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ABSTRACT
For constructing a tri-dimensional model from range im-
ages, they must be registered, i.e., it must be put together
into the same coordinate system. There are good algo-
rithms available to perform this, but only after the range
images have been brought into positions that are close to
the true ones with respect to an arbitrarily chosen reference
system. These initial estimates are often provided manu-
ally. This paper deals with a technique to compute them
automatically. We present a way to determine parameter
values that are necessary to control the control flow of a
simplified mesh based crude registration, which is charac-
terized by two novel features: drastic data reduction and an
expressive shape descriptor.
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1 Introduction

Three dimensional modeling has many applications in
computer graphics, virtual reality, medical science, reverse
engineering and robotics. Various techniques including
structured light and laser range finders are used for acquir-
ing range images of an object. A range image (or a view)
however is not sufficient to completely model a free-form
object [1] due to self-occlusions. Multiple views of the ob-
ject must be acquired in order to cover the entire surface of
the object. These views must then be registered in a com-
mon coordinate basis. Figure 1 illustrates the registration
of two range images, the targetS−image and the reference
D−image, acquired from two different points-of-view de-
fined in proper coordinate references.

Iterative algorithms, such as iterative closest point
(ICP) [1, 14, 9], can determine the relative poses accurately,
provided an initial, approximate pose is known. These
methods perform an optimization and as such are sensitive
to local extrema. When the initial poses are very different
they might not converge to the correct solution. We will re-
fer to the determination of this approximate pose as crude
registration. The refinement of this pose by an algorithm
such as ICP will be referred to as fine registration. Whereas
fine registration can be automated, often the crude registra-
tion is done manually or through knowledge of the relative
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Figure 1. Range images of a bunny: (a)S-image; (b)D-
image; (c) integrated 3D- model.

viewpoints from which the surfaces were recorded. Man-
ual crude registration can for example be done by letting
a user position the range images interactively or by having
the user mark some corresponding points on them. This
can become a tedious job when many range images have to
be positioned or when they have no clear features that can
be matched easily by a human. The primary contribution
of our work is the automation of the crude registration.

The registration task could be resolved (1) by detect-
ing corresponding points which are points on two differ-
ent views that correspond to the same point on the object,
and (2) by using these correspondences for deriving the
rigid transformation (rotation and translation) that aligns
the views. The obvious challenge here is automatically re-
solving the correspondence problem

The traditional way to solve the correspondence prob-
lem is by matching descriptors that two differing images
have in common. There are three steps to the descrip-
tor matching process: detection, description and matching.
Detection refers to capability of extract a reasonable num-
ber of samples from which we can construct matchable de-
scriptors. Because that a range image usually has hundreds
of thousands samples, there are two approaches for detec-
tion: random selection and special points extraction. Both
are tentatives to avoid the use of complete sample set which
results in excessive number of descriptors, making the al-
gorithm inefficient. On other hand, the selection of few
or very restricted sample subset can result in loss of infor-
mation which can be relevant for success in matching. This
means that there is a trade-off between preservation of rele-
vant information of surface and efficiency of the algorithm.
In [7], we proposed a method that leads to a drastic reduc-



tion of the input data, without missing the relevant features
of the original dense data.

The descriptions of the selected samples must be dis-
tinctive enough to filter out wrong matches while remain-
ing invariant to rigid transformations as rotation and trans-
lation. A descriptor with low discriminative capability will
result in multiple ambiguous matches. In [7], we presented,
associated with each selected sample, a descriptive spatial
trihedron that encodes spatial angular and metric informa-
tion of the surface. It hugely reduces the volume of poten-
tial matchable candidates.

Finally, the matching step consists in obtaining the
transformationT from the remaining matches. This is
done by two steps: generation of candidate transformations
through matching of pairs of descriptors and by filtering
out the false positive transformations. The classic proce-
dure for candidate evaluating is global evaluation of errors,
i.e., the transformation must be applied and the distance be-
tween points of both images calculated. The efficiency of
this procedure depends on the data volume size (first step)
and the discriminating capability of the descriptors (second
step). On the other hand, the correctness of algorithm is en-
sured by verification of all the candidate transformation for
avoiding that the correct transformation is excluded. In [7],
we showed that after carefully reducing the search space, it
is feasible to consider all the candidate transformations.

