the entire $1,000,000, your
job is easy. On the other hand, you may not be lucky enough to have friends who are
generous millionaires. In that case, you must raise the $1,000,000 in smaller amounts. If
the average contribution to your organization is $100, you might choose a different tack:
call 10, 000 friends and ask each of them for $100. But then again, you probably don’t
have 10,000 friends. So what can you do?

As is often the case when you are faced with a task that exceeds your own capacity,
the answer lies in delegating part of the work to others. Your organization has a reasonable
supply of volunteers. If you could find 10 dedicated supporters in different parts of the
country and appoint them as regional coordinators, each of those 10 people could then take
responsibility for raising $100,000.

Raising $100,000 is simpler than raising $1,000,000, but it hardly qualifies as easy.
What should your regional coordinators do? If they adopt the same strategy, they will in
turn delegate parts of the job. If they each recruit 10 fundraising volunteers, those people
will only have to raise $10,000. The delegation process can continue further until the
volunteers are able raise the money they need all at once. Because the average contribution
is $100, the volunteer fundraisers can probably find a single donor who is willing to give
that much, which eliminates the need for further delegation.



If you express this fundraising strategy in pseudocode, it has the following structure:

void (CollectCoun tribu tions (int n)
{

if (n <= 100) {
Collect the money from a single donor.

} else {
Find 10 volunteers.
Get each volunteer to collect n/10 dollars.
Combine the money raised by the volunteers.

}
}

The most important thing to notice about this pseudocode translation is that the line

Get each volunteer to collect n/10 dollars.

is simply the original problem reproduced at a smaller scale. The basic character of the
task—raise n dollars—remains exactly the same; the only difference is that n has a smaller
value. Moreover, because the problem is the same, you can solve it by calling the original
function. Thus, the preceding line of pseudocode would eventually be replaced with the
following line:

CollectContribu tions (n / 10);

It’s important to note that the CollectContribu tions function ends up calling itself if the
contribution level is greater than $100. In the context of programming, having a function
call itself is the defining characteristic of recursion.

TheTheThe

The

Factorial functionfunctionfunction

function

The CollectContribu tions example is useful because it conveys the idea of recursion in an
easily understood way. On the other hand, it gives little insight into how recursion is used
in practice, mostly because the primitive operations it used, such as finding 10 volunteers
and collecting money, are not easily represented in a C program. To get a more practical
sense of the nature of recursion, it is necessary to consider problems that fit more easily
into the programming domain.

It is easiest to illustrate recursion in the context of a simple mathematical function,
such as the factorial function introduced in Chapter 5. The factorial of an integer
n—denoted in mathematics as n!—is simply the product of the integers between 1 and n.
As you discovered in Chapter 5, you can easily implement by factorial function using a for

loop, as illustrated by the following implementation, which is taken from Figure 5-4:

int Factorial (int n)
{

int produc t, i;

produc t = 1;
for (i = 1; i <= n; i++) {

produc t *= i;
}
return (product);

}



This implementation, however, does not take advantage of an important property of
factorials. Each factorial is related to the factorial of the next smaller number in the
following way:

n! = n×(n-1)!

Thus, 4! is 4×3!, 3! is 3×2!, and so on. To make sure that this process stops at some point,
mathematicians define 0! to be 1. Thus, the conventional mathematical definition of the
factorial function looks like this:

This definition is recursive because it defines n! in terms of the factorial of n – 1. The new
problem—finding the factorial of n – 1—has the same form as the original problem, which
is the defining characteristic of recursion. You can then use the same process to define (n –
1)! in terms of (n –2)!. Moreover, you can carry this process forward step by step until the
solution is expressed in terms of 0!, which is equal to 1 by definition.

The most exciting aspect of this approach is that you can use it directly as a solution
technique. Because C allows functions to call themselves recursively, you can implement
the Factorial function in the following way, which is a direct translation o the mathematical
definition:

int Factorial (int n)
{

if (n == 0) {
return (1);

} else {
return (n * Facrotial (n – 1));

}
}

If you work from the mathematical definition, writing the recursive implementation of
factorial is straightforward. On the other hand, when you are learning about recursion for
the first time, this implementation seems to leave something out. Even though it clearly
reflects the mathematical definition, the recursive implementation makes it hard to identify
where the actual computational steps occur.When you call Factorial , you want the computer
to give you the answer. In the recursive implementation, all you see is a formula that
transforms one call to Factorial into another one. Because the steps in that calculation are not
explicit, the fact that the computer gets the right answer sometimes seems magical.

If you follow through the logic that the computer uses to evaluate any function call,
however, you discover that no magic is involved. When the computer evaluates a call to the
recursive Factorial function, it goes through the same process it uses to evaluate any other
function call. To illustrate the process, suppose that you have executed the statement

fact = Factorial (4);

as part of the function main . When main calls Factorial , the computer creates a new frame and
copies the argument value into the formal parameter n. The frame for Factorial temporarily








)!1(
1

!
nn

n
if n = 0

otherwise



supersedes the frame for main, as shown in the following diagram:

In the diagram, the code for the body of Factorial is shown inside the frame to make it easier
to keep track of the current position in the program, which is indicated by an arrow. In the
current diagram, the arrow appears at the beginning of the code because all function calls
start at the first statement of the function body.

The computer now proceeds to evaluate the body of the function, starting with the if

statement. Because n is not equal to 0, control proceeds to the else clause, where the
program must evaluate and return the value of the expression

n * Facrotial (n – 1)

Evaluating this expression requires computing the value of Factorial (n – 1), which requires a
recursive call. When that call returns, all the program has to do is to multiply the result by n.
The current state of the computation can therefore by diagrammed as follows:

As soon as the call to Factorial (n – 1) returns, the result is substituted for the underlined
expression, allowing computation to proceed.

The next step in the computation is therefore to evaluate the call to Factorial (n – 1),
which begins by evaluation the argument expression. Because the current value of n is 4,
the argument expression n – 1 has the value 3. The computer then creates a new frame for
Factorial in which the formal parameter is initialized to this value. Thus, the next frame looks
like this:

main

Factorial

n
4

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

}

main

Factorial

n
4

if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

} ？

main

Factorial

Factorial

n
3

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

}



There are now two frames labeled Factorial . In the most recent one, the computer is just
starting to calculate Factorial (3). In the preceding frame, which the newly created frame
hides, the Factorial function is awaiting the result of the call to Factorial (n – 1).

The current computation, however, is that required to complete the topmost frame.
Once again, n is not 0, so that control passes to the else clause of the if statement, where the

computer must evaluate Factorial (n – 1). In this frame, however, n is equal to 3, so that the
required result is that computed by calling Factorial (2). As before, this process requires the
creation of a new stack frame, as shown:

Following the same logic, the program must now call Factorial (1), which in turn calls Factoial

(0), thereby creating twonew stack frames. The resulting stack configuration looks like this :

At this point, however, the situation changes. Because the value of n is 0, the function can
return its result immediately by executing the statement

return (1);

The value 1 is returned to the calling frame, which resumes its position on the top of the
stack, as shown:

main

main

Factorial

Factorial

Factorial

n
２

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

}

Factorial

Factorial

main

Factorial

Factorial

Factorial

Factorial

n
１

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

} １

Factorial

Factorial

Factorial

n
0

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

}



From this point, the computation consists of proceeding back through each of the recursive
calls, using the value returned by Factorial at one level to compute the result at the next level.
In this frame, for example, the call to Factorial (n – 1) can be replaced by the value 1, so that
the result at this level can by expressed as follows:

return (n * 1 ));

In this stack frame, n has the value 1, so that the result of this call is simply 1. This result
gets propagated back to its caller, which is represented by the top frame in the following
diagram:

Because n is now, evaluating the return statement causes the value 2 to be passed back to
the previous level, as follows:

At this stage, the program returns 3×2 to the previous level, so that the frame for the
initial call to Factorial looks like this:

The final step in the calculation process consists of calculating 4×6 and returning the value
24 to the main program.

main

Factorial

Factorial

Factorial

n
2

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

} １

main

Factorial

Factorial

n
3

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

} 2

main

Factorial

n
4

→ if (n == 0) {
return (1);

} else {
return (n * Factorial (n – 1));

} 6
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The point of the long Factorial (4) example in the preceding section is to shown you that
the computer treats recursive function, you can—at least in theory—mimic the operation of
the computer and figure out what it will do. By drawing all the frames and keeping track of
all the variables, you can duplicate the entire operation and come up with the answer, If
you do so, however, you will usually discover that the complexity of the process ends up
making the problem much harder to understand.

When you think about a recursive program, you must be able to put these underlying
details aside and focus instead on a single level of the operation. At that level, you are
allowed to assume that any recursive call automatically gets the right answer as long as the
arguments to that call are simpler than the original argument in some respect. For example,
to compute Factorial (n) with n equal to 4, the recursive implementation must compute the
value of the expression.

n * Factorial (n – 1)

By substituting the current value of n into the expression, you know that the result is

4 * Factorial (3)

Stop right there. Computing Factorial (3) is simpler than computing Factorial (4). Because it is
simpler, you are allowed to assume that it works. You know that Factorial (3) is 3×2×1, or 6.
The result of calling Factorial (4) is therefore 4×6, or 24, which is the right answer.

Learning to assume that any simpler recursive call works while you are designing a
recursive function is an essential programming strategy called the recursiverecursiverecursive

recursive

leapleapleap

leap

ofofof

of

faithfaithfaith

faith

.
Until you have had extensive experience working with recursive functions, applying the
recursive leap of faith will not come easily. After all, when you write a program, the odds
are good—even if you are an experienced programmer—that your program won’t work the
first time. Suspending your disbelief and assuming that it does violate your own healthy
skepticism about the likely correctness of your programs. Even so, you must conquer that
psychological barrier. Looking more than one level down in a recursive function inevitably
makes the problem harder to solve.
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paradigm

Almost every recursive function you will encounter has the same basic structure as the
Factorial function in the preceding section. The body of the typical recursive function has the
following paradigmatic form:

if (test for simple case) {
return (simple solution computed without using recursion );

} else {
return (recursive solution involving a call to the same function);

}

The recursive Factorial function fits this paradigm, as does the following function that raises



an integer n to the kth power:

static int RaiseIntToPower (int n, int k)
{

if (k ==0) {
return (1);

} else {
return (n *RaiseIntToPower (n ,k –1));

}
}

This implementation of RaiseIntToPower relies on the mathematical property that

The problems of computing a factorial or raising a number to a power have natural
recursive solutions because the problems meet the following conditions:

1. You can identify simple cases for which the answer is easily determined.
2. You can apply a recursive decomposition to break down more complicated

instances of the problem into simpler problems of the same type, which you can
then solve by applying the same solution technique.

When recursive decomposition follows directly from a mathematical definition, as it does
in the case of the functions Factorial and RaiseIntToPower, applying recursion is not particularly
hard. The situation changes, however, when the problems themselves become more
complicated and the recursive decomposition requires some cleverness to fine. The next
section solves a more complex problem in which the recursive decomposition is more
difficult to see.

GeneratingGeneratingGenerating

Generating

permutationspermutationspermutations

permutations

A large part of playing many word games is the ability to rearrange a set of letters to
form a word. If, for example, you want to write a ScrabbleTM program, it would be useful to
have a facility for generating all possible arrangements of a particular set of tiles. In word
games, such arrangements are generally called anagramsanagramsanagrams

anagrams

. In mathematics, they are known
as permutationspermutationspermutations

permutations

.
Suppose that you want to write a function ListPermutations (s) that displays all

permutations of the string s. For example, if you call

ListPermutations (“ABC”);

your program should display the six arrangements of “ABC”, as follows:
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ABC
ACB
BAC
BCA
CBA
CAB



The order of the output is unimportant, but each of the possible arrangements should appear
exactly once.

How would you go about implementing the ListPermutations function? If you are limited
to iterative control structures, such as while and for loops, finding a general solution that
works for strings of any length is difficult. Thinking about the problem recursively, on the
other hand, leads to relatively simple solution.

As is usually the case with recursive programs, the hard part of the solution process is
figuring out how to divide the original problem into simpler instances of the same problem.
In this case, to generate all permutations of a string, you need to discover how being able to
generate all permutations of a shorter string might contribute to the solution.

To give yourself more of a feel for the problem, consider a concrete case. Suppose tat
you want to generate all permutations of a five-character string, such as “ABCDE”. In your
solution, you can apply the recursive leap of faith to generate all permutations of any
shorter string. Just assume that the recursive calls work and be done with it. Once again, the
critical question is how being able to permute shorter strings helps you to solve the
problem of permuting the original five-character string.

The key to solving the permutation problem is recognizing that the permutations of
the five-character string “ABCDE” consist of the following strings:

 The character ‘A’ followed by every possible permutation of “BCDE ”
 The character ‘B’ followed by every possible permutation of “ACDE”
 The character ‘C’ followed by every possible permutation of “ABDE”
 The character ‘D’ followed by every possible permutation of “ABCE”
 The character ‘E’ followed by every possible permutation of “ABCD”

More generally, to display all permutation of a string of length n, you can take each of the n

characters in turn and display that character followed by every possible permutation of the
remaining n – 1 characters.

The only problem with the solution strategy as presented is that the recursive
subproblem does not have exactly the same form as the original, which is a requirement for
a recursive solution. The original problem requires you to display all permutations of a
string. The subproblem requires you to display a character from a string followed by all
permutations of the remaining letters. To make the recursive solution work, you need to
transform the problem slightly so that the recursive subproblems are the same all the way
along.

In this case, the best approach is to define a new procedure PermuteWithFixedPrefix that
generates all permutations of a string with the first k letters fixed. When k is 0, all the letters
are free to change, which gives you the original problem. As k increases, the problem
becomes simpler. When k is the length of the string, there are no characters to interchange,
and the string can be displayed exactly as it appears. The PermuteWithFixedPrefix procedure has
the following pseudocode form:

static void PermuteWithFxedPrefix (sstring str, int k)
{

if (k is equal to the length of the string) {
Display the string.



} else {
For each character position i between k and the end of the string {

Exchange the characters in positions i and k.
Generate all permutations with the first k+1 characters fixed.
Restore the original string by again exchanging positions i and k.

}
}

}

Translating this function from pseudocode to C is reasonably simple, particularly if you
define a function to exchange twocharacters. In C, PermuteWithFixedPrefix looks like this:

static void PermuteWithFixedPrefix (string str, int k)
{

int i;

if (k == StringLength (str)) {
printf (“%s\n”, str);

} else {
for (i = k; i < StringLength (str); i++) {

ExchangeChar acters (str, k, i);
PermuteWithFixedPrefix (str, k + 1);
ExchangeChar acters (str, k, i);

}
}

}

The program, however, is not quite finished. For one thing, you need to complete the
stepwise refinement by defining the function ExchangeChar acters . The implementation of this
function is similar to the function SwapIntegerElements introduced in Chapter 11 and has the
following form:

static void ExchangeChar acters (string str, int p1, int p2)
{

char tmp;

tmp = str[p1];
str[p1] = str[p2];
str[p2] = tmp;

}

A more important problem is that you have yet to define the function ListPermutations , which
was the original goal of the exercise. The function PermuteWithFixedPrefix does all the
necessary work, but it does not have the desired prototype. When you call
PermuteWithFixedPrefix , you need to pass an integer as well as the string. Most clients think
only about permuting the characters in a string; there are no integers involved. For the
benefit of the client, it therefore makes sense to define ListPermutations with the following
implementation:

static void ListPermutations (stirng str)
{

PermuteWithFixedPrefic (str, 0);
}

When you solve problems recursively, you often need to define a recursive function whose
prototype is slightly different from that of the original problem. As in the case or
PermuteWithfixedPrefix , the new function usually has additional arguments that are not required



for the problems as a whole. Those arguments track the progress of the recursive algorithm
and provide a standard of measurement under which the subproblems become simpler. The
function that is made available to clients calls the internal function, passing in the
appropriate initial value for the additional arguments, as illustrated by the implementation
of ListPermutations . A function like ListPermutations whose only purpose is to supply additional
arguments for a more general function is called awrapperwrapperwrapper

wrapper

.
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More than any other aspect of programming, learning to use recursion requires you to
think about the programming process holistically. If you adopt the reductionstic approach
of tracing through all the steps in a complex recursive decomposition, you end up having to
manage a huge amount of detail—detail that is better left to the computer. The process of
going through the steps in the calculation of Factorial (4) earlier in this chapter takes several
pages. In contrast, the holistic idea that

Factorial (4) = 4 * Factorial (3)

only takes a single line. The difference in the conceptual complexity of these two
approaches to recursion is enormous. By maintaining a holistic perspective, you can reduce
the complexity of most recursive programs to a point at which you can comprehend the
solution. If, on the other hand, your uncertainty about the correctness of your solution
forces you down the reductionistic path, the mass of details will almost certainly make it
impossible for you to understand the high-level structure of the solution.

