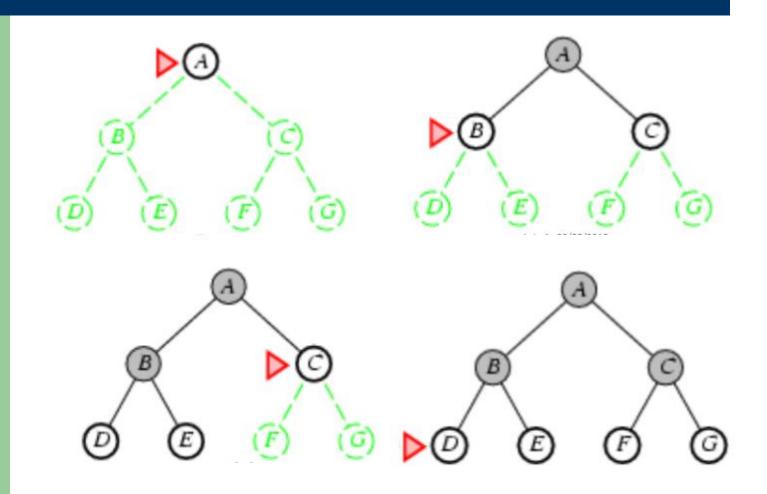


Busca Cega e Busca Informada

Profa. Mercedes Gonzales Márquez

Tópicos

- Busca cega ou busca não informada
 - Busca em largura
 - Busca em profundidade
 - Busca em profundidade limitada
 - Busca com aprofundamento iterativo
 - Busca direcional
- Busca informada
 - Busca gulosa
 - Busca A*

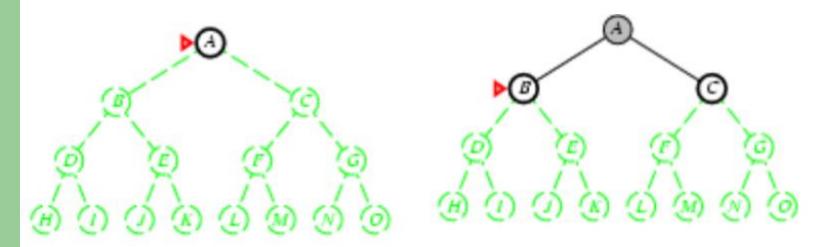

Estratégias de Busca Sem Informação (ou Busca Cega)

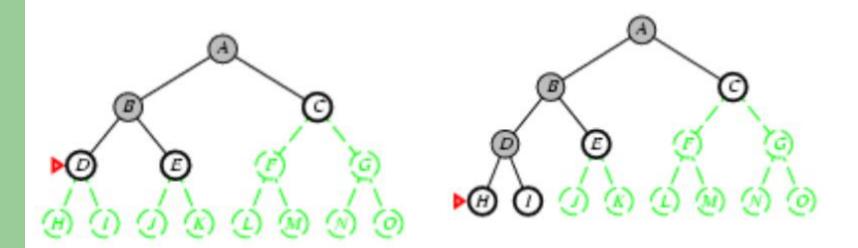
- Estratégias de busca sem informação não recebe qualquer indicação sobre a proximidade que um estado se encontra de sua meta. Veja o exemplo de Zarad no mapa.
- As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

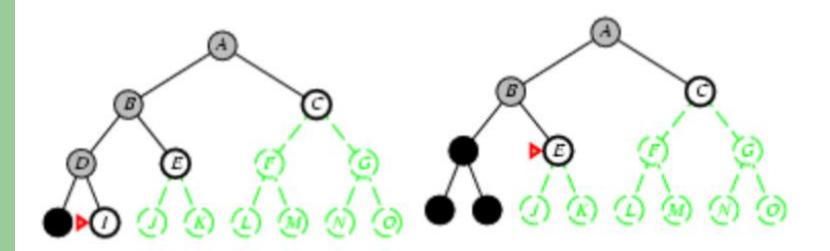
Estratégias de Busca Sem Informação (ou Busca Cega)

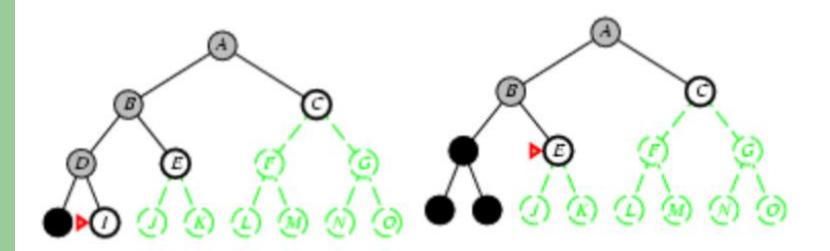
- Busca em largura
- Busca em profundidade
- Busca em profundidade limitada
- Busca de aprofundamento iterativo.
- Busca de custo uniforme

