TRANSFORMATION,

Chapter 4

ANIMATION AND

164

VIEWING

(a) 0°, —90°, 0° (one possible answer)

We'll see more of Euler angles when we discuss animating the orientation
of rigid objects in Chapter 6.

4.6.4 Viewing Transformation and Collision Detection
in Animation

Our next program makes use of viewing transformations to simulate a moving
camera in an animated environment. It also has another aspect of interest,
particularly to those programming interactive applications such as games,
namely, collision detection.

o' spaceTravelcpp

Figure 4.51: Screenshot of spaceTravel.cpp.

Experiment 4.31. Run spaceTravel.cpp. The left viewport shows a
global view from a fixed camera of a conical spacecraft and 40 stationary
spherical asteroids arranged in a 5 x 8 grid. The right viewport shows
the view from a front-facing camera attached to the tip of the craft. See
Figure 4.51 for a screenshot of the program.

Press the up and down arrow keys to move the craft forward and backward
and the left and right arrow keys to turn it. Approximate collision detection
is implemented to prevent the craft from crashing into an asteroid.

The asteroid grid can be changed in size by redefining ROWS and COLUMNS.
The probability that a particular row-column slot is filled is specified as a
percentage by FILL PROBABILITY — a value less than 100 leads to a non-
uniform distribution of asteroids. End

We'll discuss next the two most interesting aspects of spaceTravel. cpp:
(a) the viewing transformation that defines the scene in the right viewport
and (b) collision detection.

Viewing Transformation

The shape of the craft is defined by the glutWireCone(5.0, 10.0, 10,
10) statement; precisely, it is a cone of base radius 5 and height 10. The
configuration of the spacecraft is specified by the values of zVal, zVal and
angle, all three global variables of spaceTravel.cpp. Figure 4.52(a) is a
generic configuration in section along the xz-plane. The coordinates of the
center of the craft’s base are (xVal,0, 2V al), while the angle its axis makes
with the negative z-direction is angle. The middle A of the craft’s axis will
be of use in collision detection.

center 1

eye

S
(xVal, 0, zVal)

=<V

(b)

Figure 4.52: Spacecraft diagrams.

The camera for the right viewport is situated at the tip of the craft
pointing straight ahead. It’s straightforward trigonometry, now, to calculate
the coordinates of eye, i.e., the tip of the craft, and of an imaginary point
center to which it points, located 1 unit ahead of the tip:

eye = (xVal—10sin(angle), 0, zVal — 10 cos(angle))
center = (aVal — 1lsin(angle), 0, zVal — 11 cos(angle))

These equations for eye and center explain the parameters of the gluLook—
At () command for the right viewport.

Collision Detection

Collision detection as implemented in spaceTravel.cpp is simple though
approximate. The spacecraft is enclosed in an imaginary bounding sphere S
centered at the middle A of the cone’s axis, with radius equal to the distance
|AC| from A to a point C' on the boundary of its base. See Figure 4.52(b).

If B is the center of the base, then it follows from the dimensions of the
cone that |AB| = |BC| = 5; therefore,

|AC| = \/|AB|? + |[BC|? = v/50 = 7.071...

Section 4.6
VIEWING
TRANSFORMATION

165

Chapter 4 Accordingly, we specify the radius of S to be 7.072 (slightly larger, in
TrANSFORMATION, fact, than |AC|). The coordinates of the center A of S are obtained by
ANIMATION AND trigonometry from Figure 4.52(a):

VIEWING
A = (2Val — 5sin(angle), 0, zVal — 5 cos(angle))

To detect collision between the spacecraft and an asteroid T', we detect
instead collision between the craft’s bounding sphere S and T It’s easy to
determine if there is a collision between the two spheres .S and T: compare
the distance d between their centers with the sum r; + ro of their radii;
there is collision if d < ry 4+ 73 (e.g., as in Figure 4.52(c)), and not otherwise.
This check is implemented in the routine checkSphereCollision(). This
collision-detection test is approximate, in fact, conservative, as the craft’s
bounding sphere may intersect an asteroid even if the craft itself doesn’t (as
shown in Figure 4.52(c)).