Thinking about recursive problems in the right way does not come easily. Learning to
use recursion effectively requires practice and more practice. For many students, mastering
the concept takes years. But because recursion will turn out to be one of the most powerful
techniques in your programming repertoire, that time will be well spent.
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types

As you have discovered in this text, data structures forma hierarchy within a program.
The atomic data types—such as int, char, double, and enumerated types—occupy the lowest
level in the hierarchy. To represent more complex information, you combine the atomic
types to form larger structures. These larger structures can then be assembled into even
larger ones in an open-ended process. You build each new level in the hierarchy by using
one of the three primitives for type construction: arrays, records, and pointers. Give an
existing type, you can define an array of that type, include it as a field of a record, or
declare a pointer to it. These three facilities constitute the mortar of the data hierarchy and
allow you to build arbitrarily complex structures.

As you learn more about programming, however, you will discover that particular data
structures can be extremely useful and are worth studying in their own right. For example,
a string is represented internally as an array of characters, which is in turn represented as a
pointer to the first address in the array. In this book, you learned about the underlying



structure of a string in Chapter 14. But a string also has an abstract behavior that transcends
its representation. You learned about its abstract properties in Chapter 9. When you use a
string, its representation is often unimportant; what matters most is how it behaves. As you
learned when string operations were introduced in Chapter 9, a type defined in terms of its
behavior rather than its representation is called an abstractabstractabstract

abstract

datadatadata

data

typetypetype

type

, which is often
abbreviated toADTADTADT

ADT

.
Because an abstract data type is defined in terms of its behavior, the programmer who

implements an abstract type is free to change its underlying representation. Typically, an
abstractly type is exported by an interface along with a collection of functions that define
its behavior. The representation is a property of the implementation. As with any
abstraction, it is appropriate to change the implementation as long as the interface remains
the same.
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To illustrate the concept of an abstract data type whose underlying representation can
change, this section introduces a common data structure that happens to be important in
many programming applications. The real-world analogy to the structure is a waiting line
such as you might find in a supermarket. When customers finish their shopping, they go to
the back of a checkout line and wait for their turn to pay. Each customer eventually reaches
the front of the line, at which point the cashier totals up the purchases and collects the
money. Once the business has been completed, the customer leaves the line. In
programming, a structure that simulates the behavior of a waiting line is called a queuequeuequeue

queue

.
Let’s suppose that you have been assigned the task of designing a queue package that

gives your clients access to the fundamental operations required for queues. Your first step
is to determine what those fundamental operations are. As a thought experiment, you can
go back to the waiting-line analogy to think about what happens. In an environment that
uses waiting lines, such as a supermarket, the following operations are important:

 Create a new waiting line. The typical supermarket has more then one checkout
line. When things get busy, the store often opens a new line. To make you queue
package general enough to model the activity of a supermarket, you must allow
clients to create new queues dynamically.

 Eliminate an existing waiting line. If supermarkets open new checkout lines
when business is heavy, they also must be able to close lines when business falls
off. In the programming analogue, it must be possible to eliminate a queue and
free any memory space associated with it.

 Add a customer to the end of a waiting line. A new customer who arrives at a
checkout stand enters the line at the rear and waits until the earlier customers
have been saved. In programming terminology, adding a new entry to the end of
the line is called the enqueueenqueueenqueue

enqueue

operation.
 Remove a customer from the front of a waiting line. After reaching the front of

the line and being served by the cashier, the customer leaves the line, and the rest
of the people waiting move forward one position. In programming terminology,



removing the entry from the front of the line is called the dequeuedequeuedequeue

dequeue

operation.
 Determine how many customers are in a line. For the supermarket management

to make decisions about whether to open or close checkout lines, it must be
possible to determine how many people are in the existing lines. In the real world,
you can just count the customers. Your interface must provide a function that
returns this information.

Although there are others you might also consider, these operations are sufficient for many
queue applications.
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Before you can design the queue.h interface that exports these functions, however, you
need to think about the data type involved. These operations work with two different types
of data: an individual customer and the waiting line itself. What data type should you use to
represent each of these conceptual entities? This question is actually rather subtle and
requires you to think carefully about how the queue abstraction will be used. In particular,
you need to decide whether each type is part of the queue implementation or part of the
client’s domain.

Think for a moment about the customer.What is a customer in this model? The answer
depends entirely on how the queue is used. If you are simulating lines in a bank, you may
want to keep track of different data for each customer than you would if you were
simulating a supermarket. For many applications, the word customer may be inappropriate.
When you send an electronic mail message, most systems put that message in a queue and
process it later. Similarly, most systems that support more than one user queue documents
for printing. When you want to print out a file, that file gets entered into a queue
somewhere in the system. When the printer has finished servicing the requests that came in
ahead of yours, it can then begin to print your file. The queue operations are the same, but
the information stored in the queue is completely different.

The critical point is that the client of the queue package must determine the type of
data stored in the waiting line. If the client is an electronic mail system, it needs to queue
messages. If the client is a program that prints a file, it needs to queue print requests. If the
client is a supermarket simulation, it needs to be able to queue some representation of a
supermarket customer. The queue package doesn’t really care. As far as the queue package
is concerned, its responsibility during an enqueue operation is to enter the data supplied by
the client into the queue. When a dequeue operation is performed at a later point, the queue
package needs to give exactly the same data back to the client.

Thus, to make your queue package as general as possible, you need to let your client
control the type of data sorted in the queue. The only problem is that you have to refer to
that type in the interface. Unlike some programming languages, C does not include a type
specification that matches any type at all. In C, the best you can do is to use the type void *,
which matches any pointer type. If your use void *, clients of your queue package can
enqueue and dequeue data of any pointer type. Because it is always possible to allocate
new space for nonpointer data and use the resulting address, this restriction is not a



problem in practice.
The next question is how to represent the waiting line itself. Unlike the customer, the

waiting line is the property of the implementation. Your package is responsible for
enqueueing new data at the end of the waiting line and dequeueing of data from the front.
The implementation you write must control the representation of the waiting line so that it
can perform these operations. In the interface, you therefore want to define the abstract
queue type queueADT , leaving the underlying representation under the control of the
implementation.

In C, you can define a type in an interface so that its underlying representation remains
hidden from clients. To do so, you include in the interface an abstract type definition of the
form shown in the syntax box to the right. For example, to define queueADT as an abstract
type, the interface would includes the following definition:

typedef struct queueCDT *queueADT;

As far as C’s syntax is concerned, this line defines the type queueADT as a pointer to a
structure identif ied by the name queueCDT , which has
not yet been defined. Because pointers are always the
same size, the C compiler allows you to work with
pointers to structures even if it does not know any
details about the structure itself . A structure that has not
yet been defined is called an incompleteincompleteincomplete

incomplete

typetypetype

type

.
In the implementation, you complete the type by

writing the structure definition, as shown in the syntax
box on the right. The definition includes the name used to identify the incomplete structure,
which is called the structurestructurestructure

structure

tagtagtag

tag

. The type nameCDT is the concrete data type associated
with the abstract type nameADT defined in the interface. Clients of the interface see only the
abstract type. Clients can declare variables of the abstract type and then manipulate the
values of those variables as if they were atomic types.
Because the compiler has no information about the
underlying representation, however, clients are not able
to dereference the abstract type to see how it is
constructed. The implementation, on the other hand,
has access to the concrete type as well. Because the
compiler now knows about the underlying structure,
functions in the implementation are free to derefernce
the abstract type pointer in order to see the fields that
are part of the concrete type.

Partly because it was not possible to do so in earlier implementations of C, many
programmers do not bother to separate the underlying representation of a type form its
abstract definition. If you inclue the concrete definition of a type directly within the
interface, the program will still work correctly. In doing so, however, you lost both security
and flexibility. If the client is permitted to cross the abstraction boundary and manipulate
the internal representation directly, the client can destroy data the implementation needs.
Using an abstract type denies the client access to that representation and protects the
underlying data. Moreover, by taking the representation completely outside the client’s
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domain, use of the abstract type mechanism makes it easier to modify the underlying
representation.
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Having resolved the issue of how to define the relevant data types, you can now go
ahead and design the queue.h interface, even though you know very little about the
underlying implementation. The interface, shown in Figure 17-1, exports the type queueADT

along with five operations on the type: NewQueue , FreeQueue , Enqueue , Dequeue , and QueueLeng th.
The behavior of each operation is outlined in the interface.
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/*
* File: queue.h
* -----------------
* This file prov ides an interface to a simple queue
* abstraction.
*/

#ifndef _queue_h
#define _quqeu_h

#include “genlib.h ”

/*
* Type: queueADT
* ----------------------
* This line defines the abstract queue type as a pointer to
* its concrete counterpar t. Clients have no access to the
* underly ing represen tation.
*/

typedef struct queueCDT *queueADT;

/*
* Function: NewQueue
* Usage: queue = NewQueue ();
* ----------------------------------------
* This function allocates and returns an empty queue.
*/

queueADT NewQueue (void);

/*
* Function: FreeQueue
* Usage: FreeQueue (queue);
* -------------------------------------
* This function frees the storage associated with queue.
*/

void FreeQueue (queueADT queue);

/*
* Functions: Enqueue
* Usage: Enqueue (queue, obj);
* ----------------------------------------
* This function adds obj to the end of the queue.
*/



void Enqueue (queueADT queue, void *obj);

/*
* Function: Dequeue
* Usage: obj = Dequeue (queue);
* ------------------------------------------
*This function removes the data value at the head of the queue
* and returns it to the client. Dequeueing an empty queue is
* an error.
*/

void *Dequeue (queueADT queue);

/*
* Function: QueueLength
* Usage: n = QueueLength (queue);
* ---------------------------------------------
* This function returns the number of elemen ts in the queue.
*/

int QueueLeng th (queueADT queue);

#endif
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Once you have designed the interface, the next step is to implement the queue package.
As part of the implementation, you need to define the underlying representation of the
waiting line itself. The most straightforward representation is simply an array coupled with
an integer to keep track of the effective size. The concrete type definition is therefore

struct queueCDT {
void *array[MaxQueueSize];
int len;

};

Where MaxQueueSize is a constant specifying the maximum number of elements that can be
stored in a queue.

To implement the NewQueue function, all you need to do is allocate the space for the
concrete structure and initialize the length of the queue to 0. The implementation looks like
this:

queueADT NewQueue (void)
{

queueADT queue;

queue = New(queueADT);
queue->len = 0;
return (queue);

}

The Enqueue function is also easy to implement. When you enter a new value into the queue,
it must be inserted at the end of the line, increasing the queue length by 1. These operations,
along with a test to see if the queue capacity has been exceeded, comprise the
implementation of Enqueue , as follows:



void Enqueue (queueADT queue, void *obj)
{

if (queue->len == MaxQueueSize) {
Erro (“Enqueue called on a full queue ”);

}
queue->array[queue->len++] = obj;

}

For example, suppose that you have created a new queue by executing the statement

queue = NewQueue ();

The effect of this statement is to created an emptyqueue with the following structure:

queue

If you then call

Enqueue (queue, “A”);

the string “A” (which is a pointer and therefore compatible with the type void *) is stored in
element 0 of the array. As a side effect, the ++ operator increments the queue length, leaving
the queue in the following state:

queue

Then if you execute the statements

Enqueue (queue, “B”);
Enqueue (queue, “C”);

customers B and C are inserted into the next twoarray positions, as follows:

queue

What about the Dequeue operation? In the queue shown in the preceding diagram, the
Dequeue operation should remove A from the queue and return it as the value of the Dequeue

call. Give the current representation, the only way to remove the first element from the

array
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len
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array
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len
1

array
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len
3



queue is to shift each of the other elements one position to the left, so that the queue ends
up looking like this:

queue

Implementing this strategy leads to the following implementation of Dequeue :

void *Dequeue (queueADT queue)
{

void *result;
int i;

if (queue->len == 0) Error ( “Dequeue of empty queue ”);
result = queue->array[0];
for (i = 1; i < queue->len; i++) {

queue->array[i – 1] = queue->array[i];
}
queue->len--;
return (result);

}

The entire implementation of the queue.h interface is given in the file queue.c , shown in
Figure 17-2.
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queue.c

/*
* File: queue.c
* -----------------
* This file implements the queue.h abstraction using an array.
*/

#include <stdio.h>

#include “genlib.h ”
#include “queue.h ”

/*
* Constants:
* --------------
* MaxQueueSize -- Maximum number of elemen ts in the queue
*/

#define MaxQueueSize 10

/*
* Type: queueCDT
* -----------------------
* This type prov ides the concrete counterpar t to the queueADT.
* The represen tation used here consis ts of an array coupled
* with an integer indicating the effective size. This
* represen tation means that Dequeue must shift the existing
* elemen ts in the queue.
*/

struct queueCDT {

array
B C
0 1 2 3 4 5 6 7 8 9

len
2



void *array[MaxQueueSize];
int len;

}

/* Exported entries */

/*
* Function: NewQueue, FreeQueue
* ---------------------------------------------
* NewQueue allocates and initializes the storage for a
* new queue. FreeQueue allows the client to free that
* storage when it is no longer needed.
*/

queueADT NewQueue (void)
{
queueADT queue;

queue = New (queueADT);
queue->len = 0;
return (queue);

}

void FreeQueue (queueADT queue)
{
FreeBlock (queue);

}

/*
* Function: Enqueue
* ---------------------------
* This function adds a new elemen t to the queue.
*/

void Enqueue (queueADT queue, void *obj)
{
if (queue->len == MaxQueueSize) {

Error ( “Enqueue called on a full queue ”);
}
queue->array[queue->len++] = obj;

}

/*
* Funcitn: Dequeue
* -----------------------
* This function removes and returns the data value at the
* head of the queue.
*/

void *Dequeue (queueADT queue)
{
void *result;
int i;

if (queue->len == 0) Error ( “Dequeue of empty queue ”);
result = queue->array[0]l
for (i = 1; i <queue->len; i++) {

queue->array[i-1] = queue->array[i];
}
queue->len--;
return (result);

}

/*
* Funciton: QueueLegth
* -----------------------------
* This function returns the number of elemen ts in the queue.



*/

int QueueLeng th (queueADT queue)
{
return (queue->len);

}
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The implementation of the queue package developed in the preceding section is not
the only one you might choose. Although it is quite simple, the implementation has two
problems that limit its utility:

1. Calling is inefficient. Every time Dequeue is called, the implementation has to shift
all the remaining entries in the queue toward the beginning of the array. For
queues that contain a large number of entries, this operation can be time-
consuming. If a client wants to use your queue package in an application with
tight time constraints, the inefficiency of Dequeue may be unacceptable.