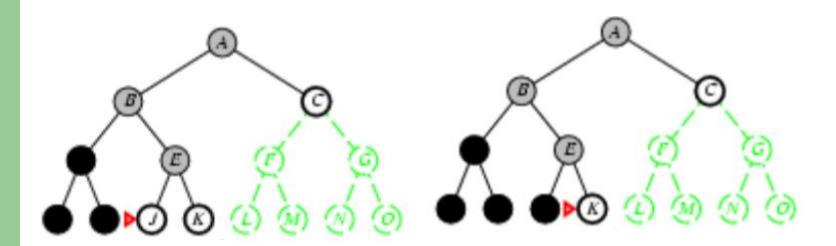
- O nó raiz é expandido primeiro e, em seguida, todos os sucessores dele, depois todos os sucessores desses nós.
- Todos os nós em uma dada profundidade são expandidos antes de todos os nós do nível seguinte.

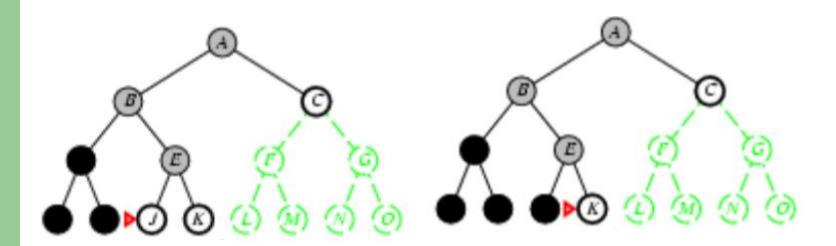

- Uma fila (FIFO) é usada : novos nós (que são sempre mais profundos do que seus pais) vão para o fim da fila, enquanto os antigos, que são mais rasos que os novos, são expandidos primeiro.
- A busca em largura sempre acha uma solução com um número mínimo de ações porque quando está gerando nós na profundidade d, ela já gerou todos os nós na profundidade d-1.

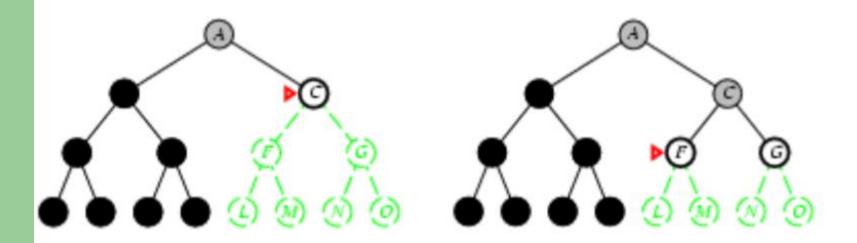

- Propriedades da busca em largura
- Completa? Sim (se b é finito)
- Tempo? $1+b+b^2+b^3+...+b^d = O(b^d)$
- Espaço? O(bd) (mantém todos os nós na memória)
- Ótima? Sim (se todas as ações tiverem o mesmo custo.

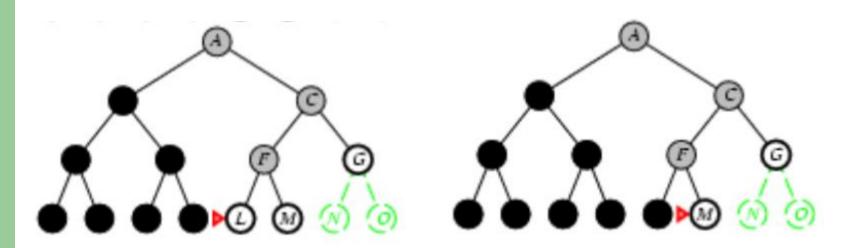

Outro exemplo




- Expande o nó não-expandido mais profundo.
- A busca prossegue até o nível mais profundo da árvore, onde os nós não tem sucessores.
- Então a busca devolve ao nó seguinte mais profundo acima que ainda tem sucessores inexplorados.
- Uma fila (LIFO) é usada : novos nós (que são sempre mais profundos do que seus pais) são expandidos primeiro, enquanto os antigos, que são mais rasos que os novos, vão para o final da fila.