The main drawback of the procedure presented in [7]
is, however, that it needs several control parameters that de-
pend on the expert knowledge, such as threshold for simpli-
fication error and the appropriate size for shape descriptor.
In this paper, we give some working heuristics for deter-
mining such parameter values. Moreover, we propose to
encode two more geometrical properties, namely the mini-
mal and maximal curvatures, in the shape descriptor.

2 Correlated Works

Next, we present three of the most widely used method for
automatic registration of two partially range images.

Matching oriented points uses the spin image which
relates the neighboring points of a sample to its normal
vector by generating a 2D histogram whose coordinates
are distance along the sample’s normal vector and radial
distance from the normal vector, with the sample loca-
tion as the origin [5]. The spin images of randomly se-
lected samples from one view are matched with the spin
images of all the samples of the second view using correla-
tion coefficients. One of the problems with spin images is
that information is lost in the projection to two dimensions
which leads to an inability to discriminate between samples
that otherwise should be considered different. An exam-
ple would be two features that are mirror images of each
other. Other problem is that spin images of close points on
the same view are very similar. Both situations make that
spin image matching results in many ambiguous correspon-
dences which must be processed through a number of fil-
tration stages to prune out incorrect ones. Even after these

filtration stages the algorithm is left with a large number of
geometrically false positive matches which must be veri-
fied individually, making the algorithm inefficient even for
range images of a reasonable size. When only some candi-
date transformations are verified, the algorithm can gener-
ate a false positive transformation as result, in accordingto
Planitz et al. [2]. The method proposed in [7] not only has
less data volume but is suitable for matching features that
are mirror images, as well. The global evaluation of all the
reduced number of remaining transformations allows the
correct filtration of the false positive transformations.

The RANSAC-based DARCES (Random Sample
Consensus-based Data Aligned Rigidity Constrained Ex-
haustive Search) is a technique that selects three non-
collinear points, a primary, a secondary and an auxiliary
point, from theS−image at random [3]. Then it hypothe-
sizes a point inD−image to be the corresponding point of
the primary point and searches for the corresponding points
of the secondary and auxiliary points while observing the
rigidity constraint. In Figure 2(a) a triangle formed from
the three control points (Sp, Ss, Sa). Sq is the orthogonal
projection ofSa to lineSpSs anddqa is the orthogonal dis-
tance from it. The search region for the correspondingpoint
to Ss is a sphere, as illustrates Figure 2(b). Figure 2(c)
shows the corresponding pointMq to Sq in the model. The
search for the corresponding point toSa is restricted to the
circle depicted in Figure 2(c).
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Figure 2. Search for correspondences.

For every possible set of three correspondences a can-
didate transformation is calculated, applied and verified.
This process continues until the overlapping level, after of
application of a candidate transformation, is greater thata
predefined threshold. Applying the rigidity constraint con-
siderably reduces the search space. However, the number
of possible combinations is still excessive to make the al-
gorithm feasible. Instead of a planar structure (triangle), a
spatial structure is used in [7]. It is more distinguishable
making fewer matchable descriptors to be selected. Addi-
tionally, the reduced data volume makes feasible to scan all
of remaining matches for getting the best one.

Bitangent curve matching is a technique based in fea-
ture matching. Bitangent curves, which are curves that
share the same tangent plane, are chosen as an invariant
feature [15]. The end points of these curves give four points
on one surface which are used as descriptors. The distance
function of the bitangent point pairs in terms of the bitan-
gent curve arclength is used for matching. The candidate



transformations obtained from matching descriptors are ap-
plied and verified by checking the adjustability of bitan-
gent curves. Some inconveniences are detected in this tech-
nique. Bitangent curves are global features of the surface
and may not be fully contained inside the region of over-
lap. Hence, one of the end points of the bitangent curves
may lie outside the region of overlap causing an incorrect
correspondence. Moreover, bitangent curves are very spe-
cial features and it is not ensured that they are present in
every image. The reduction procedure presented in [7] en-
sures that enough quantity of samples be preserved; hence,
a matching descriptor can always be built from each sample
without neither consideration of geometric form nor exis-
tence of relevant features. Only a minimal and maximal
estimates of percent ofS−image that is in overlapping re-
gion are required.