2. The queue has a fixed maximum size specified by the constant MaxQueueSize.
Some clients may be unable to accept this limitation. For those clients, it would
be better if the queue could expand dynamically as long as memory was available .

If you choose a different underlying representation for the queue structure, you can solve
both of these problems. Moreover, because the interface defines equeueADT as an abstract
type, you are free to change the underlying representation of a queue without affecting
clients of the interface.

As a first step, think about what you might do to solve the efficiency problem of
Dequeue . The source of the inefficiency is the fact that the function must shift all the
elements in the array so that the first entry in the queue is always at index position 0.
Although doing so makes the implementation of the package simpler, it is not strictly
necessary. You could instead have the waiting line and the index into which the next entry
will be stored. Programmers call these positions the headheadhead

head

and tailtailtail

tail

of the queue,
respectively. A concrete type definition that includes both of these indices is

struct queueCDT {
void *array[MaxQueueSize];
int head;
int tail;

};

The tail index indicates the array element in which the next Enqueue operation will store its
data and therefore specifies an unused position in the array. The head index indicates the
element to be returned by the next Dequeue operation. When the queue is empty, the head
index is equal to the tail index, as illustrated by the following diagram:

queue
array

0 1 2 3 4 5 6 7 8 9



Adding new entries to the queue involves storing the data at the tail position and then
incrementing tail. Thus, executing the statements

Enqueue (queue, “A”);
Enqueue (queue, “B”);

starting with an empty queue results in the following configuration:

queue

The Dequeue function returns the value at the position indexed by head and then increments
head so that it indicates the next position. Thus, if your continues the current example by
calling Dequeue (queue), the internal data structure looks like this:

queue

Using this approach eliminates the need to shift any data as part of the Dequeue operation.
The only problem is that you quickly run out of space at the end of the array. Let’s consider
the situation in which customers C, D, E, F, G, H, I, and J are entered into the queue, but
there is only enough time to server B, C, and D. At this point, customers E, F, G, H, I, and J
are still in the queue, which looks like this:

queue

What happens when customer K arrives? There are no vacant positions at the end of the
array; in fact, the tail index currently indicates an element outside the array bound. On the
other hand, the array is not “full” in any conceptual sense, because the first four positions
are once again free. If you are careful with your use of indices, you can implement the
queue package so that calls to Enqueue reuse space freed by previous Dequeue operations. In
the current example, K can go in element 0 of the array, leaving the queue in the following

head tail
0 0

array
A B
0 1 2 3 4 5 6 7 8 9

head tail
0 2

array
B
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head tail
1 2

array
E F G H I J

0 1 2 3 4 5 6 7 8 9
head tail
4 10



state:
queue

In this design, the end of the array “wraps around” to the beginning, so that the array acts
more like a circle than a liner list, as illustrated by the arrow in the following diagram:

Because the ends of the array are conceptually linked, programmers call this representation
a ringringring

ring

bufferbufferbuffer

buffer

. Ring buffers are often used in practice to implement queues, and you will
have the opportunity to implement this design in Exercise 7.

If you go on to more advanced study of computer science, you will discover that
queues are often implemented in an entirely different way. Instead of using an array to hold
the queue, you can design the queue representation so that each entry includes a pointer to
the next entry. For example, the queue containing A, B, and C could be represented as
follows:

Because each entry of the queue contains a pointer linking it to the next entry, this structure
is called a linkedlinkedlinked

linked

listlistlist

list

. The concrete data type for the queue itself consists of pointers to the
first and last elements in the linked list. The implementation of a linked list is beyond the
scope of this text but constitutes a major theme of more advanced courses in computer
science. The principal advantage of the linked list structure is that it allows the queue to
grow dynamically as needed.
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In evaluating the various queue implementations presented in the preceding section,
one of the comparison criteria was efficiency. If you think about efficiency as an informal
concept, it is easy to accept that one program might be more efficient than another. On the
other hand, you have not yet had an opportunity to consider what efficiency means in any
detail.

In the examples and exercises presented in this text, you have encountered programs
that run very quickly and others that take a significant amount of time. Intuition suggests
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head tail
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queue
array tail
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that programs that run quickly are somehow efficient and those that run slowly are therefore
less so. That intuition, however, is misleading. Although running time and efficiency are
related concepts, they are not exactly the same because problems differ in their inherent
difficulty. An inefficient program to solve an easy problem may take much less time to run
than a highly efficient program used to solve a much harder problem. Efficiency must take
into account the difficulty of the problem. When you talk about efficiency, it is usually best
to consider the relative efficiency of different algorithms used to solve the same problem.

If you go on to study more advanced computer science, evaluating the relative
efficiency of algorithms will be a major topic that is usually called analysisanalysisanalysis

analysis

ofofof

of

algorithmsalgorithmsalgorithms

algorithms

.
Although a detailed understanding of algorithmic analysis requires some mathematics and
a lot of careful thought, it’s possible to get a sense of how it works by comparing the
performance of a few simple algorithms.

EvaluatingEvaluatingEvaluating

Evaluating

algorithmicalgorithmicalgorithmic

algorithmic

efficiencyefficiencyefficiency

efficiency

Suppose that you have been given two algorithms for solving the same problem. You
want to determine which is more efficient. How would you go about making the
comparison?

In some cases, it is feasible to use empirical measurement. If you want to determine
which of two algorithms solves a particular problem more quickly, you could simply run
each of the programs and see how long each one takes. Assuming that you can measure
time accurately at the speed of modern computers, this approach can provide precise timing
information for a particular instance of the problem. On the other hand, this approach can
also be misleading, particularly when the running time of an algorithm depends on the
input data. An algorithm that runs more quickly with one set of input values may turnout to
run more slowly for others. Some algorithms work well for a small amount of input data
but deteriorate in performance when the amount of data becomes large. In practice, the
most valuable insights you can obtain about algorithmic efficiency are those that help you
understand how the performance of an algorithm responds to changes in problem size.

For many algorithms, problem size is easy to quantify. For example, the classical
algorithms presented in Chapter 6, such as testing primality or finding the greatest common
divisor, run more slowly as the numbers involved get lager. In algorithms of this sort, the
magnitude of the numbers offers an appropriate measure of problem size. For algorithms
that operate on arrays, such as the sorting algorithms in Chapter 12, you can use the number
of elements in the array as the problem size. When evaluating algorithmic efficiency,
computer scientists use the letter N to represent the size of the problem, no matter how it is
calculated. The central question in analysis of algorithms is to determine how the running
time of an algorithm changes as a function of N. The relationship between N and the
running time of an algorithm as N becomes large is called the computationalcomputationalcomputational

computational

complexitycomplexitycomplexity

complexity

of that algorithm.
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Computer scientists use a special notation to denote the computational complexity of
algorithms. That notation is called big-Obig-Obig-O

big-O

notationnotationnotation

notation

(pronounced “big oh”) and consists of
an oversized letter O, followed by a formula enclosed in parentheses that expresses a
proportional measure of running time as a function of problem size. The letter O stands for
the word order as it is used in the phrase on the order of, where it signif ies approximation.

A formal definition of big-O notation lies beyond the scope of this text, but you can
nonetheless get a feel for how it is used by looking at a few simple examples. As an
example, consider the original implementation of the queue package shown in Figure 17-2.
The Enqueue operation takes the same amount of time regardless of the problem size, which
is most easily defined as the number of items currently in the queue. In computer science,
an operation whose time requirements are independent of the size of the problem is said to
run in constantconstantconstant

constant

timetimetime

time

. In big-O notion, constant time is denoted by O (1) means that, as N
becomes large, the running time of such a program changes in exactly the same way that 1
changes. Because 1 is a constant, it does not change at all as value of N increases, which is
the defining characteristic of a constant-time operation.

The Dequeue operation from Figure 17-2 behaves in a different way. The
implementation of Dequeue uses the following for loop to shift each item in the queue toward
the beginning of the array:

for (i = 1; i < queue->len; i++) {
queue->array[i – 1] = queue->array[i];

}

If the queue contains N items, this for loop executes N cycles. As N increases, the running
time of the for loop increases in direct proportion. Moreover, if N is large, the cost of the for
loop dominates the cost of all operations outside the loop, which are always executed once
no matter how large N is. Thus, in the limit as N becomes large, the overall running time of
the Dequeue operation tends to increase just as N does. An operation for which the running
time grows in direct proportion to the problem size is said to run in linearlinearlinear

linear

timetimetime

time

, which is
indicated in big-O notation as O(N).

The advantage of the ring buffer implementation of the queue package outlined in the
section on “Alternative implementation of the queue abstraction” earlier in this chapter is
that it reduces the running time of the Dequeue operation from linear time to constant
time—from O(N) to O(1). If is large, this reduction represents a significant savings. On the
other hand, the savings you realize by making a linear-time algorithm run in constant time
are much less dramatic than algorithmic improvements you can achiever when working
with more complex algorithms. The rest of this chapter takes a new look at the sorting
problem presented in Chapter 12, emphasizing the issue of computational complexity.
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In Chapter 12, the algorithm used to implement SortIntegerArray is called selection sort .
Given an array of N items, the selection sort algorithm goes through each element position
in the array and finds the value that should occupy that position. To find the appropriate
value, the algorithm must search through each of the remaining elements in the array to find



the smallest value. Thus, the algorithm takes N steps to fill the first position, N-1 steps to
fill the second, and so on, so that the total running time is proportional to

N +N-1 + N-2 +… + 3 + 2 +1

As explained in the section on “Analyzing the selection sort algorithm” in Chapter 12, this
formula can be simplif ied to

2

2 nn 

When you use big-O notation to estimate the computational complexity of an algorithm,
the goal is to provide a qualitative insight as to how changes in N affect the algorithmic
performance as N becomes large. Because big-O notation is not intended to be a precise
quantitative measure, it is appropriate and in fact desirable to simplify the expression inside
the parentheses so that it captures the qualitative behavior of the algorithm in the simplest
possible form.

You simplify big-O notation by applying the following steps to the formula appearing
within the parentheses:

1. Eliminate any term in the formula that becomes insignificant as N becomes large.
For example, in the selection sort algorithm, as N increases in size, N2 quickly
becomes much larger than N. the running time of selection sort therefore depends
much more heavily of the N2 term. Thus, when you use big-O notation, you are
free to ignore N and concentrate on N2.

2. Eliminate any constant coefficients. When you calculate computational
complexity your main concern is with the relative running time of the algorithm
for different values of N. If you express the relative time as a ratio, any constant
coefficient appearing in both the numerator ad the denominator will cancel. A
constant coefficient has no effect on the relative running time and can therefore
be eliminated when you use big-O notation.

Thus, it would be inappropriate to describe the computational complexity of the selection
sort algorithm as

This is incorrect.






 
2

2 nn
O

because this expression includes the term N, which is insignif icant with respect to the N2

term. Norwould you write

This is incorrect.







2

2n
O

because you should eliminate the constant factor. The expression used to indicate the
complexity of selection sort is simply

 2NO

Algorithms that exhibit O(N2) performance are said to run in quadraticquadraticquadratic

quadratic

timetimetime

time

. The basic



characteristic of quadratic complexity is that, as the size of the problem doubles, eh running
time increases by a factor of four. As noted in Chapter 12, the fact that selection sort is a
quadratic algorithm seriously limits its usefulness as the arrays one needs to sort become
large.

Divide-and-conquerDivide-and-conquerDivide-and-conquer

Divide-and-conquer

strategiesstrategiesstrategies

strategies

Oddly enough, the very fact that the selection sort algorithm has quadratic
performance offers you a certain measure of hope. You know that doubling the size of a
quadratic problem has the effect of multiplying its running time by four. This property is
what makes selection sort inappropriate for large arrays. The reverse, however, is also true.
If you divide the size of a quadratic problem by two, you decrease the running time by that
same factor of four. Thus, if you divide a large array in half and use the selection sort
algorithm to sort each half, you end up with two sorted subarrays in half the time it would
have taken to sort the entire array. (Each of the subarrays requires one quarter of the
original time; sorting two such subarrays requires twice as much as that.) If it turns out that
sorting two halves of an array simplifies the problem of sorting the complete array, you
may be able to reduce the total time substantially. More importantly, once you discover
how to improve performance at one level, you can use the same algorithm recursively to
sort each of the individual subarrays. Recursive algorithms that divide a problem into
roughly equal subproblems and then solve each subproblem recursively are called divide-divide-divide-

divide-

and-conquerand-conquerand-conquer

and-conquer

algorithms.
In determining whether a divide-and-conquer strategy is applicable to the sorting

problem, the crucial question is whether dividing an array into two smaller arrays and then
sorting each one helps to solve the general problem. To make this question more concrete,
let’s go back and think about the array of eight elements used as an example in Chapter 12:

If you divide the array of eight elements into two array of length four and ten sort each of
those smaller arrays—remember that the recursive leap of faith means that you can simply
assume that the recursive calls work correctly—you get the following:

How useful is this decomposition? Remember that your goal is to take the values out of
these smaller arrays and put them back, in the correct order, into each position in the
original array:

array 31 41 59 26 53 58 97 93

0 1 2 3 4 5 6 7

arr1 26 31 41 59

0 1 2 3

arr2 53 58 93 97

4 5 6 7

array



What would you do?

MergingMergingMerging

Merging

twotwotwo

two

arraysarraysarrays

arrays

As it happens, reconstruction the complete array from the smaller sorted arrays is a
much simpler problem than sorting itself. The technique is called MergingMergingMerging

Merging

and depends on
the fact that the first element in the complete ordering must be either the first element in arr1
or the first element in arr2, whichever is smaller. In this example, the first element in the new
array is the 26 in arr1. If you put that element into array[0] and, in effect, cross it out of arr1,
you get the following configuration:

Once again, the next element can only be the first unused element in one of the two smaller
arrays. You compare the 31 from arr1 against the 53 in arr2 and choose the former:

You can continue this process of choosing the smaller value from arr1 or arr2 until the entire
array is filled.
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The

mergemergemerge

merge

sortsortsort

sort

algorithmalgorithmalgorithm

algorithm

The merge operation, combined with recursive decomposition, gives rise to a new
sorting algorithm called mergemergemerge

merge

sortsortsort

sort

, which you can implement in a straightforward way.
The SortIntegerArray function itself first checks the size of the array. If the array has no
elements or exactly one element, then that array must already be sorted. This condition
therefore defines the simple case. If, instead, the array contains more than one element, you

0 1 2 3 4 5 6 7

arr1 26 31 41 59

0 1 2 3

arr2 53 58 93 97

4 5 6 7

array 26

0 1 2 3 4 5 6 7

arr1 26 31 41 59

0 1 2 3

arr2 53 58 93 97

4 5 6 7

array 26 31

0 1 2 3 4 5 6 7



need to execute the following steps:

1. Divide the array into two smaller arrays, each of which is half the size of the
original.

2. Sort each of the smaller arrays by making a recursive call to SortIntegerArray .
3. Merge the two small arrays back to fill the original one.