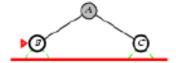
- Só precisa armazenar um único caminho da raiz até um nó folha, e os nós irmãos não expandidos;
- Nós cujos descendentes já foram completamente explorados podem ser retirados da memória;
- Faz muito menos uso de memória que a busca em largura. A fronteira da busca em largura pode ser vista como a superfície de uma esfera sempre em expansão, enquanto que a fronteira da busca em profundidade é apenas um raio dessa esfera.

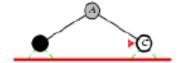
- Logo para ramificação b e profundidade máxima m, a complexidade espacial é: O(bm)
- Propriedades da busca em profundidade.
- Completa? Sim em espaços com profundidade finita. Não completa em espaços com loops.
- Tempo? O(b^m)
- Espaço? O(bm)
- Ótima? Não.

Busca em profundidade limitada

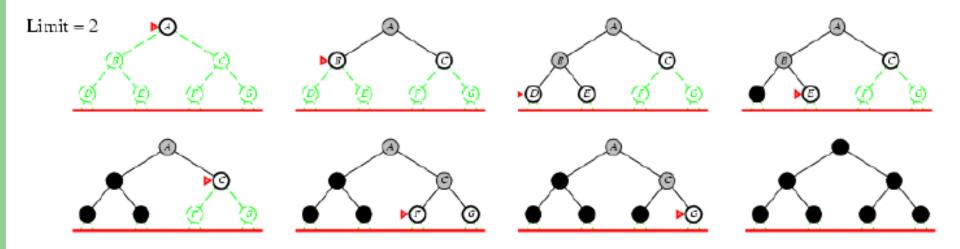
- Para resolver o problema de busca em profundidade em árvores infinitas, um limite L restringe a busca, ou seja, nós na profundidade L são tratados como se não tivessem sucessores.
- Resolve caminhos infinitos, porém adiciona mais incompleteza;.

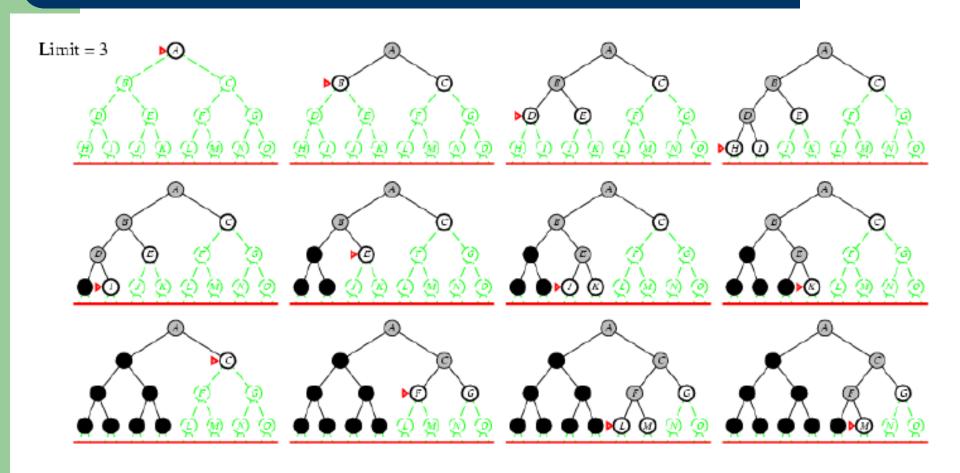
Busca em profundidade limitada


- Completa? Não; a solução pode estar além do limite.
- Tempo? O(b^l)
- Espaco? O(b^l)
- Ótima? Não

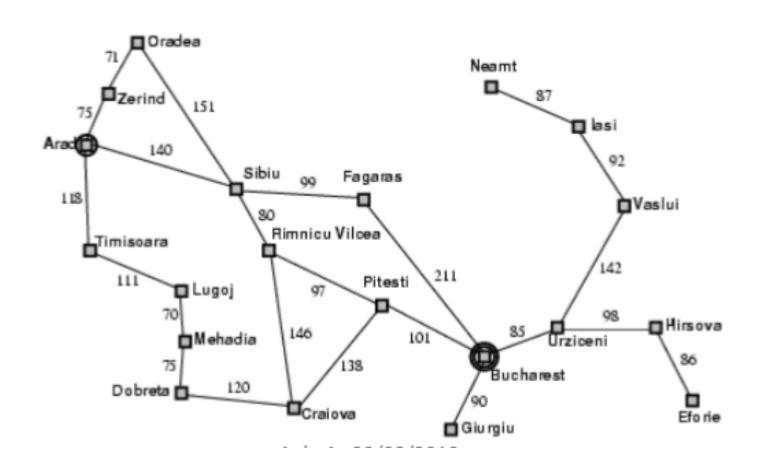

- Resolve o problema da escolha de um bom valor de I testando todos os valores: primeiro 0, depois 1, depois 2, e assim por diante.
- Combina muitos dos benefícios da busca em profundidade e da busca em largura.