Because that the objective of a crude registration is to
approximately align two images on the basis of the over-
lapped region, we only need the overall shape of image.
In fact, it will be verified in Section 7, excessively detailed
models do not necessarily deliver more accurate result. Fol-
lowing this reasoning and for sake of efficiency, we come
to the idea to use the samples of decimated meshes rather
than dense meshes to find the rigid transformationT that
overlays the S-image over the D-image. Based on the hy-
pothesis that simplified meshes encapsulate enough of the
geometrical characteristics of the dense ones, we devise a
robust crude registration procedure [7]. Nevertheless, itre-
quires several control parameters that are still set on the
time-consuming trial-and-error basis.

3 Overview of the Approach

In 3-D computer vision, the amount of computation is of-
ten proportional to the number of data points [5]. In the
automatic registration task, the computational effort also
depends on the expressive power of the matching descrip-
tor, once a such descriptor will avoid to generate multiple
ambiguous matches. So, to minimize computation, our al-
gorithm should minimize the number of sample in the range
image without loss the relevant features and to propose a
distinctive descriptor. Our proposal is characterized by two
novel features related to these aspects: drastic data reduc-
tion and expressive shape descriptor. It basically consists in
three steps: (a) reduction, (b) descriptor construction, and
(c) matching.

First, in the reduction step, we create two simplified
triangular meshesS−mesh andD−mesh forS−image and
D−image respectively (Figures 3(a)). Each simplified tri-
angular mesh is obtained from a dense triangular mesh
that interpolates all samples of range image. As the goal
is matching, the simplification does not consider only re-
duction with shape preservation, but also a distribution of
the vertices over the mesh in an adequate density. In sec-
ond step, descriptors called spatial trihedrons are then con-
structed from vertices of simplified meshes, as illustratedin
Figures 3(b). A trihedron is determinated from four sam-
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Figure 3. (a)Simplified meshes (b) trihedrons and (c)
matching result.

ples: an origin and three more vertices far enough apart,
so that it is able of provide geometrical information of a
large spatial neighborhood. The local minimal e maxi-
mal curvatures are estimated and also encoded in the tri-
hedron. These several geometrical informations makes tri-
hedron a expressive descriptor. Once this descriptor con-
struction process has been completed for each vertice of
S−mesh, we can find descriptors onD−mesh. The cor-
respondence vertices are search for observing the rigidity
constraint. Once we have a set of correspondences, repre-
sented by our descriptors pairs, we can compute a set of
candidate transformations and chosen from them the trans-
formationT that best aligns the vertices of the two meshes.
Figure 3(c) illustrates the matching result of two simplified
meshes.

4 Control on Mesh Simplification

The range images, in the form of point clouds (Figure 4(a)),
are converted into triangular meshes (Figure 4(b)). To build
a mesh, we create triangles from four samples of a range
image that are in adjacent rows and columns as described
in [14]. The shortest of the two diagonals between the



samples is used to create two triangles. A distance thresh-
old is set in order to prevent joining some range points that
should not in fact be connected. Lets be the maximum
distance between adjacent range points when we flatten the
range image, we take the distance threshold be a small mul-
tiple of this sampling distance, i.e.,5s. To reduce the mesh,
a mesh simplification algorithm must be applied resulting
in a simplified mesh (Figure 4(c)).

(a) (b) (c)

Figure 4. (a) Range Image Bunny; (b) Dense Mesh; (c)
Simplified Mesh.

Traditionally, the simplification algorithms were de-
veloped inside of computer graphics purposes. There, the
main motivation for mesh simplification is to reduce the
number of faces describing an object, while preserving the
shape of the object, so that the object can be rendered as
fast as possible. However, for registration purpose, the al-
gorithm also must establish a adequate level of detail that
guarantees acceptable sample density in order to not miss
the minimal number of samples necessary on the overlap-
ping region. So, for our purpose the simplification algo-
rithm must be able of

• preserving shape,

• minimizing number of vertices, and

• the sample density (number of samples per unit area)
being adequate for guaranteeing the existence of cor-
respondences in overlapping areas.