The code for the SortINtegerArray function itself is

void SortIntegerArray (int array[], int n)
{

int i, n1, n2;
int *arr1, arr2;

if (n > 1) {
n1 = n / 2;
n2 = n – n1;
arr1 = NewArray (n1, int);
arr2 = NewArray (n2, int);
for (i = 0; i < n1; i++) arr1[i] = array[i];
for (i = 0; i < n2; i++) arr2[i] = array[n1 + i];
SortIntegerArray (arr1, n1);
SortIntegerArray (arr2, n2);
Merge (array, arr1, n1, arr2, n2);
FreeBlock (arr1);
FreeBlock (arr2);

}
}

In this implementation, arr1 and arr2 are the smaller arrays, and their effective sizes are n1
and n2 respectively. All the hard work is done by Merge, which has the following
implementation:

static void Merge (int array[], int arr1[], int n1, int arr2[], int n2)
{

int p, p1, p2;

p = p1 = p2 = 0;
while (p1 < n1 && p2 < n2) {

if (arr1[p11] < arr2[p2]) {
array[p++] = arr1[p1++];

} else {
array[p++] = arr2[p2++];

}
}
while (p1 < n1) array[p++] = arr1[p1++];
while (p2 < n2) array[p++] = arr2[p2++];

}

The merge function takes the destination array, along with the smaller arrays arr1 and arr2,
coupled with their effective sizes, n1 and n2. The indices p1 and p2 mark the progress
through each of the subarrays, and p is the index in array. On each cycle of the loop, the
function selects an element form arr1 or arr2—whichever is smaller—and copies that value
into array. As soon as the elements in either subarray are exhausted, the function can simply
copy the elements from the other array without bothering to test them. In fact, since you
know that one of the subarrays is already exhausted when the first while loop exits, the
function can simply copy the rest of each array to the destination. One of these subarrays
will be empty, and the corresponding while loop will not be executed at all.
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You now have an implementation of the SortIntegerArray function that implements the
strategy of divide-and-conquer. How efficient is it? You can measure its efficiency by
sorting arrays of numbers and timing the result, but it is helpful to start by thinking about
the algorithm in terms of its computational complexity.

When you call the merge sort implementation of SortIntegerArray on a list of N numbers,
the running time can be divided into twocomponents:

1. The amount of time required to execute the operations at the current level of the
recursive decomposition

2. The time required to execute the recursive calls

At the top level of the recursive decomposition, the cost of performing the nonrecursive
operations is proportional to N. The two for loops in SortIntegerArray together account for N
cycles, and the call to Merge has the effect of filling up the original N positions in the array.
If you add these operations and ignore the constant factor, you discover that the complexity
of any single call to SortIntegerArray—not counting the recursive calls within it—requires O(N)
operations.

But whtat about the cost of the recursive operations? To sort an array of size N, you
must recursively sort two arrays of size N / 2. Each of these operations requires some
amount of time. If you apply the same logic, you quickly determine that each of these
recursive calls requires time proportional to N/2 at that level, plus whatever time is required
by the recursive calls. The same process then continues until you reach the simply case in
which the subarrays consist of a single element or no elements at all.

The total time required to solve the problem is the sum of the time required at each
level of the recursive decomposition. In general, the decomposition has the structure shown
in Figure 17-3. As you move down through the recursive hierarchy, the arrays get smaller,
but there are more of them. The amount of work does at each level, however, is always
directly proportional to N. Determining the total amount of work is therefore a question of
finding out how many levels there will be.

sorting an array of size N

N operations
requires sorting two arrays of size N/2

2×N/2 operations
which requires sorting four arrays of size N/4

4×N/4 operations
which requires sorting eight arrays of size N/8

8×N/8 operations
and so on.
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At each level of the hierarchy, the value of N is divided by 2. The total number of



levels is equal to the number of times you can divide N by 2 before you get and down to 1.
Rephrasing this question in mathematical terms, you need to find a value of k such that

N = 2 k

Solving the equation for k gives

k = log2N

Because the number of levels is log2N and the amount of work done at each level is
proportional to N, the total amount work is proportional to N log2N.

Unlike other scientific disciplines, in which logarithms are expressed in terms of
powers of 10 (common logarithms) or the mathematical constant e (natural logarithms),
computer science almost always uses binarybinarybinary

binary

logarithmslogarithmslogarithms

logarithms

, which are based on powers of 2.
Logarithms computed using different bases differ only by a constant factor, and it is
therefore traditional to omit the logarithmic base when you talk about computational
complexity. Thus, the computational complexity of merge sort is usually written as

O(N log N)
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Comparing

quadraticquadraticquadratic

quadratic
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But how good is O(N log N)? You can compare its performance to that of O (N2) by
looking at the values of these functions for different values of N, as shown in Table 17-1.
The numbers in both columns of the table grow as N becomes larger, but the N2 column
grows much faster than N log N column does. Sorting algorithms based on an N log N
algorithm are therefore useful over a much larger range of array sizes.

It is interesting to try to verify in practice the theoretical results from Table 17-1. Since big-
O notation discards constant factors, it may be that selection sort is more efficient for some
problem size. Running the selection ad merge sort algorithms on arrays of varying sizes
and measuring the actual running times results in timing data of the kind shown in Table
17-2. Because computers differ in speed, these numbers will vary from vary from machine
to machine, but the basic pattern should remain the same.

For 10 items, selection sort is roughly four times faster than merge sort. At 100 items,
selection sort is still faster, but only slightly so. By the time you get up to 10,000iterms,
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10 0.00013 .00094
100 0.00967 .012

1000 1.08 .14
10,000 110.0 1.6
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selection sort is 70 times slower than merge sort and takes almost two minutes to run.
These growth factors are what you would expect from the computational complexity.

As you multiply the size of the array by 10, the time required for selection sort should go
up by a factor of approximately 100, which is what the table shows. For merge sort,
increasing the size by a factor of 10 should cause the running time to grow by a factor just a
little more 10, which is exactly what you see.

SUMMARYSUMMARYSUMMARY

SUMMARY

In this chapter, you have scratched the surface of three topics that are critically
important to more advanced work in computer science: recursion , abstract data type, and
analysis of algorithms. A complete treatment of these subjects is beyond the scope of this
text, but it is nonetheless useful to begin learning the concepts as early as you can.

Important points covered in this chapter include:

 Recursion is a powerful programming strategy in which complex problems are
broken down into simpler problems of the same form.

 In order to use recursion effectively, you must learn to limit your analysis to a
single level of the recursive decomposition and to rely on the correctness of all
simpler recursive calls. Trusting these simpler calls to work correctly is called the
recursive leap of faith

 In C, the body of a recursive function typically has the following form:

if (test for simple case) {
return (simple solution computed without using recursion );

} else {
return (recursive solution involving a call to the same function);

}

 An abstract type can often be implemented in many different ways. As long as the
interface does not change, you are free to change the underlying representation of
an abstract data type along with the implementation of the functions that
manipulate it.

 By using incomplete types, you can define an abstract data type so that its
underlying representation is hidden from clients.

 The computational complexity of algorithms is usually expressed using big-O
notation, which indicates how the running time of a program is affected by
changes in problem size.

 Reducing the computational complexity of an algorithm can have a profound
effect on its efficiency.

REVIEWREVIEWREVIEW

REVIEW

QUESTIONSQUESTIONSQUESTIONS

QUESTIONS

1. Define the term recursion.
2. What is the essential difference between recursion and stepwise refinement?



3. What is meant by the term recursive leap of faith?
4. What is the first keyword in the body of a typical recursive function?
5. In the implementation of PermuteWithFixedPrefix , there are twocalls to ExchangeChar acters . Is

the second call necessary?Why or why not?
6. What is a wrapper? Why are wrappers common in recursive programming?
7. What are the fundamental operations on a queue?
8. Suppose that you want to design an abstract type called pictureADT to keep track of

graphical structures. Without knowing anything about its underlying representation,
how would you define pictureADT in the interface so that it is linked to its corresponding
concrete type?

9. Does the definition of a concrete type belong in the interface or the implementation?
10. What is a ring buffer? What is the principal advantage of using a ring buffer as the

underlying representation of a queue?
11. What modifications are you allowed to make in order to simplify the formula

appearing inside the parentheses used with big-O notation?
12. What is the computational complexity of the selection sort algorithm in terms of big-O

notation? What is the corresponding complexity of merge sort? Describe the
implications of the difference.

13. What is the computational complexity of the binary-search algorithm as implemented
in Figure 12-3?

PROGRAMMINGPROGRAMMINGPROGRAMMING
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EXERCISESEXERCISESEXERCISES

EXERCISES

1. Exercise 8 of Chapter 4 introduced you to the Fibonacci series, in which the first two
terms are 0 and 1 and every subsequent term is the sum of the two preceding terms.
The series therefore begins with

F0 = 0
F1 = 1
F2 = 1 (F0 + F1)

F3 = 2 (F0 + F1)
F4 = 3 (F2 + F3)
F5 = 5 (F3 + F4)
F6 = 8 (F4 + F5)

and continues in the same fashion for all subsequent terms. Write a recursive
implementation for the function Fib(n) that returns the nt h Fibonacci number. Your
implementation must depend only on the relationship between the terms in the
sequence and may not use any iterative constructs such as for and while.

2. The mathematical combinations functions C(n, k) introduced in Chapter 5 is usually
defined in terms of factorials, as follows:
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The values of C(n, k) can also be arranged geometrically to form a triangle in which n

increases as you move down the triangle and k increases as you move from left to right.
The resulting structure, called Pascal’s Triangle, is arranged like this:

C(0,0)
C(1,0) C(1,1)

C(2,0) C(2,1) C(2,2)
C(3,0) C(3,1) C(3,2) C(3,3)

C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)

As noted in Chapter 5, exercise 12, Pascal’s Triangle has the interesting property that
every entry is the sum of the two entries above it except along the left and right edges
where the values are always 1. Consider, for example, the circled entry in the
following display of Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

This entry, which corresponds to C(6, 2), is the sum of the two entries—5 and 10—that
appear above it to either side. Use this relationship between entries in Pascal’s
Triangle to write a recursive implementation of the Combinations function that uses
no loops, no multiplication, and no calls to Factorial.

3. Exercise 9 in Chapter 9 introduced the concept of a palindrome, which is a string that
reads identically backward and forward, such as “level” or “noon ”. For that exercise, you
were asked to write a predicate function IsPalindrome (str) that test whether str is a
palindrome. At the time, you would have used an iterative solution that compared
corresponding characters taken from each end of the string, checking to see if they
matched.

The IsPalindrome function, however, can also be written recursively. The recursive
insight is that long palindromes must contain shorter palindromes in their interior. For
example, the string “ lefvel” consists of the palindrome “eve” with and “ l” at each end. Use
this insight to write an implementation of IsPalindrome that operates recursively.

4. In almost any computer science course that convers recursion, you will learn about a
nineteenth-century puzzle that stands as the archetypal recursive problem. This puzzle,



which goes by the name Towers of Hanoi, consists of three towers, one of which
contains a set of disks—usually eight in commercial versions of the puzzle—arranged
in decreasing order of size as you move from the base of the tower to its top, as
illustrated in the following diagram:

The goal of the puzzle is to move the entire set of disks from Tower A to Tower B,
following these rules:

a. You can only move one disk at a time.
b. You can never place a larger disk on top of a smaller disk.

Write a program to display the individual steps required to transfer a tower of N disks
from Tower A to Tower B. For example, your program should generate the following
output when N is 3:

The key to solving this problem is finding a decomposition of the program that allows
you to transform the original Tower of Hanoi problem into a simpler problem of the
same form.

5. In the late 1970s, a researcher at IBM named Benoit Mandelbrot generated a great deal
of excitement by publishing a book on the subject of a delightful mathematical oddity
called fractalsfractalsfractals

fractals

, which are geometrical structures formed by recursive replication of a
pattern at many different scales. Mathematicians have known about fractals for a long
time, but there was a string resugence of interest in the subject during the 1980s, partly
because the development of computers makers it possible to do so much more with
fractals than had ever been possible before.

One of the earliest examples of fractal figures is called the Koch snowflake after
its inventor, Helge von Koch. The Koch snowflake begins with an equilateral triangle

Which is called the Koch fractal of order 0. The figure is then revised in stages to
generate fractals of successively higher orders. At each stage, every straight line
segment in the figure is replaced by one in which the middle third has been replaced
by a triangular bump. Thus, if you replace each line segment in the triangle with a line
that looks like

A -> B
A -> C
B -> C
A -> B
C -> A
C -> B
A -> B

TowerA Tower B Tower C



you get the Koch fractal of order 1:

If you replace each line segment in this figure with a new line that again includes a

triangular wedge, you create the order-2 Koch fractal:

Replacing each of these line segments gives the order-3 fractal shown in the following

diagram, which has started to resemble a snowflake:

Write a recursive program to draw a Koch fractal snowflake, using the graphics library
from Chapter 7 to display the figure on the screen. Your main program should read in
the order of the fractal you want to produce along with the edge length of the original
order-0 triangle.

In writing this program, it will be helpful to define a procedure DrawPolarLine that
draws a line of length r in the direction theta, measured in degrees counterclockwise
from the x-axis like the angles for DrawArc, as follows:

static void DrawPolarLine (double r, double theta)
{

double radians;

radians = theta / 180 * 3.1415926535;



DrawLine (r * cos (radians), r * sin (radians));
}

The name DrawPolarLine comes from the mathematical notion of polarpolarpolar

polar

coordinatescoordinatescoordinates

coordinates

,
which are coordinates specified in terms of a radius r and an angle theta.

6. On a standard telephone keypad, the digits are mapped onto the alphabet (minus the
letters Q and Z) as shown in this diagram:

In order to make their phone numbers more memorable, service providers like to find
numbers that spell out some word appropriate to their business that makes that phone
number easier to remember. Such words that help you remember some other data are
called mnemonicsmnemonicsmnemonics

mnemonics

.
Write a function ListMnemonics that generates all possible letter combinations that

correspond to a given number, represented as a string of digits. For example, if you
call

ListMnemonics (“723”)

your program should generate the 27 possible letter combinations corresponding to
that prefix, as follows:

If the argument passed to ListMnemonics contains a 0 or a 1, that position in the output
should simple be displayed as the digit, since there are no letters that correspond to it.
For example, if you used the function to generate mnemonics for the area code 415,
you program should generate the following nine strings:

7. Complete the implementation of the queue package using a ring buffer described in
the section titled “Alternative implementations of the queue abstraction” in this

1 2
ABC

3
DEF

5
JKL

6
MNO

4
GHI

8
TUV

9
WXY

7
PRS

0

This program displays mnemonics for a telephone number.
Number: 723723723

723





PAD PAE PAF PBD PBE PBF PCD PCE PCF
RAD RAE RAF RBD RBE RBF RCD RCE RCF
SAD SAE SAF SBD SBE SBF SCD SCE SCF

G1J G1K G1L
H1J H1K H1L
I1J I1K I1L



chapter. Remember that your new queue implementation must not require any changes
in the queue.h interface.

8. Using a ring buffer to represent a queue improves the efficiency of the Dequeue

operation but does not address the problem of queues being limited to a fixed size.
One way to solve this problem is to use dynamic arrays in the queue representation.
When the client calls NewQueue , the package returns a queue structure that contains
space for some default number of elements. If the queue grows beyond that size, the
implementation allocates a new array dynamically and copies the old data into it.
Reimplement the queue package using this approach.

9. In exercise 8 of Chapter 16, you wereasked to implement a dictionary module capable
of storing keys and their associated definitions. Given the design suggested in that
exercise, however, there can only be one dictionary for the entire program. In some
applications, it may be important to support multiple dictionaries used for different
purposes.

a. Define an abstract data type dictionaryADT that can store all the information needed
to represent one dictionary.

b. Replace the function InitDic tionary with a function NewDictionary that allocates and
returns a new dictionaryADT.

c. Export a function FreeDictionary that frees the storage of an existing dictionary.
d. Include an additional argument of type dictionaryADT in the prototypes for Define and

Lookup so that these functions know what dictionary they are using.

10. As shown in Table 17-2, selection sort is faster for small arrays than merge sort,
although the situation is reversed when the arrays get larger. If you want to design a
SortIntegerArray implementation that works well over a wide range of sizes, you can
combine the two strategies by using merge sort on large arrays and selection sort on
small arrays. Reimplement SortIntegerArray using this strategy. How might you go about
choosing the cutoff point separating large arrays from small ones?
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his appendix provides a quick-reference summary of the syntactic rules and

structure of ANSI C, as presented in this text. The appendix is not intended as a reference
guide to the entire language, although it does include the most important features. To find
more information about a particular topic, please refer to the page numbers shown in the
margin.
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A C program consists of one or more source files, each of which consists of human-
readable text written in a high-level programming language called ANSI C. The C
compiler translates each source file into a corresponding object file that contains the actual
instructions necessary to execute the program on a particular computer system. The object
files—along with additional object file called libraries that implement various common
operations—are then linked together to create an executable program.