- Ótima?
- Completa?
- Tempo?
- Espaço?


Busca directional

 Realiza duas buscas simultâneas – uma direta, a partir do estado inicial, e a outra inversa, a partir do estado meta, esperando que as duas buscas se encontrem em um ponto intermediário.

Busca de custo uniforme

- Variante de Busca em Extensão
- Expande o nó n com custo de caminho g(n) mais baixo.
- Os nós da borda são armazenados em uma fila de prioridades (Heap).
- O teste de objetivo é aplicado quando o nó é selecionado para a expansão.
- Aplicar busca de custo uniforme para achar o caminho mais curto entre Sibiu e Bucareste.

Busca de custo uniforme

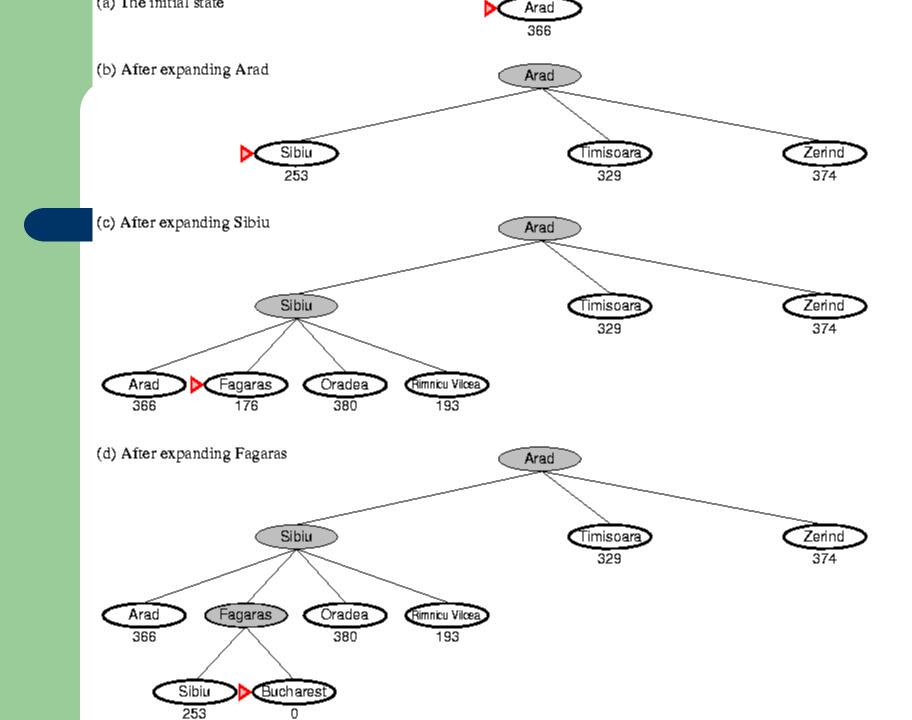
Busca de custo uniforme

- Ótima?
- Completa?
- Tempo?
- Espaço?

Outro exemplo

Busca Informada ou heurística

- Usa conhecimento sobre o domínio para encontrar soluções mais eficientes do que busca cega.
- Define uma função de avaliação para cada nó da árvore (mede o quanto o nó é desejável!).
- Expande o nó que tem a função de avaliação mais baixa.
- A implementação utiliza uma fila de nós ordenada segundo a função de avaliação.


Busca Informada ou heurística

- Função de avaliação (f(n)): mede o custo de um nó até o objetivo.
- Função heurística (h(n)): custo estimado do caminho mais econômico do nó n até o nó objetivo.

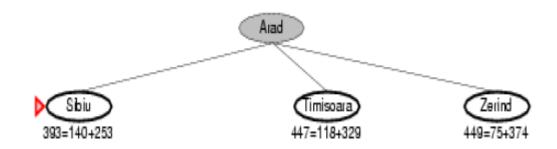
- Expande o nó mais próximo da meta, supondo que isso levará rapidamente a uma solução;
- Portanto, f(n) = h(n)
- Exemplo: encontrar uma rota na Romênia usando da heurística da distância em linha reta (hDLR)