We choose the efficient QSLIM mesh simplification
algorithm [6], that simplifies the mesh while preserving
maximum amount of geometric variation on its surface, and
adapted it for evaluating our proposal in practice.

In this section we define an approximation errorǫ
which will establish the resolution of the meshesS−mesh
and D−mesh. QSLIM reduces the sample density on
smooth regions and increases it on regions with promi-
nent features. For establishing an unique approximation
error ǫ for any geometry, we introduce a smooth parame-
ter %smooth in the calculation ofǫ. The smooth param-
eter of a range image can be easily defined by estimating
the minimal and maximal curvature of the dense mesh ver-
tices. The estimation of these curvatures is done with use
of the Rusinkiewicz algorithm [10]. On the basis of the
curvatures, we categorize the vertices as planar points (p),
parabolic (pa), elliptical (e) and hyperbolic (h), and define
the%smooth parameter as follows

%smooth =
p + pa + e

p + pa + e + h
∗ 100.

In addition, we perceive that a reduction must be pro-
portional to sampling density of the range images, then we
also introduce the sampling frequency parameters ∗ A,
wheres is the sampling distance andA = max(Dx, Dy),
whereDx and Dy correspond to horizontal and vertical
length of the bounding box containing the range image, re-
spectively. So, we arrive to following formula for approxi-
mating error

ǫ =
0, 15 ∗ s ∗ A

%smooth

that guarantees acceptable sample density in our ex-
haustive tests with images available in the repositories [8,
13, 12].

5 Control on Descriptor’s Size

Registration of range images is based on partial matching
task which consists of matching sub-parts or regions. The
parts that are matched can be any sub-shape of a larger
shape in any orientation and must satisfy certain similarity
measures. The challenge is to choose distinguishable parts
to alleviate the task of search of matches, making it more
discriminative. We define a descriptor whose descriptive
power is sufficiently high and effective due to the follow-
ing reasons:

• it is a spatial structure rather than a planar one as tri-
angles presented in [3]

• it incorporates a regional context of the shape rather
than only a local one, and

• it incorporates local geometric information for guid-
ing the punctual matching.

Dy

Dz

Dx

v1

v2

v3
Rmin=f *M

Rmax=f *M1
2

Figure 5. Spatial Trihedron

We propose as descriptor a spatial trihedron which
consists of three linear independent vectors preferably or-
thogonal, whose originV and extreme points of its axes are



verticesvi, i = 1, 2, 3 of the simplifiedS−mesh as view in
Figure 5. To set the distancedi of vertices to the originV ,
we consider the trade-off between maximal coverage and
permanence inside the region of overlap. A trihedron that
incorporates a large region is likely to be more distinguish-
able. However, such a trihedron can lie outside the region
of overlap. To address these concerns, we develop a concil-
iatory way of restrict the size of trihedron to a estimative of
percentage that the overlapping is of the range image. So,
distancesdi will be

f1 ∗ M ≤ di ≤ f2 ∗ M, f1 < f2

whereM = (Dx + Dy + Dz)/3 with Dx,Dy and
Dz corresponding to horizontal, vertical and deep length
of the bounding box containing the range image (Figure 5).
Thef1 andf2 values should be provided by a user as the
minimal and maximal estimative of percentage that region
of overlap represents in relation to complete range image.
Nevertheless, we believe that this is an easy task. When an
appropriate image visualization is provided, we may rely
on the user’s visual intelligence to do such estimates.

6 More Geometrical Properties in Matching
Procedure

The correlated works point to a trade-off between preserva-
tion of relevant information of surface and efficiency of the
algorithm. On a side, a dense set of descriptors is likely not
to miss the best match and, on the other side, an exhaustive
approach would be overly costly due to huge combinatorial
complexity in the matching. In this section, we briefly de-
scribe our exhaustive matching procedure in order to show
how the minimal and maximal curvatures are integrated in
the procedure.