The up and down arrow keys are programmed to move the craft a distance
of 1 in either direction along its axis, and the left and right arrows to turn
the craft an angle of 5°, only if there’ll not be a collision with an asteroid in
the new position (according to the conservative test above).

Exercise 4.55. (Programming) Modify spaceTravel.cpp as follows:

(a) Make the left viewport the view from the front of the spacecraft
(currently, it is the right viewport).

(b) Make one of the asteroids the “big golden asteroid” by drawing it
larger than the others and painting it suitably. Make it glow as well
by oscillating the intensity of its color.

(c) Place a camera on the golden asteroid whose location is fixed but
which rotates to track the spacecraft, i.e., its direction is pointed
always toward the craft. Attach a tall antenna to the craft so that,
even if it’s obscured by other asteroids, at least the antenna will be
visible from the big golden asteroid. Show the view from the golden
asteroid’s camera in the right viewport.

(d) When the spacecraft reaches the big golden asteroid, flash the text
“You have found gold!”.

Exercise 4.56. (Programming) Modify spaceTravel.cpp as follows:

(a) All the asteroids are currently colored spheres. Make them more
interesting by using a few different FreeGLUT objects, e.g., cube,
tetrahedron, octahedron, etc. You can also combine more than one
object, e.g., one sphere on top of another, or design your own.

(b) Currently, the spacecraft moves interactively. Change this to program
166 an automated tour which takes a fixed but zig-zag path through the

asteroids and returns to the start position. Plan a path so that the Section 4.6
craft comes close to a few interesting asteroids, visible in the right vipwing
viewport. Pressing space should start/stop the movement. TRANSFORMATION

(¢) Currently, the camera on the craft always points straight ahead.
Program occasional rotation of the camera, e.g., when the craft passes
a strange asteroid, pan the camera to keep it in view.

Exercise 4.57. (Programming) Place a camera on top of the rolling
ball of Exercise 4.27, pointing always down the plane. This camera does not moving &
rotate with the ball, but stays always at the top, so its motion is entirely camerg
linear. (How would you even install such a camera in real life? Well, that is fixed
a great thing about CG: you are entirely free from real-life constraints!) camerg

Place a box just beyond the bottom of the plane so that the ball’s camera
sees an approaching object. Place an additional fixed camera on the box
pointing at the plane to observe the ball. See Figure 4.53. Give a split-screen
view as in spaceTravel.cpp.

The following experiment is to whet your appetite for the topic of Figure 4.53: Ball rolling
frustum culling, critical to the efficient rendering of complex scenes with toward a box.
large numbers of objects.

Experiment 4.32. Run spaceTravel.cpp with ROWS and COLUMNS both
increased to 100. The spacecraft now begins to respond so slowly to key input
that its movement seems clunky, unless, of course, you have a super-fast
computer (in which case, increase the values of ROWS and COLUMNS even
more). Ena

The reason for the degradation in the preceding experiment is that, every
time an arrow key is pressed, OpenGL processes 10,000 asteroids, which is
an enormous amount of computing. However, of these 10,000 only a few
(about 100, or 1%) are ultimately rendered, as you can roughly count on the
screen! The rest, of course, are outside the viewing frustum and clipped.
Unfortunately, by the time the decision to clip is made in the graphics
pipeline, a large amount of computation has already been invested. Frustum
culling is a technique to reduce this burden on OpenGL, whereby the
programmer leverages her knowledge of the scene to pre-filter objects lying
beyond the viewing frustum, not letting them into the pipeline at all.
We’ll discuss frustum culling in detail in Section 6.1. There’s really not
much more by way of prerequisites needed to read that particular section
though, so if you’re anxious to learn this technique, which is so important
in coding busy games and movies, feel free to jump right there.
We are not done yet with animation, though, and have a bunch more -
fun code for you. 167

Chapter 4
TRANSFORMATION,
ANIMATION AND
VIEWING

Figure 4.54: Screenshot
of animateMan1i. cpp.