The process of compiling a source file consists of four phases:

1. Preprocessing. During preprocessing, the C compiler transforms the entire text
of the source file by applying a set of preliminary operations that include reading
in library interfaces and substituting definitions for the names of symbolic
constants.

2. Lexical analysis. In the lexical analysis phase, the compiler collects the
characters in the preprocessed source file to form meaningful units called tokens.

3. Paring. This phase consists of checking that the tokens in the source file fit the
grammatical rules, or syntax, of the C language. In addition, the parsing phase is
responsible for interpreting the meaning, or semantics, of the program.

4. Code generation. The final phase of compilation consists of translating the
parsed representation of the program into the machine instructions necessary to
execute it. Although this phase of the compilation is essential to the process of
generating the object file, it has no direct effect on the source file and is there ore
less relevant to the programmer.

The first two phase—preprocessing and lexical analysis—are discussed i Sections A.2 and
A.3, respectively. Sections A.4 through A.8 focus on the parsing phase and review the
syntactic structure of C. Section A.9 reviews the ANSI libraries functions used in the text.
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The preprocessor performs several functions in C, of which only two—defining
constants and including interface files—are discussed in detail in this text. They are
outlined in the next two subsections.
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specification

A source line of the form

#define name definition

defines the symbol name as equivalent to definition. Throughout the rest of the source file,
the preprocessor looks for any occurrence of name that appears as a complete token and
replaces it with the characters in definition. For example, after encountering the line

#define Pi 3.14159265

any subsequent occurrence of the name Pi is replaced by 3.14159265.
Substitutions made by the preprocessor are text replacements, and the definition

consists of an arbitrary set of characters. This feature allows programmers to include
arithmetic operators in constants. For example, after the definitions

#define MaxStringSize 100
#define BuferSize (MaxStringSize + 1)

any subsequent occurrence of the name BufferSize is replaced by the characters

(100 + 1)

The parentheses around the definition can be extremely important, depending on the
context in which the name BufferSize appears. If a program contains the expression

2 * BufferSize

the preprocessor expands it to

2 * (100 + 1)

which has the correct value of 202. If the parentheses were omitted from the definition, the
multiplication operation would be performed first, leading to the incorrect result of 201.
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specification

The #include specification in C appears in the following two forms:

#include <file name>
#include “file name ”

The two forms are essentially identical in their operation. In either case, the preprocessor
looks for a file with the indicated name and replaces the #include line with the entire contents
of that file. The only difference between the two forms is that the preprocessor looks in
different places to find the file. If the file name is enclosed in angle brackets, the
preprocessor looks for that file in a special area reserved for system files, such as the ANSI
libraries. If the file name is enclosed in double quotes, the preprocessor first looks for the



file in a part of the file system under the control of the user; if the file is not found in the
user’s area, the preprocessor goes on to check the system files.

The included file is preprocessed just like the original source file and may include
constant definitions or additional #include lines. In this text, the included file is always an
interface, but the preprocessor imposes no such restriction.
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The preprocessor has several additional features that are not covered in this text, of
which the following are the most important:

 Pseudo-functions. The #define mechanism includes a facility for passing
arguments, which makes it possible for defined symbols to act like functions.
This facility is often used to define certain functions in the ANSI library,
including getc from stdio.h and the predicate function from ctype.h, such as isalpha

and isdigit. Preprocessor functions, which are usually called macros or pesudo-
functions, are considerably more efficient than standard C functions but also
more restrictive.

 Conditional compilation. The preprocessor makes it possible to specify that parts
of a source file should be compiled only under certain conditions. In this text, the
only use of this facility appears in the boilerplate for interface definitions, but it
is also useful for writing more advanced programs that can be more easily
transferred from one computer system to another.

More details on using the preprocessor can be found in a C language reference text.
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After completing the preprocessing phases, the compiler assembles the individual
characters into tokens as outlined in the subsections that follow.

WhiteWhiteWhite

White

spacespacespace

space

Except in the context of string and character constants, white space characters—most
commonly the space, tab, and newline characters—serve to separate other tokens in the
source file but are otherwise ignored. Spacing is therefore used to help the human reader
understand the structure of the code. Conventionally, each line of a program is indented to
mark the control structure. Similarly, blank lines are used to separate different components
of the program.

CommentsCommentsComments

Comments

A comment consists of text enclosed between the characters /* and */. Comment text



can span many source lines, but one comment cannot be nested inside another. Comment
text is intended for human readers of the program and is ignored by the compiler.

IdentifiersIdentifiersIdentifiers

Identifiers

The names used in a program for variables, functions, types, and so forth are
collectively knownas identifiers. In C, the rules for identif ier formation are

1. The name must start with a letter or the underscore character (_).
2. All other characters in the name must be letters, digits, or the underscore. No

spaces or other special characters are permitted in name.
3. The name must not be one of the following keywords:

auto double int struct
break else long switch
case enum regis ter typedef
char extern return union
const floa short unsigned
continue for signed void
defaul t goto sizeof volatile
do if static while

Uppercase and lowercase letters appearing in an identif ier are considered to be different;
for example, the name ABC is not the same as the name abc . Identif iers can be of any length,
but C compilers are not required to consider any more than the first 31 characters in
determining whether two names are identical. Implementations may impose additional
restrictions on identifiers that are shared between modules.

ConstantsConstantsConstants

Constants

Programs can include constants of the following general types: integer , floa ting-point,
character, and string . The types themselves are discussed in subsequent sections. The
formation rules for each type of constant are as follows:

 Integer. An integer constant is ordinarily written as a string of digits representing a
number in base 10. If the number begins with the digit 0 , however, the compiler
interprets the value as an octal (base 8) integer. Thus, the constant 040 is taken to be in
octal and represents the decimal number 32. If you prefix a numeric constant with the
characters 0x, the compiler interprets that number as hexadecimal (base 16). Thus, the
constant 0xFF corresponds to the decimal constant 255. You can explicitly indicate that
an integer constant is of type long by adding the letter L at the end of the digit string.
Thus, the constant 0L is equal to 0, but the value is explicitly of type long . Similarly, if
you use the letter U as a suffix, the constant is taken to be unsigned.

 Floating-point. Floating-point constants in C are written with a decimal point. Thus, if
2.0 appears in a program, the number is represented internally as a floating-point
value; if the programmer had written 2, this value would be an integer. Floating-point
constant can also be written in scientific notation using the form x.xxxxE±yy, which



stands for x.xxxx times 10 to the yy power.
 Character. You write character constants in C by enclosing the character in single

quotes. The value of the character is given by a coding scheme (usually ASCII) that
maps each character into a numeric value. In addition to the standard characters, C
supports the following escape sequences for indicating special characters:

‘\a’ the alert character (the terminal beeps)
‘\b’ backspace
‘\f ’ formfeed (starts a new page)
‘\n’ newline
‘\r’ return (returns to the beginning of the line without advancing)
‘\t ’ tab
‘\v’ veridical tab
‘\\ ’ the character \ itself
‘\’’ the character ‘ (the backslash is required only in single characters)
‘\”’ the character “ (the backslash is required only in strings)
‘\ddd’ the character whoseASCII code is the octal (base 8) number ddd.
‘\xdd’ the character whoseASCII code is the hex (base 16) number dd.
‘\0’ the null character (with zero as its character code)

 String. You write string constants by enclosing the characters contained within the
string in double quotes. C supports the same escape sequences for strings as for
characters. If two or more string constants appear consecutively in a program, the
compiler concatenates them together, which makes it possible to break a long string
over several lines.

OperatorsOperatorsOperators

Operators

andandand

and

otherotherother
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punctuation

tokestokestokes

tokes

Punctuation symbols are used to form operators and other tokens required by teh
syntax of C. Individual operators and related punctuation tokens are described later in this
appendix in the section describing the syntactic structure in which those tokes appear.
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Expressions

Arithmetic and logical calculations are specified in C in the form of expressions,
which consist of individual terms (constants, variables, and function calls) combined
together using operators. You can use parentheses to control the grouping of terms. In the
absence of parentheses, ANSI C uses precedence and associativity rules to determine which
operator is applied first. Whenever two operators compete for the same term, the one that
appears higher in Table A-1 is applied first. If the operators are at the same precedence level,
the associativity of that class of operators determines whether the left or right operator is
applied first.

All the operators in Table A-1 are explained in the text, with the exception of ~, &, |, ^,
<<, and >>, which are used to manipulate the individual bits in an integer in applications that
require tight programmer control over the underlying representation.
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Statements

This section reviews the statement forms available in C.

SimpleSimpleSimple

Simple

statementsstatementsstatements

statements

The most common statement in C is the simple statement, which consists of an
expression followed by a semicolon:

expression ;

TheTheThe

The

null statementstatementstatement

statement

A semicolon by itself constitutes a statement that has no effect. This statement form is
called the null statement and is most often used as the body of a control structure in which
all the important work is done in the header line.

BlocksBlocksBlocks

Blocks

You can combine several statements into a block by enclosing them in curly braces:

{
… optional declarations…
… statements …

}

You can then use the resulting block as a statement in the context of any of the control
statements. As the paradigm shows, the statements in any block may be preceded by
declarations of variables. In this text, variable declarations are introduced only in the block
that defines the body of a function. Declarations are discussed further in the section on
“Functions” later in this appendix.

Operator Associativity
( ) [ ] -> . left
unary opertors: - ++ -- ! & * ~ (type) sizeof right
* / % left
+ - left
<< >> left
< <= > >= left
== != left
& left
^ left
| left
&& left
|| left
?: right
= op= right
, left

TABLETABLETABLE

TABLE

A-1A-1A-1

A-1

Complete precedence
table for C operators
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if statementstatementstatement

statement

The if statement is used to express simple conditional execution and occurs in two
forms:

if (expression ) statement

and

if (expression ) statment1 else statement2

TheTheThe

The

switch statementstatementstatement

statement

The switch statement is used in contexts in which the value of an expression specifies
one of several independent cases. The statement has the form

switch (e) {
case c1:
statements
breaks;

case c2:
statements
break;

… more case clause …
defaul t:
statements
break;

}

Any number of case clauses can appear, but the values used in each case clause must be
constants of some scalar type. The default clause is optional but recommended; if no
default clause exists and the value on the switch line does not match any of the case constants,
the program simply exits from the switch statement without performing any actions.

The break statements occurring within the switch statement are not required by the
syntax of C. When a break statement is executed, control passes immediately to the
statement following the entire switch statement. If the break statement (or nay other
statement that changes the control flow, such as a return statement) does not appear, control
passes directly into the next case clause. Failure to include a break statement in every clause
of a switch statement is a common source of programming errors.

TheTheThe

The

while statementstatementstatement

statement

The while statement is used to repeat a set of statements until a particular condition
arises. The general formof the while statements is

while (conditional-expression ) {
statements

}



For situations in which the exit test falls most naturally in the middle of the loop, this text
suggests using the break statement to solve the resulting loop-and-a-half problem, as follows:

while (TURE) {
prepare for test
if (conditional-expression ) break;
do calculation

}

TheTheThe

The

for statementstatementstatement

statement

The for statement is principally used to specify a loop in which an index variable is
updated on each cycle through the loop. The general forms is

for (init; test; step) {
statements

}

and is equivalent to the while statement

init;
while (test ) {

statements
step;

}

TheTheThe

The

break statementstatementstatement

statement

The break statement is simply

break;

When the break statement is executed, control exits immediately form the nearest enclosing
switch, while, for , or do statement.

TheTheThe

The

return statementstatementstatement

statement

The return statement has two forms. For procedures, you write the statement as

return;

For functions that return a value, the return keyword is followed by an expression, as
follows:

return expression ;

Many C programmers enclose the expression in parentheses, although there is no formal
requirement to do so.

Executing either form of the return statement causes the current function to return
immediately to its caller, passing back the value of the expression, if any, to its caller as the



value of the function.
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There are three control statements—do, continue , and goto—that this text does not cover
even though they are part of the ANSI standard. The effect of these statements can be
accomplished through combinations of the other control statements, so they are not
essential to programming in C. More importantly, these control forms are easy to abuse in
the sense that undisciplined use of them tends to complicate the structure of a program.
The next three paragraphs outline each of these statements in turn so that you will
understand them if you encounter them in practice.

The do statement is similar to while except that the test is performed at the end rather
than the beginning of the loop. The general form of the do statement is:

do {
statements

} while (conditional-expression );

This statement is useful in some situations, although it is usually preferable to use while.
Programs that use the do statement are prone to error because the body of a do loop is
always executed at least once even if the conditional expression is initially FALSE.

The continue statement has the form

continue;

and causes the program to begin the next cycle of the nearest enclosing loop immediately.
Although it is often quite convenient, the continue statement can reduce the readability of a
program, particularly when used in complicated loop structures.

The lowest level of control available in C is the goto statement, which has the following
general form:

goto lable;

The identif ier label specifies a particular statement in the current function, which is marked
using the identif ier label followed by a colon, as follows:

label: statment

The goto statement causes control to pass directly to the labeled statement. The
undisciplined use of goto statements can quickly destroy the structure of a program and
make it extremely difficult to read or maintain. This text does not use the goto statement and
encourages you to show the same discretion.

A.6A.6A.6
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FunctionsFunctionsFunctions

Functions

All executable statements in a C program occur within the body of a function. When
the computer executes a program, it begins by calling the function main. The function main

typically calls other functions, each of which solves a part of the problem; these functions



in turn call other functions that subdivide the problem further. The process of breaking a
problem down into simpler and simpler part is called stepwise refinement.

FunctionFunctionFunction

Function

definitionsdefinitionsdefinitions

definitions

A function definition has the following syntactic form:

result-type name (argument-specifiers)
{

…optional declaration…
…body…

}

In this paradigm, result-type is the type of value returned by the function, name is the
function name, and argument-specifiers is a list of parameter declarations separated by
commas. The optional declarations section includes declarations for local variables used in
the function, and body consists of the statements required to implement the function.

FunctionFunctionFunction

Function

prototypesprototypesprototypes

prototypes

Before you use a function in a C program, you should declare it by specifying its
prototype1. A prototype has exactly the same form as a function definition, except that
entire body is replaced by a semicolon. The names of the parameter variables are optional
in a prototype, although supplying those names usually helps the reader.

FunctionsFunctionsFunctions

Functions

andandand

and

interfacesinterfacesinterfaces

interfaces

In this text, all communication between modules is accomplished through function
calls. To make functions in one module available to outside callers, the best approach is to
define an interface for that module, which is represented as a header file in C. Each
interface exports a set of interface entries, which are usually of the following types:

 Function prototypes
 Constant definitions
 Type definitions

Other modules that use the facilities provided by an interface must include its header file;
such modules are called clients of the interface.

PrivatePrivatePrivate

Private

functionsfunctionsfunctions

functions

In addition to the functions that are exported to clients through an interface, most

1 To maintain compatibility with earlier versions of C, the compiler assumes certain properties of a
function prototype if it is not explicitly supplied. In your own code, you should follow the example of this
text and define prototypes for every function.



modules also define functions that are used only within that module. To maintain the
integrity of the interface boundary, it is best to declare these functions as private to the
implementation module by preceding their definition with the keyword static .
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DeclarationsDeclarationsDeclarations

Declarations

Most data values in a C program are sorted in variables. In C, you must declare each
variable before you use it. The act of declaring a variable establishes the association
between its name and the type of value it can hold. Declaration also specifies the lifetime
and scope of the variable.