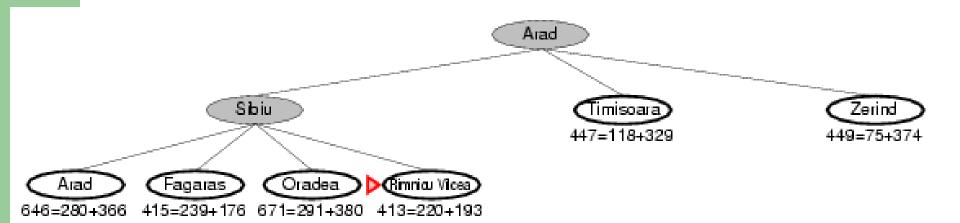
Arad	366	Me hadia	24 L
Bucharest	D	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Efori c	161	Rimnicu Vilcea	193
Fagaras	ι76	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Z erind	374

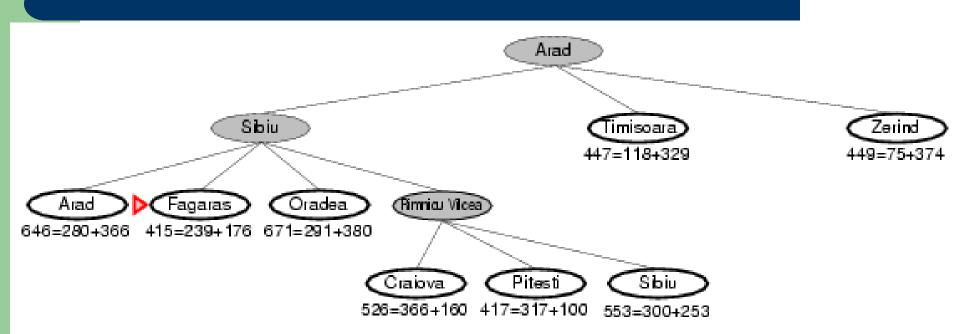
Distâncias em linha reta de cada cidade romena à Bucareste.

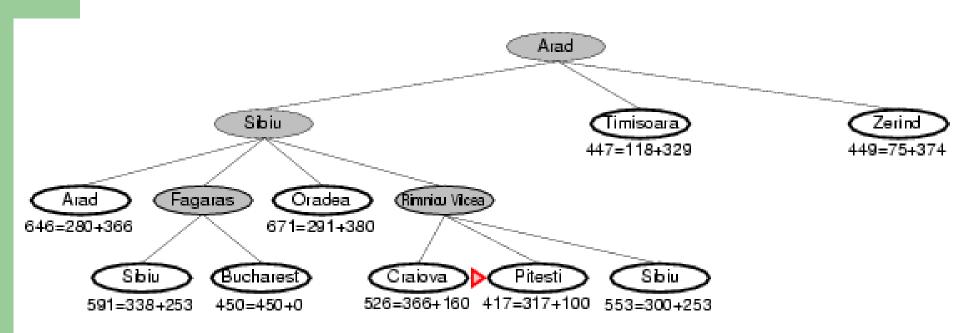
- Ótima?? Não!! pois segue o melhor passo considerando somente o momento atual.
- Esta busca assim concebida é suscetível a cair em mínimos locais.
- Pode haver um caminho melhor seguindo algumas opções piores em alguns pontos da árvore de busca.

- Completa?
- Tempo?
- Espaço?


Outro exemplo




	POA	FLN	CWB	SÃO	RIO	BHZ	BSB	CGB	SSA	FOR	MAO
POA	0	376	547	852	1124	1341	1621	1679	2303	3241	3132
FLN	376	0	251	489	748	973	1315	1544	1931	2858	2982
CWB	547	251	0	339	676	821	1081	1302	1784	2671	2734
SÃO	852	489	339	0	357	490	873	1326	1454	2369	2589
RIO	1124	748	676	357	0	340	933	1576	1210	2190	2849
BHZ	1341	973	821	490	340	0	621	1373	964	1893	2446
BSB	1621	1315	1081	873	933	621	0	880	1059	1688	1939
CGB	1679	1544	1302	1326	1576	1373	880	0	1915	2329	1453
SSA	2303	1931	1784	1454	1210	964	1059	1925	0	1028	2606
FOR	3241	2858	2671	2369	2190	1893	1688	2329	1028	0	2384
MAO	3132	2982	2734	2589	2849	2446	1939	1453	2606	2384	0


- Avalia nós combinando o custo para alcançar cada nó (g(n)) e o custo estimado para ir deste nó até o objetivo (h(n)): f(n) = g(n) + h(n).
- -g(n) = custo até o momento para alcançar n
- -h(n) = custo estimado de n até o objetivo
- -f(n) = custo total estimado do caminho através de n até o objetivo.
- Para a solução de custo mais baixo, seguir os estados de menor valor de g(n) + h(n).