Figure 4.55: Screenshot
of animateMan1.cpp in
develop mode.

168

4.7 More Animation Code

4.7.1 Animating an Articulated Figure

Our next project is a “studio” to develop animation sequences for an
articulated figure.

Experiment 4.33. Run animateManl.cpp. This is a fairly complex
program to develop a sequence of key frames for a man-like figure, which
can subsequently be animated. In addition to its spherical head, the figure
consists of nine box-like body parts which can rotate about their joints. See
Figure 4.54. All parts are wireframe. We'll explain the program next. End

It’s advisable to learn to use the program before studying the code. There
are two modes, develop and animate, and the program starts in the develop
mode with the man facing you with his currently highlighted part, the torso,
colored red. The rest of the body is black. Press the space bar to cycle
through the man’s movable parts, successively highlighting each. There are
nine movable parts, all OpenGL wire cubes: the torso, the upper and lower
arms on either side, and the upper and lower legs on either side.

Rotate the currently highlighted part by pressing the page-up and page-
down keys. To move the man as a whole press the left /right and up/down
arrow keys. The angles at which the 9 movable parts are currently rotated,
as well as the vertical and horizontal translational components of the man
as a whole, are shown as text data in the window in develop mode.

While arranging the man into a desired configuration, you can rotate
your own viewpoint by pressing ‘r/R’, or zoom in and out pressing ‘z/Z’.

Once the first configuration is completed to your satisfaction, press ‘n’.
This creates a new configuration which cannot be seen immediately as it’s
a copy of the previous one. Press, say, the right arrow key to separate the
new configuration from the previous one. The (current) new configuration
is bright, while the other(s) are ghosted. Again, use the space key to select
a part, the page-up and page-down keys to rotate that part, and the arrow
keys to move the entire configuration until it is arranged suitably.

Press ‘n’ to create new configurations until the key frames sequence is
complete. Figure 4.55 shows a screenshot part way through the develop
mode. You can edit the sequence at any time as follows.

Press the tab key to cycle through the sequence of configurations — the
currently selected configuration is bright, while the rest ghosted. Press
backspace to reset the currently selected configuration, delete to remove it
altogether, or you can rearrange it using keys as already described.

When the key frames sequence is complete, pressing ‘a’ begins an
animation which cycles through the programmer-created configurations.
Pressing the up or down arrow keys speeds up or slows down the animation.
Pressing ‘a’ again returns the program to develop mode.

Switching to animation mode also causes the program to write out to
the file animateManDataOut.txt successive configurations of the animation

sequence, stored currently in the vector manVector. Configuration are stored Section 4.7

in successive lines of animateManDataOut . txt, each consisting of 11 floating Morr ANIMATION
point values — partAngles[0]-[8], upMove and forwardMove — the same (Copp

as are displayed on the screen in develop mode.

Experiment 4.34. Run animateMan2.cpp. This is simply a pared-down
version of animateManl.cpp, whose purpose is to animate the sequence of
configurations listed in the file animateManDataIn.txt, likely generated
from the develop mode of animateManl.cpp. Press ‘a’ to toggle between
animation on/off. As in animateManl.cpp, pressing the up or down arrow
key speeds up or slows down the animation. The camera functionalities via
the keys ‘r/R’ and ‘z/Z’ remain as well. Think of animateMan1.cpp as the
studio and animateMan2.cpp as the movie.

The current contents of animateManDataIn.txt cause the man to do a
handspring over the ball. Figure 4.56 is a screenshot. End

Figure 4.56: Screenshot
of animateMan2. cpp.