BasicBasicBasic

Basic

declarationdeclarationdeclaration

declaration

syntaxsyntaxsyntax

syntax

The standard syntax for declaring a variable is

type name;

where type indicates the data type and name is an identif ier specifying the variable name.
Several variables of the same type can be declared on a single line by listing the variable
names, separated by commas, as follows:

type name1, name2,…,namen;

For array and pointer variables, however, the declaration syntax includes an indication that
a particular name fits into that type class. The syntax for array and pointer declarations is
described in Section A.8 where those types are introduced.

LocalLocalLocal

Local

variablesvariablesvariables

variables

Most variables are declared at the beginning of the block that constitutes a function
body. Such declarations introduce local variables. The scope of a local variable is the
function in which it appears. Other functions have no direct access to these variables. The
lifetime of local variable is the time during which that function is active. When the function
is called, space for each local variable is allocated in a stack frame assigned to that
particular function call. When the function returns, all local variables disappear.

GlobalGlobalGlobal

Global

variablesvariablesvariables

variables

If a declaration appears outside any function definition, that declaration introduces a
global variable. The scope of a global variable is the entire rest of the module in which it is
declared; its lifetime continues throughout the entire execution of a program. Global
variables are therefore able to store values that persist after the current function returns. In
this text, all global variables are marked with the keyword static to ensure that their use is
limited to a single module.
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initialization

Global variables can be initialized to contain specific data values at the time execution
begins. To initialize an atomic variable, the required syntax is

type name = initializer;

For variables of a compound type that have multiple components, you can initialize the
entire collection by enclosing a list of initializers within curly braces. If the compound type
contains several nested levels of data structure, you can use additional sets of curly braces
to specify the interior structures.

A.8A.8A.8
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Data

typestypestypes

types

Every value in C is associated with a data type, which is characterized by a domain of
values and a set of operations. These data types fall into two classes: atomic types, which
have no internal components, and compound type, which contain values of other types.

AtomicAtomicAtomic

Atomic

typestypestypes

types

The following atomic types are defined in C:

 Integers. The basic integer type is int, which corresponds to a singled integer. The
number of bits used to represent the integer differs from machine to machine, which in
turn affects how large a number fits in a value of type int. All ANSI-compatible
compilers must allow at least 16 bits for type int , which means that their range must
extend, at a minimum, form –32,768 to 32,767. So that the compiler can allocate more
or less space for an integer, the type int can be modified by the qualifiers long and short.
In addition, the integer types int , short, and long can be independently modified by
qualif ier signed or unsigned to indicate whether negative value are permitted. When
qualifiers are used, the type name int is usually omitted.

 Floating-point numbers. C defines three floating-point types: floa t, double , and long double.
The precision and storage requirements for these types depends on the compiler and
the underlying hardware. For most applications, using type double is sufficient.

 Characters. The type char is used to represent individual characters. Because values of
type char are defined to require one byte of storage, characters are the fundamental unit
for expressing the size of data values.

 Enumeration types. In addition to the built-in atomic types, C allows you to define
enumeration type whose value is a finite collection of name constants. The standard
syntax used in this text to introduce a new enumeration type is

typedef enum { list of elements } type name;

The genlib.h interface uses enumeration types to define the type bool , as follows:

typedef enum { FASLE, TURE } bool;

C9 Strings and Characters.doc


Each enumeration constant is assigned an integer value beginning at 0. Thus, in the
bool example, FALSE is represented internally as 0 and TRUE as 1.

ArraysArraysArrays

Arrays

An array is an ordered, homogenous collection of values stored in consecutive
memory locations. The standard syntax for declaring an array is

element type name[size ];

In this paradigm, element type indicates what type of value is stored in each element of the
array, name is the name of the array variable, and size indicates the number of elements to
allocate. If you are unsure of how many data values must be stored in an array, the usual
approach is to use a value for size that is larger than your application is likely to need and
then use only part of the allocated space. If you do so, you also need to declare an integer to
keep track of how many active elements the array contains at any given time. That integer
specifies the efficient size of the array, as opposed to its allocated size.

In an array, each element is identified by a numeric index. In C, index values for an
array always begin at 0. To select a specific element form an array, you use a selection
expression such as array[i], in which the name of the array is followed by an expression
enclosed in square brackets that indicates the desired index number.

PointersPointersPointers

Pointers

A pointer is the address of a data value. To declare a variable that can point to value of
a specific target type, C uses the following declaration form:

target type *name;

Syntactically, the asterisk is associated with the variable name and not with the type; if you
use the same declaration to introduce multiple pointer variables, you must mark each one
with an asterisk.

The fundamental operators on pointers are & and *. The & operator takes an lvalue and
returns a pointer to it; the * operator takes a pointer and returns the lvalue to which it points.
The operation of moving form a pointer to the lavlue to which it points is called
dereferencing the point.

The pointer value NULL is used to represent a pointer that does not point to any data.
The internal representation of NULL is guaranteed to be 0.

To support applications in which the target type of a pointer may not be known, C
defines the pointer type void * as the most general pointer type. Pointers of type void * can be
copied, compared, or converted to any specific pointer type, but they cannot be
dereferenced.

In C, pointers and arrays are closely related. Whenever the name of an array appears in
a C program, that expression is interpreted as a pointer to the initial element in the array.
For this reason, passing an array as an argument to a function has the effect of copying only
the pointier rather than the entire array. The implication of this design is that the elements



of an array declared as a formal parameter are shard with those of the calling array
argument. The fact that arrays are defined in terms of pointers also means that arrays can be
referenced using either array of pointer notation. Te selection expression a[i] is defined to be
equivalent to the pointer expression *(a + i). Note that the pointer calculation cannot use
simple addition but must instead take account of the size of the value. The C compiler
automatically produces the code necessary to perform the required scaling.

RecordsRecordsRecords

Records

In computer science, a collection of heterogeneous objects is called a record. The
individual components of a record are called fields. This text uses the traditional computer-
science terms for these concepts, although the terms structure and member are often used in
the C programming community.

Declaring a record variable is a two-step process. The first step is to define the record
type; the second is to declare variable as instances of that type. This text uses the following
syntax to define a new record type:

typdef struct {
field declarations

} new type name;

In this paradigm, field declarations are standard variable declarations that define the fields
of the record, and new type name indicates the name of the new record type. You can define
the type to be a pointer to a record instead by including an asterisk before new type name.

To select a field from a record, you use the . (dot) operator, which takes a record as its
left operand and a field name as its right operand. To select a filed given a point to a record,
you use the -> operator to combine the operations of dereferencing the pointer and
selecting the fields.

TheTheThe

The

typedefmechanismmechanismmechanism

mechanism

The keyword typedef is used to introduce names for new types in C. To use it, the first
step is to write a declaration for a variable of the type you want to name. That declaration
introduces a variable name. If you precede the declaration with the keyword typedef, that
name is instead defined as a new type. For example, the declaration

int *intptr;

defines intptr to be a variable of type point-to-int . If you instead write

typedef int *intptr;

the name intptr is defined to be the type pointer-to-int. This mechanism is used in the genlib.h

library to define the type string , as follows:

typedef char *string
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libraries

The sections that follow describe the ANSI library functions used in this text ,
organized according to interface.

TheTheThe

The

standardstandardstandard

standard

I/OI/OI/O

I/O

librarylibrarylibrary

library

(stdio.h)

The standard I/O library provides a standard set of functions for manipulating files
and performing input/output operations. The stdio.h interface is usually included in every .c
file.

FILEFILEFILE

FILE

*fopen*fopen*fopen

*fopen

(string(string(string

(string

filename,filename,filename,

filename,

stringstringstring

string

mode);mode);mode);

mode);

The function opens a file and returns a pointer associated with the file. The name of
the file is given by the string filename . The mode string specifies the type of data transmission
and is usually one of the following values:

“r” Open file for reading. The file must previously exist.
“w” Open file for writing. If the file exists, all previous contents are erased.
“a” Open file for appending. If the file exists, new output appears at the end.

If any errors occur (such as opening a file for reading that does not exits), fopen returns NULL.

voidvoidvoid

void

fclosefclosefclose

fclose

(FILE(FILE(FILE

(FILE

*fp);*fp);*fp);

*fp);

This function takes a file pointer originally generated by fopen and closes it.

intintint

int

get(FILEget(FILEget(FILE

get(FILE

*infile);*infile);*infile);

*infile);

intintint

int

getchar(void);getchar(void);getchar(void);

getchar(void);

The getc function reads and returns the next character from infile. The value returned is
an integer (rather than a character) so that the result type can include the special value EOF

used to indicate the end of the file. The getchar function works the same way except that it
always reads its input from the standard input file.

intintint

int

ungetc(charungetc(charungetc(char

ungetc(char

ch,ch,ch,

ch,

FilEFilEFilE

FilE

*ifile);*ifile);*ifile);

*ifile);

This function pushes the character ch back into the file stream indicated by infile so that
ch is read again by the next function that reads characters form the file. Only a single
character may be pushed back in this way.

intintint

int

putc(charputc(charputc(char

putc(char

ch,ch,ch,

ch,

FILEFILEFILE

FILE

*outfile);*outfile);*outfile);

*outfile);

intintint

int

putchar(charputchar(charputchar(char

putchar(char

ch);ch);ch);

ch);

The putc function writes the single character ch to the output file specified by outfile. The
puctchar function is similar except that it always writes the character to the standard output
file.

intintint

int

fgets(charfgets(charfgets(char

fgets(char

buffer[buffer[buffer[

buffer[

],],],

],

intintint

int

max,max,max,

max,

FILEFILEFILE
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*infile);*infile);*infile);

*infile);

This function reads a line of text from the input file and stores it into buffer , which must
be a character array allocated by the client. At most max characters are read using this
function, allowing the client to prevent buffer overflow. The newline character terminating
the line is stored as part of the buffer.
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fputs(stinrgfputs(stinrgfputs(stinrg

fputs(stinrg

s,s,s,

s,

FILEFILEFILE
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*outfile);*outfile);*outfile);

*outfile);

This function writes the string s to the file outfile.

voidvoidvoid

void

printf(stringprintf(stringprintf(string

printf(string

msg,msg,msg,

msg,

………

…

);););

);

voidvoidvoid

void

fprintf(FILEfprintf(FILEfprintf(FILE

fprintf(FILE

*outfile,*outfile,*outfile,

*outfile,

stringstringstring

string

msg,msg,msg,

msg,

………

…

);););

);

voidvoidvoid

void

sprintf(charsprintf(charsprintf(char

sprintf(char

buffer[buffer[buffer[

buffer[

],],],

],

stringstringstring

string

msg,msg,msg,

msg,

………

…

);););

);

The printf function displays the message msg on the standard output device, which is
usually the terminal screen; the fprintf and sprintf functions are similar to printf, except that the
output is directed to outfile or buffer, as appropriate. In any of the three forms, the characters in
msg are copied to the output stream. If a percent sign (%) appears in msg, it indicates that a
value is to be substituted in that position. The value is taken from the next unused argument
position, so that the substitutions appear in the same order in the string msg as the values
appear in the argument list. The characters following the percent sign specify a format code
tat controls how the value is displayed. An extensive discussion of format codes appears in
Chapter 3.

intintint

int

scanf(stringscanf(stringscanf(string

scanf(string

format,format,format,

format,

………

…

);););

);

intintint

int

fscanf(FILEfscanf(FILEfscanf(FILE

fscanf(FILE

*infile,*infile,*infile,

*infile,

stringstringstring

string

format,format,format,

format,

………

…

);););

);

intintint

int

sscanf(stringsscanf(stringsscanf(string

sscanf(string

s,s,s,

s,

stirngstirngstirng

stirng

format,format,format,

format,

………

…

);););

);

The scanf family of functions provides the standard mechanism used to read data in the
ANSI libraries; this text tends to use the simpler interface provided by the library simpio.h

The scanf function itself reads from standard input; the other two forms read data from the
file infile or the string s, as appropriate. The format argument specifies a control string that
specifies the type and conversion style of the value to be read. The value is stored into the
variable given as subsequent arguments to scanf, which must be preceded (except in the case
of character arrays, which are already pointer types) by an ampersand (&). The scanf

functions return the number of values successfully converted unless they are called at the
end of the input file, in which case they return the constant EOF.

intintint

int

remove(stringremove(stringremove(string

remove(string

filename);filename);filename);

filename);

This function deletes the file specified by filename . The function returns 0 if the deletion
operation succeeds and some nonzero value if it fails.

intintint

int

rename(stringrename(stringrename(string

rename(string

oldname,oldname,oldname,

oldname,

stringstringstring

string

newname);newname);newname);

newname);

This function renames an existing file. The function returns 0 if the renaming
operation succeeds and some nonzero value if it fails.

stringstringstring

string

tmpname(chartmpname(chartmpname(char

tmpname(char

*namebuf);*namebuf);*namebuf);

*namebuf);

This function generates a temporary file name. If the namebuf argument is not NULL, it
must point to a character array of sufficient size stored to hold the temporary file name; if
namebuf is NULL, the temporary name is stored in statically allocated memory within the stdio

implementation. In either case, the tmpname function returns the newly generated name.

TheTheThe

The

standardstandardstandard

standard

systemsystemsystem

system

librarylibrarylibrary

library

(stdlib.h)

The stdlib.h interface defines several general functions that do not fit well into other
classifications.



intintint

int

abs(intabs(intabs(int

abs(int

n)n)n)

n)

；

This function returns the absolute value of n.

intintint

int

rand(void);rand(void);rand(void);

rand(void);

This function returns a random number in the range 0 to RAND_MAX.

voidvoidvoid

void

srand(intsrand(intsrand(int

srand(int

seed);seed);seed);

seed);

This function sets the random number seed to the specified value.

voidvoidvoid

void

*malloc(int*malloc(int*malloc(int

*malloc(int

nBytes);nBytes);nBytes);

nBytes);

The malloc function allocates a block of memory large enough to hold the indicated
number of bytes (characters) and returns a pointer to the first address in that block. If no
memory is available, malloc returns NULL.

voidvoidvoid

void

free(voidfree(voidfree(void

free(void

*p);*p);*p);

*p);

This function frees the memory associated with the pointer p, which must have been
allocated using malloc .

TheTheThe

The

mathmathmath

math

librarylibrarylibrary

library

(math.h)

The math.h interface exports several mathematical functions. Even though the text use
only a few of these, this section lists the most common mathematical functions.

doubledoubledouble

double

fabs(doublefabs(doublefabs(double

fabs(double

x);x);x);

x);

This function returns the absolute value of a real number x.

doubledoubledouble

double

floor(doublefloor(doublefloor(double

floor(double

x);x);x);

x);

This function returns the floating-point representation of the largest integer less than or
equal to x.

doubledoubledouble

double

ceil(doubleceil(doubleceil(double

ceil(double

x);x);x);

x);

This function returns the floating-point representation of the smallest integer greater
than or equal to x.

doubledoubledouble

double

fmod(doublefmod(doublefmod(double

fmod(double

x,x,x,

x,

doubledoubledouble

double

y);y);y);

y);

This function returns the floating-point remainder of x / y.

doubledoubledouble

double

sqrt(doublesqrt(doublesqrt(double

sqrt(double

x);x);x);

x);

This function returns the square root of x.

doubledoubledouble

double

pow(doublepow(doublepow(double

pow(double

x,x,x,

x,

doubledoubledouble

double

y);y);y);

y);

This function returns xy.

doubledoubledouble

double

exp(doubleexp(doubleexp(double

exp(double

x);x);x);

x);

This function returns ex.

doubledoubledouble

double

log(doublelog(doublelog(double

log(double

x);x);x);

x);

This function returns the natural logarithm of x.

doubledoubledouble

double

sin(doublesin(doublesin(double

sin(double

theta);theta);theta);

theta);

This function returns the trigonometric sine of the angle theta, expressed in radians.



doubledoubledouble

double

cos(doublecos(doublecos(double

cos(double

theta);theta);theta);

theta);

This function returns the trigonometric cosine of the angle theta, expressed in radians.

doubledoubledouble

double

atan(doubleatan(doubleatan(double

atan(double

x);x);x);

x);

This function returns the trigonometric arctangent of the value x. The result is an angle
expressed in radians between –π/2 and +π/2.

int atan2(double y, double x);

This function returns the angle formed between the x-axis and the line extending from
the origin through the point (x, y). As with the other trigonometric functions, the angle is
expressed in radians.