We define a trihedron in each vertex ofS−mesh
and exhaustively search for corresponding trihedrons in
D−mesh. Since the number of vertices is significantly
smaller than the number of samples of original range im-
age, we will have a small set of descriptors that allows to
reduce the combinatorial complexity of the surface repre-
sentation. In addition, the descriptive power of the descrip-
tor is able of significantly reduce the combinatorial com-
plexity in the matching. LetS be a descriptor ofS−mesh,
with origin in vertexV and extreme verticesvi, i = 1, 2, 3.
First, we search for corresponding vertexC on D−mesh
to the originV deS, by comparing local curvatures. The
potential correspondencesc1 andc2 to v1 andv2, respec-
tively, are obtained in the same way as done by DARCES
(Figure 2), with an additional restriction: to have match-
able local curvatures. Finally, the search for candidatec3

to v3 is done by the following procedure: we calculate the
point-plane distanced from v3 to theP plane formed by
the vectorsVv1 andVv2, and also calculate the barycenter
coordinates of the orthogonal projectionx2 of vertexv3 on
theP plane in relation to triangleVv1v2. Then, the candi-
date pointc3 will be in a small radius around pointp, being

Images Samples Vertices %Reduction f1 f2

FROG set 10297 812 92,11 0.3 0.6
DINO set 14286 770 94,61 0.5 0.7

BUNNY set 35647 400 98,88 0.0 0.3

Table 1. Data volume reduction

p = x2 + n2d, wherex2 is the corresponding position to
x1 on triangleCc1c2 andn2 is the normal vector to plane
formed by the vectorsCc1 andCc2 (Figure 6). From each
pair of matchesVv1v2v3 andCc1c2c3, we may compute
one candidate alignment transformationTS which must be
evaluated in terms of their matching power. The best solu-
tion T is the one that best aligns the theS−mesh over the
D−mesh.

d

c1
x2

c2 C

Figure 6. Fourth Vertex Matching

7 Experimental Results

We selected two test sets with 6 range images in each:
DINO taken from the repository [13] and FROG from [8];
and one test set with 4 range images, BUNNY from [12].
One set of each repository was chosen for validating our
algorithm from several situations (Figures 7 and 8).

After applying the volume data reduction scheme of
the Section 4, we observe from Table 1 that, in average,
there was a reduction factor of 95% with respect to the orig-
inal data. Despite this drastic reduction, our algorithm will
be still able to deliver a coarse alignment transformation
that makes the ICP algorithm converges in few iterations as
commented latter.

Figures 9,10,11 present the visual results of our pro-
posed procedure applied on all the possible pairs of range
images of each set presented in Figures 7 and 8. The re-
sults show that satisfactory crude registration between all
the surface pairs is achieved. Each pair of aligned meshes
show the aligned trihedrons that cover a large region of
mesh. Observe that, according to Section 5, the extension



FROG0 FROG60 FROG120

FROG180 FROG240 FROG300

DINO25 DINO28 DINO31

DINO34 DINO37 DINO40

Figure 7. Test Images: FROG [8], DINO [13]

BUNNY0 BUNNY90 BUNNY180 BUNNY270

Figure 8. Test Images: BUNNY [12]

of trihedron is limited by estimativesf1 andf2 related to
size of overlapping region. In Table 1 we present the esti-
mate provide for each set. Note that the overlapping region
of BUNNY is considerably small, thus, the automatically
generated trihedron is also of smaller size.

According to Planitz et al., we may evaluate quan-
titatively the performance of our proposal by verifying
whether its outcomes lead to correct convergence of the
ICP procedure. Using all the transformation matrices
as an initial guess, the iterative closest point algorithm
(ICP) [1, 4], implemented in Scanalyze [11], iteratively re-
fines them until the mean squared errors between the pre-
sumed correspondences are minimized. We used Scanalyze
system for evaluating our results. Visually, the outcomes
from the Scanalyze is almost indistinguishable from the
images shown in Figures 9,10,11. Below each registered
pair, we provide the number of iterations that the ICP algo-
rithm needed to converge to the optimal solution. The low

number of iterations attests the matching power of coarse
meshes.