Now let’s look at the code of animateManl.cpp. From an OpenGL point
of view, most interesting possibly is the drawing of a configuration by the
function Man::draw(). The best way to understand it is to analyze the
successive placement of parts. We’ll do this our usual way of deconstructing
a program by first commenting out most of it and then restoring code piece
by piece.

Accordingly, first comment out all parts except the torso as below:

// Function to draw man.

void Man: :draw()

{
if (highlight||animateMode) glColor3fv(highlightColor);
else glColor3fv(lowlightColor);

glPushMatrix();

// Up and forward translations.
glTranslatef (0.0, upMove, forwardMove);

// Torso begin.
if (highlight && '!animateMode) if (selectedPart == 0)
glColor3fv(partSelectColor);

glRotatef (partAngles[0], 1.0, 0.0, 0.0);

glPushMatrix () ;

glScalef (4.0, 16.0, 4.0);

glutWireCube(1.0);

glPopMatrix();

if (highlight && !animateMode) glColor3fv(highlightColor);

// Torso end. -
169

Chapter 4 /*
TRANSFORMATION, // Head begin.
ANIMATION AND
VIEWING

// Right upper and lower leg with foot end.
*/

glPopMatrix();

}
Next, uncomment the head:

// Function to draw man.

void Man: :draw()

{
if (highlight||animateMode) glColor3fv(highlightColor);
else glColor3fv(lowlightColor);

glPushMatrix () ;

// Up and forward translations.
glTranslatef (0.0, upMove, forwardMove);

// Torso begin.
if (highlight && !animateMode) if (selectedPart == 0)
glColor3fv(partSelectColor) ;

glRotatef (partAngles[0], 1.0, 0.0, 0.0);

glPushMatrix();

glScalef (4.0, 16.0, 4.0);

glutWireCube(1.0);

glPopMatrix () ;

if (highlight && 'animateMode) glColor3fv(highlightColor);
// Torso end.

// Head begin.
glPushMatrix();

glTranslatef (0.0, 11.5, 0.0);
glPushMatrix();

glScalef (2.0, 3.0, 2.0);
glutWireSphere (1.0, 10, 8);
glPopMatrix();

glPopMatrix () ;
// Head end.

170 /*

// Left upper and lower arm begin.

// Right upper and lower leg with foot end.
*/

glPopMatrix () ;

}

Continue — as you successively uncomment each body part, it’ll be clear how
it’s being placed with respect to existing ones.

The creation of the camera as an object of the Camera class may be of
interest as well and we’ll leave the reader to relate the parameter values of
the gluLookAt () command to the member variables viewDirection and
zoomDistance of the Camera class.

Much of the rest of the code consists simply of managing and using
manVector, which stores the sequence of configurations.

Even though he himself is 3D, the man moves and rotates
his parts always parallel to the yz-plane, so he’s not really capable of 3D
motion!

Exercise 4.58. (Programming) Use animateMan*.cpp to animate a
character kicking a football.

Exercise 4.59. (Programming) Enhance animateManx*. cpp:

(a) The character’s body parts, except for the head, are currently all cubes.
Make them more realistically rounded using cylinders.

(b) Add movement to the character’s feet, which are currently fixed with
respect to his lower legs. Give him movable hands as well.

(¢) Asremarked earlier, all the character’s movements are currently parallel
to a single plane. Enhance to true 3D.

Exercise 4.60. (Programming) Stick a camera to the front of the
man’s head and give a split-screen view of what he sees as he advances
through an animation sequence and what is seen from a separate fixed
camera focused on him.

Exercise 4.61. (Programming) By scaling individual body parts,
create a second character who looks different from the first, though with
identical functionality. Make a simple movie with the two.

It would be particularly effective in such a sequence to occasionally switch
to a camera located in front of either one of their heads, to record how one
sees the other.

Section 4.7

MORE ANIMATION

CODE

171