TheTheThe

The

charactercharactercharacter

character

typetypetype

type

librarylibrarylibrary

library

(ctype.h)

This interface exports a set of extremely efficient functions for classifying different
character types1.

boolboolbool

bool

isalpha(charisalpha(charisalpha(char

isalpha(char

ch);ch);ch);

ch);

boolboolbool

bool

isupper(charisupper(charisupper(char

isupper(char

ch);ch);ch);

ch);

boolboolbool

bool

islower(charislower(charislower(char

islower(char

ch);ch);ch);

ch);

boolboolbool

bool

isdigit(charisdigit(charisdigit(char

isdigit(char

ch);ch);ch);

ch);

boolboolbool

bool

isalnum(charisalnum(charisalnum(char

isalnum(char

ch);ch);ch);

ch);

boolboolbool

bool

ispunct(charispunct(charispunct(char

ispunct(char

ch);ch);ch);

ch);

boolboolbool

bool

isspace(charisspace(charisspace(char

isspace(char

ch);ch);ch);

ch);

These functions return TRUE if the character ch is in the specified class, as follows:
isalpha Alphabetic characters
isupper Uppercase alphabetic characters
islower Lowercase alphabetic characters
isdigit Decimal digits
isalnum The union of alphabetic characters and digits
ispunct Punctuation characters
isspace White-space characters

charcharchar

char

toupper(chartoupper(chartoupper(char

toupper(char

ch);ch);ch);

ch);

charcharchar

char

tolower(chartolower(chartolower(char

tolower(char

ch);ch);ch);

ch);

If ch is a letter, these functions return that character converted to the specified case; if
not, these functions return the value of ch unchanged. The argument and result type of these
functions is int.

TheTheThe

The

ANSIANSIANSI

ANSI

stringstringstring

string

librarylibrarylibrary

library

(stirng.h)

This interface exports a collection of string functions. In contrast to the functions in
the strlib.h interface described in Appendix B, these functions require clients to perform their
own memory allocation.

1 Most of the functions in the ctype.h interface are actually defined to use type it so that these
functions can be called on the constant EOF. The prototypes shown here use type char to enhance
readability.



intintint

int

strlen(stringstrlen(stringstrlen(string

strlen(string

str)str)str)

str)

This function returns the length of the string, where the length is defined as the
number of characters in the string up to but not including the terminating null character.

intintint

int

strcmp(stringstrcmp(stringstrcmp(string

strcmp(string

s1,s1,s1,

s1,

stringstringstring

string

s2);s2);s2);

s2);

intintint

int

strncmp(stringstrncmp(stringstrncmp(string

strncmp(string

s1,s1,s1,

s1,

stringstringstring

string

s2);s2);s2);

s2);

The strcmp function compares the two strings s1 and s2 by comparing each character in
the string in turn. If s1 comes before s2 in the ASCII ordering sequence, strcmp returns a
negative number. If s1 comes after s2, strcmp returns a positive number. If the two strings are
the same, strcmp returns 0. The strcmp function is the same, except that the function compares
at most the first n characters of the two strings.

stringstringstring

string

strcpy(charstrcpy(charstrcpy(char

strcpy(char

dst[dst[dst[

dst[

],],],

],

stringstringstring

string

src);src);src);

src);

stringstringstring

string

strncpy(charstrncpy(charstrncpy(char

strncpy(char

dst[dst[dst[

dst[

],],],

],

stringstringstring

string

src,src,src,

src,

intintint

int

n);n);n);

n);

The strcpy function copies the characters from the original string src into the character
array specified by dst. A null character is written at the end of the destination string so that it
is properly terminated. It is the client’s responsibility to ensure that enough space is
allocated for the string and the terminating null character. The function returns the address
of the destination string, although clients usually ignore this result. This strncpy is similar,
except that it copies a maximum of n characters.

stringstringstring

string

strcatstrcatstrcat

strcat

(char(char(char

(char

dst[],dst[],dst[],

dst[],

strngstrngstrng

strng

src);src);src);

src);

stringstringstring

string

strncatstrncatstrncat

strncat

(char(char(char

(char

dst[],dst[],dst[],

dst[],

strngstrngstrng

strng

src,src,src,

src,

intintint

int

n);n);n);

n);

The strcat function copies the characters from the string src to the end of the string
stored in the character array specified by dst. The strnca t version copies at most n characters.

charcharchar

char

*strchr(string*strchr(string*strchr(string

*strchr(string

str,str,str,

str,

charcharchar

char

ch);ch);ch);

ch);

This function searches for the first occurrence of the character ch in the string str. If the
character is found, strchr returns a pointer to that character. If the character ch does not
appear in str, strchr returns NULL.

charcharchar

char

*strrchr(string*strrchr(string*strrchr(string

*strrchr(string

str,str,str,

str,

charcharchar

char

ch);ch);ch);

ch);

This function is similar to strchr , except that function looks for the last occurrence of
the ch in str.

charcharchar

char

*strstr(string*strstr(string*strstr(string

*strstr(string

s1,s1,s1,

s1,

stringstringstring

string

s2);s2);s2);

s2);

This function searches for the first occurrence of the string s2 in the string s1. If the
string is found, strs tr returns a pointer to the first character position at which the match
occurred. If s2 does not appear in s1, strs tr returns NULL.
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LibraryLibraryLibrary

Library

SourcesSourcesSources

Sources

TTT

T

his appendix contains the interfaces and implementations for the extended libraries used

in this text. These libraries are designed to be portable and may be used with any compiler that
conforms to theANSI standard.

The source code for these libraries—along with the code for all the program examples used in
this text—is available from Addison-Wesley through anonymous FTP (file transfer protocol). To
retrieve the source code, you need to execute the following steps:

1. Find a computer system that has access to the Internet.
2. Use the ftp program to connect to the host aw.com.
3. Login with the user name anonymous. When the system asks you for a

password, enter your e-mail address.
4. Connect to the directory aw.computer.science/Roberts.CS1.C (the

capitalization is important).
5. Retrieve files from this directory or its subdirectories, according to what

sources you need. For more information, please consult the README file in the
Roberts.CS1.C directory.

6. Disconnect from aw.com and quit the ftp program.

The commands necessary to perform each of these functions depend to some extent on
the ftp program you are using. If you are having difficulty following these instructions,
please ask your local system consultants for assistance. If you have no access to the Internet,
please write to

The Art & Science of C
Computer Science: Higher Ed Editorial
Addison-Wesley Publishing Company
One Jacob Way
Reading, MA 01867
U.S.A
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genlib.h

/*
* File: genlib.h
* -----------------
* This file contains several definitions that form the
* core of a gener al-purpose ANSI C library developed by Eric
* Rober ts. The goal of this library is to prov ide a basic
* set of tools and conventions that increase the readabili ty
* of C programs, particularly as they are used in a teaching
* environmen t.
*



* The basic definitions prov ided by genlib.h are:
* 1. Declarations for several new “primitive” types
* (most importantly bool and string) that are
* used throughou t the other libraries and
* applica tions as fundamental types.
* 2. A new set of functions for memory allocation.
* 3. A function for error handling.
*
*/

#ifnde f _genlib_h
#fdefine _genlib_h

#include <stdio.h>
#include <stdlib.h>
#include <stdde f.h>

/* Section 1 – Define new “primitive” types */

/*
* Type: bool
* --------------
* This type has two values, FALSEand TRUE, which are equal to 0
* and 1, respectively. Most of the advantage of defining this type
* comes from readabili ty because it allows the programmer to
* prov ide documen tation that a variable will take on only one of
* these two values. Designing a portable represen tation, however,
* is surprisingly hard , because many libraries and some compilers
* define these names. The definitions are usually compatible but
* may still be flagged as errors.
*/

#ifdef THINK_C
typedef int bool;

#else
# ifde f TRUE
# ifnde f bool
# define bool int
# endif
# else
# ifde f bool
# define FALSE0
# define TRUE 1
# else

typedef enum {FALSE, TRUE} bool;
# endif
# endif
#endif

/*
* Type: string
* ----------------
* The type string is identical to the type char *, which is
* tradi tionally used in C programs. The main point of defining a
* new type is to improve program readabili ty . At the abstraction
* levels at which the type string is used, it is usually not
* important to take the string apart into its componen t characters.
* Declaring it as a string emphasizes this atomictiy .
*/

typedef char *string;

/*
* Constant: UNDEFINED
* -------------------------------
* Besides NULL, the only other constant of pointer type is
* UNDEFINED, which is used in certain packages as a special



* sentinel to indicate an unde fined pointer value. In many
* such contexts, NULL is a legitima te data value and is
* therefore inappr opriate as a sentinel.
*/

#define UNDEFINED ((void *) under fined_object)

extern char unde fined_object[ ];

/* Section 2 – Memory allocation */

/*
* General notes:
* -------------------
* These functions prov ide a common interface for memory
* allocation. All functions in the library that allocate
* memory do so using GetBlock and FreeBlock. Even though
* the ANSI standard defines malloc and free for the same
* purpose, using GetBlock and FreeBlock prov ides greater
* compatibil i ty with non-ANSI implementations, automa tic
* out-of-memory error detection, and the possibili ty of
* substituting a garbage-collecting allocate.
*/

/*
* Function: GetBlock
* Usage: ptr = (type) GetBlock(nbytes);
* -------------------------------------------------
* GetBlock allocates a block of memory of the given size. If
* no memory is available, GetBlock gener ates and error.
*/

void *GetBlock( size_t nbytes);

/*
* Function: FreeBlock
* Usage: FreeBlock(ptr);
* ------------------------------
* FreeBlock frees the memory associated with ptr, which must
* have been allocated using GetBlock, New, or NewArray.
*/

void FreeBlock(void *ptr);

/*
* Macro: New
* Usage: p = New(pointer-type);
* ----------------------------------------
* The New pseudo func tion allocates enough space to hold an
* object of the type to which pointer-type points and returns
* a pointer to the newly allocated pointer. Note that
* “New” is differen t from the “new” operator used in C++;
* the former takes a pointer type and the latter takes the
* target type.
*/

#define New(type) ((type) GetBlock(sizeo f *((type)NULL)))

/*
* Macro: NewArray
* Usage: p = NewArray(n, elemen t-type);
* ----------------------------------------------------
* NewArray allocates enough space to hold an array of n
* values of the specified elemen t type.
*/

#define NewArray(n, type) ((type *) GetBlock((n) *sizeof(type)))



/*

* Section 3 – Basic error handling */

/*
* Function: Error
* Usage: Error(msg, …)
* ------------------------------
* Error gener ates an error string, expanding % constructions
* appearing in the error message string just as printf does.
* After printing the error message, the program termina tes.
*/

void Error (string msg, …);

#endif
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genlib.c

/*
* File: genlib.c
* ----------------
* This file implements the gener al C library package. See the
* interface description in genlib.h for details.
*/

#include <stdio.h>
#include <stdde f.h>
#include <string.h>
#include <stdarg.h>

#include “genlib.h ”

/*
* Constants:
* --------------
* ErrorExitStatus – Status value used in ex it call
*/

#define ErrorExitStatus 1

/* Section 1 -- Define new “primitive” types */

/*
* Constant: UNDEFINED
* -------------------------------
* This entry defines the target of the UNDEFINED constant.
*/

char unde fined_object[ ] = “UNDEFINED”

/* Section 2 -- Memory allocation */

void *GetBlock(size_ t nbytes)
{

void *result;

result = malloc(nbytes);
if (result == NULL) Error(“Nomemory available ”);
return (result);

}

/* Section 3 -- Basic error handling */

void Error(s tring msg, …)
{



va_lis t args;

va_start(args, msg);
fprintf(s tderr, “Error: “);
v fprintf(stderr, msg, args);
fprintf(s tderr, “ \n”);
va_end(args);
ex it(ErrorExitStatus);

}
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simpio.h

/*
* File: simpio.h
* ------------------
* This interface prov ides access to a simple package of
* functions that simplify the reading of input data.
*/

#ifnde f _simpio_h
#define _simpio_h

#include “genlib.h ”

/*
* Function: GetInteger
* Usage: i = GetInteger();
* -------------------------------
* GetInteger reads a line of text from standard input and scans
* it as an integer. The integer value is returned. If an
* integer canno t be scanned or if more characters follow the
* nubmer, the user is given a chance to retry .
*/

int GetInteger(void);

/*
* Functions: GetLong
* Usage: l = GetLong();
* ----------------------------
* GetLong reads a line of text from standard input and scans
* it as a long integer. The value is returned as a long.
* If an integer canno t be scanned or if more characters follow
* the number, the user is given a chance to retry .
*/

long GetLong(void);

/*
* Function: GetReal
* Usage: x = GetReal( );
* -----------------------------
* GetReal reads a line of text from standard input and scans
* it as a double. If the number canno t be scanned or if extra
* characters follow after the number ends, the user is given
* a chance to reenter the value.
*/

double GetReal(void);

/*
* Function: GetLine
* Usage: s = GetLine();
* ----------------------------
* GetLine reads a line of text from standard input and returns
* the line as a stirng. The newline character that termina tes
* the input is not stored as part of the staring.