(a) 11 ICP iterations (b) 7 ICP iterations

(c) 8 ICP iterations (d) 8 ICP iterations

(e) 9 ICP iterations (f) 9 ICP iterations

Figure 9. FROG pairs

Other way of evaluating of quality (correctness) of
our results is by calculating the difference between trans-
formation real values and ours values. This comparison
is possible when the real values are known as is the case
of BUNNY [12]. Table 2 presents the pairs of range im-
agesImages, the parameter of the real rotation specified
in columnsRy (R) (Rotation about axesy), and the val-
ues of the real translation vector given in columns (x (R),y
(R),z (R)). In analogous form, parameters obtained by our
algorithm are presented in columnsRy (M) and (x (M),y
(M),z (M)) and in columnsRy (I) and (x (I),y (I),z (I))
we show the parameters after the refinement of our results
with use of Scanalyze (fine registration). The quality of our
crude alignment can be verified by the small difference be-
tween values R and M, and values R and I. In first case, we
obtain a angular difference of, in average,1.4o and a dif-
ference between the values of the translation vector of, in
average,0.002. In second case, the angular difference was
of 0.11o and in values of translation vector we did not have



Images Ry (R) x (R) y (R) z (R) Ry (M) x (M) y (M) z (M) Ry (I) x (I) y (I) z (I)
0-90 90 -0.0001 0.0002 -0.0001 89.9975 -0.0001 0.0004 -0.0007 90.2239 -0.0001 0.0002 -0.0001

90-180 90 -0.0001 0.0001 -0.0001 91.3913 -0.0007 0.0008 -0.0022 90.1095 -0.0001 0.0001 -0.0001
180-270 90 -0.0000 0.0003 0.0000 90.1022 -0.0004 0.0001 0.0009 90.0138 -0.0000 0.0003 0.0000
270-0 90 -0.0001 0.0000 0.0004 93.696 0.0009 0.0035 0.0001 90.0944 -0.0001 0.0000 0.0004

Table 2. Transformation Parameters of BUNNY

difference.
To verify that the proposed reduction does not com-

promise the precision of results while the gain in time be-
comes significant, we measure the execution time of our
procedure for different reduction level. We use the pair
BUNNY0-90 and show the results in Table 3. The time
(in seconds) is presented in columnTime. The graph of
Figure 12 shows the drastic reduction of processing time
while the simplification level augments. Observe that val-
ues∆R and∆D varies inside of a interval of about one
degree, this is, parameter values are similar despite of re-
duction sampling. These values attest that our proposal of
control parameter estimation is adequate for data reduction
without compromising precision. Note that the reduction
of time between the first and last level is of more than 99%.

8 Conclusion

In this paper, we have described a method for estimating
the control parameters that are necessary for an automatic
crude registration of range images. The crude registra-
tion method is based on the use of triangular meshes that
captures the essence of the geometry of the original ones,
rather than complete image data. Such a mesh allows easi-
ness in constructing discriminative structures. We propose,
in addition to our previous work [7], to include the curva-
ture measures in order to make the shape descriptor more
discriminant. Experimental results show that our algorithm
is accurate and efficient. Numerical data attest that our pro-
posal can reduce, in average, the time more than 99% in
relation to spent time when we use a complete sampling.
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Level Vertices of S−mesh Vertices of D−mesh Ry x y z ∆R ∆D Time
1 3314 4152 89.8519 -0.0019 0.0004 -0.0019 0.15 0.00 67992
2 1487 1829 90.0639 -0.0006 0.0003 0.0000 0.06 0.00 13612
3 959 1135 91.1277 -0.0035 -0.0000 -0.0049 1.13 0.01 1628
4 688 855 90.0834 -0.0015 0.0000 -0.0025 0.08 0.00 831
5 426 553 91.5342 -0.0007 0.0016 -0.0019 1.53 0.00 138
6 299 395 90.2239 -0.0001 0.0002 -0.0001 0.22 0.00 45

Table 3. Mesh Resolution vs Processing Time

(a) 5 ICP iterations (b) 5 ICP iterations

(c) 4 ICP iterations (d) 5 ICP iterations

(e) 5 ICP iterations (f) 4 ICP iterations

Figure 10. DINO pairs

(a) 4 ICP iterations (b) 8 ICP iterations

(c) 4 ICP iterations (d) 5 ICP iterations

Figure 11. BUNNY pairs

Figure 12. Resolution Level vs. Processing Time.