*/

string GetLine(void);

/*
* Function: ReadLine
* Usage: s = ReadLine( infile);
* -------------------------------------
* ReadLine reads a line of text from the input file and
* returns the line as a string. The newline character
* that termina tes the input is not stored as part of the
* string. The ReadLine function returns NULL if infile
* is at the end-of-file position.
*/

string ReadLine(FILE *infile);

#endif
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simpio.c

/*
* File: simpio.c
* -----------------
* This file implements the siimpio.h interface.
*/

#include <stdio.h>
#include <string.h>
#include “genlib.h ”
#include “strlib.h ”
#include “sinpio.h ”

/*
* Constants:
* --------------
* InitialiBu fferSize -- Initial buffer size for ReadLine
*/

#define InitialBu fferSize 120

/* Exported entries */

/*
* Functions: GetInteger, GetLOng, GetReal
* --------------------------------------------------------
* These functions firs t read a line and then call sscanf to
* translate the number. Reading an entire line is essential to
* good error recovery, because the characters after the point of
* error would otherwise remain in the input buffer and confuse
* subsequen t input operations. The sscanf line allows white space
* before and after the number but no other extraneous characters.
*/

int GetInteger(void)
{

string line;
int value;
char termch;

while (TRUE) {
line = GetLine();
switch (sscanf(line, “ %d%c”, &value, &termch)) {

case 1:
FreeBlock(line);
return (value);



case 2:
printf(“Unexpected character: ‘%c’\n” , termch);
break;

defaul t:
printf(“Please enter an integer\n”);
break;

}
FreeBlock(line);
printf(“Retry : “ );

}
}

long GetLong(void)
{

string line;
long value;
char termch;

while (TRUE) {
line = GetLine();
switch (sscanf(line, “ % ld %c”, &value, &termch)) {

case 1:
FreeBlock(line);
return (value);

case 2:
printf(“Unexpected character: ‘%c’\n” , termch);
break;

defaul t:
printf(“Please enter an integer\n”);
break;

}
FreeBlock(line);
printf(“Retry :

}
}

double GetReal(void)
{

string line;
double value;
char termch;

while (TRUE) {
line = GetLie();
switch (sscanf(line, “ % lf%c”, &value, &termch)) {

case 1:
FreeBlock(line);
return (value);

case 2:
printf(“Unexpected character: ‘%c’\n” , termch);
break;

defaul t:
printf(“Please enter a real number\n”);
break;

}
FreeBlock(line);
printf(“Retry : “ );

}
}

/*
* Function: GetLine
* ------------------------
* This function is a simple wrapper; all the work is done by
* ReadLine.
*/



string GetLine(void)
{

return(ReadLine(stdin);
}

/*
* Function: ReadLine
* --------------------------
* This function operates by reading characters form the file
* into a dynamically allocated buffer. If the buffer becomes
* full before the end of the line is reached, a new buffer
* twice the size of the prev ious one is allocated.
*/

string ReadLine(FILE *infile)
{

string line, nline;
int n, ch, size;

n = 0;
size = InitialBu fferSize;
line = GetBlock(size + 1);
while ((ch = getc(infile)) != ‘\n’ && ch != EOF) {

if (n == size) {
size *= 2;
nline = (string) GetBlock(size + 1);
strncpy(nline, line, n);
FreeBlock(line);
line = nline;

}
line[n++] = ch;

}
if (n == 0 &&ch == EOF) {

FreeBlock(line);
return (NULL);

}
line[n] = ‘ \0’;
nline = (string) GetBlock(n + 1);
strcpy(nline, line);
FreeBlcock(line);
return (nline);

}
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strlib.h

/*
* File: strlib.h
* ---------------
* The strlib.h file defines the interface for a simple
* string library . In the context of this package, strings
* are consider ed to be an abstract data type, which means
* that the client relies only on the operations defined for
* the type and not on the underly ing represen tation.
*/

/*
* Cautionary note:
* ---------------------
* Although this interface prov ides an extremely convenien t
* abstraction for working with strings, it is not appropriate
* for all applica tions. In this interface, the functions that
* return string values (such as Concat and SubString) do so
* by allocating new memory. Over time, a program that uses
* this package will consume increasing amoun ts of memory
* and eventually exhaust the available supply . If you are
* writing a program that runs for a short time and stops,



* the fact that the package consumes memory is not a problem.
* If, however, you are writing an applica tion that must run
* for an extended period of time, using this package requir es
* that you make some prov ision for freeing any allocated
* storage.
*/

#infde f _strlib_h
#define_strlib_h

#include “genlib.h ”

/* Section 1 -- Basic string operations */

/*
* Function: Concat
* Usage: s = Concat(s1, s2);
* -----------------------------------
* This function concatena tes two strings by joining them end
* to end. For example, Concat( “ABC”, “DE”) returns the string
* “ABCDE”.
*/

string Concat(s tring s1, string s2);

/*
* Funciton: IthChar
* Usage: ch = IthChar(s, i);
* ---------------------------------
* This function returns the character at position i in the
* string s. It is included in the library to make the type
* string a true abstract type in the sense that all of the
* necessary operations can be invoked using functions. Calling
* IthChar(s, i) is like selecting s[i], except that IthChar
* checks to see if i is within the range of legal index
* positions, which extend from 0 to StringLength(s).
* IthChar(s, StringLength(s)) returns the null character
* at the end of the string.
*/

char IthChar(string s, int i);

/*
* Function: SubString
* Usage: t = SubString(s, p1, p2);
* ------------------------------------------
* SubString returns a copy of the substring of s consis ting
* of the characters between index positions p1 and p2,
* inclusive. The following special cases apply :
*
* 1. If p1 is less than 0, it is assumed o be 0.
* 2. If p2 is greater than the index of the last string
* position, which is StringLength(s) –1, then p2 is
* set equal to StringLength(s) –1.
* 3. If p2 < p1, SubString returns the empty string.
*/

string SubString(string s, int p1, int p2);

/*
* Function: CharToString
* Usage: s = CharToString(ch);
* ---------------------------------------
* This function takes a single character and returns a
* one-character string consis ting of that character. The
* CharToString function is useful, for example, if you
* need to concatena te a string and a character. Since



* Concat requir es two strings, you must firs t convert
* the character into a string.
*/

string CharToString(char ch);

/*
* Function: StringLength
* Usage: len = StringLength(s);
* ---------------------------------------
* This function returns the length of s.
*/

int StringLength(string s);

/*
* Function: CopyString
* Usage: newstr = CopyString(s);
* -----------------------------------------
* CopyStirng copies the string s into dynamically allocated
* storage and returns the new string. This function is not
* ordinarily requir ed if this package is used on its own,
* but is often necessary when you are working with more than
* one string package.
*/

string CopyString(string s);

/* Section 2 -- String comparison functions */

/*
* Function: StringEqual
* Usge: if (StringEqual(s1, s2))…
* -----------------------------------------
* This function returns TRUE if the string s1 and s2 are
* equal. For the strings to be consider ed equal, every
* character in one string must precisely match the
* corresponding character in the other. Uppercase and
* lowercase characters are consider ed to be differen t.
*/

bool StringEqual(s tring s1, stirng s2);

/*
* Function: StringCompare
* Usage: if (StringCompare(s1, s2) < 0) …
* ------------------------------------------------------
* This function returns a number less than 0 if string s1
* comes before s2 in alphabe tical order, 0 if they are equal,
* and a number greater than 0 if s 1 comes after s2, The
* ordering is determined by the internal represen tation used
* for characters, which is usually ASCII.
*/

int StringCompare(stirng s1, string s2);

/* Section 3 -- Search function */

/*
* Function: FindChar
* Usage: p = FindChar(ch, text, strart);
* ------------------------------------------------
* Beginning at position start in the string text, this
* function searches for the character ch and returns the
* firs t index at which it appears of –1 if no match is
* found.
*/



int FindChar(char ch, string text, int start);

/*
* Function: FindString
* Usage: p = FindString(str, text, start);
* -------------------------------------------------
* Beginning at position start in the string text, this
* function searches for the string str and returns the
* firs t index at which it appears or –1 if no match is
* found.
*/

int FindString(string str, string text, int start);

/* Section 4 -- Case-conversion functions */

/*
* Function: ConvertToLowerCase
* Usage: s = ConvertToLowerCase(s);
* -------------------------------------------------
* This function returns a new string with all
* alphabe tic characters converted to lower case.
*/

string ConvertToLowerCase(string s);

/* Section 5 -- Functions for converting numbers to strings */

/*
* Function: Integer ToString
* Usage: s = Integer ToString( n);
* -----------------------------------------
* This function converts an integer into the corresponding
* string of digits. For example, Integer ToString( 123)
* returns “123 ” as a string.
*/

string Integer ToString(int n);

/*
* Function: StringToInteger
* Usage: n = StringToInteger( n);
* ----------------------------------------
* This function converts a string of digits into an integer.
* If the string is not a legal integer or contains extraneous
* characters, StringToInteger signals an error condition.
*/

int StringToInteger(s tring s);

/*
* Function: RealToString
* Usage: s = RealToString(d)
* ------------------------------------
* This function converts a floa ting-point number into the
* corresponding string form. For example, calling
* RealToString(23.45) returns “23.45”. The conversion is
* the same as that used for “%G” format in printf.
*/

string RealToString(double d);

/*
* Function: StringToReal
* Usage: d = StringToReal(s);
* -------------------------------------



* This function converts a string represen ting a real number
* into its corresponding value. If the string is not a
* legal floa ting-point number or if it contains extraneous
* characters, StringToReal signals an error condition.
*/

double StringToReal(string s)

#endif
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strlib.c

/*
* File: strlib.c
* ---------------
* This file implements the strlib interface
*/

/*
* General implementation notes:
* ----------------------------------------
* This module implements the strlib library by mapping all
* functions into the appropriate calls to the ANSI <string.h>
* interface. The implementations of the indiv idual functions
* are all quite simple and do not requir e indiv idual comments.
* For descrip tions of the behavior of each function, see the
* interface.
*/

#include <stdio.h>
#include <string.h>
#include <ctype.h>

#include “genlib.h ”
#include “strlib.h ”

/*
* Constant: MaxDigits
* --------------------------
* This constant must be larger than the maximum
* number of digits that can appear in a number.
*/

#define MaxDigits 30

/* Private function prototypes */

static string CreateString( int len);

/* Section 1 -- Basic string operations */

string Concat(s tring s1, string s2)
{

string s;
int len1, len2;

if (s1 == NULL || s2 == NULL) {
Error(“NULL string passed to Concat ”);

}
len1 = strlen(s1);
len2 = strlen(s2);
s = CreateString( len1 + len2);
strcpy(s, s1);
strcpy(s + len1, s2);
return(s);

}



char IthChar(stirng s, int i)
{

int len;

if (s == NULL) Error(“NULL string passed to IthChar”);
len = strlen(s);
if (ii < 0 || i >len) {

Error(“Index outside of string range in IthChar”);
}
returns(s[i]);

}

string SubString(string s, int p1, int p2)
{

int len;
string result;

if (s == NULL) Error(“NULL string passed to SubString ”);
len = strlen(s);
if (p1 < 0) p1 = 0;
if p2 >= len) p2 = len –1;
len = p2 – p1 + 1;
if (len < 0) len = 0;
result = CreateStirng(len);
strncpy(result, s + p1, len);
result[len] = ‘\0’;
return (result);

}

string CharToStirng (char ch)
{

string result;

result = CreateString (1);
result[0] = ch;
result[1] = ‘\0’;
return (result);

}

int StringLength (string s)
{

if (s == NULL) Error(“NULL string passed to StringLength”);
return (strlen (s));

}

string CopyString(string s)
{

string newstr;

if (s == NULL) Error(“NULL string passed to CopyString”);
newstr = CreateStrng(strlen(s));
strcpy(newstr, s);
return (newstr);

}

/* Section 2 -- String comparison functions */

bool StringEqual(s tring s1, string s2)
{

if (s1 == NULL || s2 == NULL) {
Error(“NULL string passed to StringEqual ” );

}
return (strcmp(s1, s2) == 0);

}

int StringCompare (string s1, string s2)
{



if (s1 = NULL || s2 = NULL) {
Error(“NULL string passed to StringCompare ”);

}
return (strcmp (s1, s2));

}

/* Section 3 – Search function */

int FindChar(char ch, string text, int start)
{

char *cptr;

if (text == NULL) Error(“NULL string passed to FindChar ”);
if (start < 0) start = 0;
if (start > strlen( text)) return (-1);
cptr = strchr( text + start, ch);
if (cptr == NULL) return (-1);
return ((int) (cptr – text));

}

int FindString(string str, string text, int start)
{

char *cptr;

if (str == NULL) Error(“NULL pattern string in FindString ”);
if (text == NULL) Error(“NULL text string in FindString ”);
if (start < 0 start = 0;
if (start > strlen( text)) return (-1);
cptr = strs tr(text + start, str);
if (cptr == NULL) return (-1);
return ((int) (cptr – text));

}

/* Section 4 -- Case-conversion functions */

string ConvertToLowerCase(stirng s)
{

strin result;
int i;

if (s == NULL) {
Error(“NULL string passed to ConvertToLowerCase”);

}
result = CreateString(strlen(s));
for (i = 0; s[i] != ‘ \0’; i++) result[i] = tolower(s[i]);
result[i] = ‘\0’ ;
return (result);

}

string ConvertToUpperCase(string s)
{

strin result;
int i;

if (s == NULL) {
Error(“NULL string passed to ConvertToUpperCase ”);

}
result = CreateString(strlen(s));
for (i = 0; s[i] != ‘ \0’; i++) result[i] = toupper(s[i]);
result[i] = ‘\0’ ;
return (result);

}

/* Section 5 -- Functions for converting numbers to strings */

string Integer ToString(int n)



{
char buffer[MaxDigits];

sprintf(buffer, “%d”, n);
return (CopyString( buffer));

}

int StringToInteger(s tring s)
{

int result;
char dummy;

if (s = NULL) {
Error(“NULL string passed to StringToInteger ”);

}
if (sscanf(s, “ %d%c”, &result, &dummy) != 1) {

Error(“StringToInteger called on illegal number %s”, s);
}
return (result);

}

string RealToString(double d)
{

char buffer[MaxDigits];

sprintf(buffer, “%G”, d);
return (CopyStirng( buffer));

}

double StringToReal(stirng s)
{

double result;
char dummy;

if (s == NULL) Error(“NULL string passed to StrinToReal” );
if (sscanf(s, “ % lg %c”, &result, &dummy) != 1) {

Error(“StringToReal called on illegal number %s”, s);
}
return (result);

}

/* Private functions */

/*
* Function: CreateString
* Usage: s = CreateString(len);
* ---------------------------------------
* This function dynamically allocates space for a string of
* len characters, leav ing room for the null character at the
* end.
*/

static string CreateString (int len)
{

return ((string) GetBlock(len + 1));
}
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random.h

/*
* File: random.h
* -------------------
* Library package to produce pseudo-random numbers.
*/

#ifnde f _ramdom_h
#define _ramdom_h



#include “genlib.h ”

/*
* Function: Randomize
* Usage: Randomize();
* ----------------------------
* This function sets the random seed so that the random sequence
* is unpredic table. During the debugging phase, it is best not
* to call this function, so that program behavior is repea table.
*/

void Randomize(void);

/*
* Function: RandomIn teger
* Usage: n = RandomIn teger(low, high);
* ---------------------------------------------------
* This function returns a random integer in the range low to high,
* inclusive.
*/

int RandomIn teger(int low, int high);

/*
* Function: RandomR eal
* Usage: d = RandomR eal(low, high);
* -----------------------------------------------
* This function returns a random real number in the half-open
* interval [low..high], meaning that the result is always
* greater than or equal to low but stric tly less than high.
*/

double RandomR eal(double low, double high);

/*
* Function: RandomChance
* Usage: if (RandomChance(p))…
* -------------------------------------------
* The RandomChance function returns TRUE with the probabili ty
* indicated by p, which should be a floa ting-point number between
* 0 (meaning never) and 1 (meaning always). For example, calling
* RandomChance(.30) returns TRUE 30 percen t of the time.
*/

bool RandomChance( double p);

#endif
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random.c

/*
* File: random.c
* Implemen ts the random.h interface.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include “genlib.h ”
#include “random.h”

/*
* Function: Randomize
* ----------------------------
* This function operates by setting the random number



* seed to the curren t time. The srand function is
* prov ided by the <stdlib.h> library and requir es an
* integer argumen t. The time function is prov ided
* by <time.h>.
*/

void Randomize(void)
{

srand((in t)time(NULL));
}

/*
* Function: RandomIn teger
* ----------------------------------
* This function firs t obtains a random integer in
* the range [0..RAND_MAX] by apply ing four steps:
* (1) Generate a real number between 0 and 1.
* (2) Scale it to the appropriate range size.
* (3) Truncate the value to an integer.
* (4) Transla te it to the appropriate starting point.
*/

int RandomIn teger(it low, int high)
{

int k;
double d;

d = (double) rand() / ((double) RAND_MAX+ 1);
k = (int) (d * (high – low + 1));
return (low + k);

}

/*
* Functio: RandomR eal
* -----------------------------
* The implementation of RandomR eal is similar to that
* of RandomIn teger, without the trunca tion step.
*/

double RandomR eal(double low, double high)
{

double d;

d = (double) rand() / ((double) RAND_MAX+ 1);
return (low + d * (high – low);

}

/*
* Function: RandomChance
* -----------------------------------
* This function uses RandomR eal to gener ate a number
* between 0 and 100, which it then compares to p.
*/

bool RandomChance( doubel p)
{

return (RandomReal(0, 1) < p);
}
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