
Computer Graphics Through
OpenGL: From Theory to
Experiments

by Sumanta Guha

Chapman & Hall/CRC

v





Experimenter Software
(Prepared by Chansophea Chuon and Sumanta Guha)

This file is to help you run the book experiments. It’s in pdf format listing
all the book experiments, with clickable hyperlinks on top of each. For
almost all experiments there is one link, which works in Windows, Mac
OS and Linux environments, to bring up the program file, and another to
bring up the Windows project, which, of course, works only in a Windows
environment. Since source code is not available for the three experiments in
the first chapter, the reader is pointed to a folder with Windows and Mac
executables.

For experiments asking simply to run a book program, Experimenter
brings that program up, while for those asking that a program be modified
significantly, the modified program – the modification being made either in
the code or comments – comes up. For example, an experiment often asks
you to replace a part of a book program with a block of code listed in the text
and, possibly, in a file in the Code/CodeModifications folder, as well, for
easy copy-and-paste. In this case, Experimenter will throw up the modified
program either ready to run or needing only a block to be uncommented,
saving you the trouble of typing or pasting. For trivial modifications of a
program, though, Experimenter links to just the program, leaving you to
make changes.

Note: The names of the folders in ExperimenterSource – e.g., Experiment-
RotateTeapotMore for Experiment 4.7 of the text – mostly do not appear
in the text itself and are of little relevance.

The Experimenter is meant as a convenience. If you are a do-it-yourself
type preferring to tinker with the experiment programs on your own, then
you don’t need it.

Installing and using Experimenter : Download the directory Experimenter-
Source from the book’s website www.sumantaguha.com and install it as a
subfolder of the same folder where you have Experimenter.pdf (the file
you are reading, also to be found at the book’s site). It’s best to use Adobe
Reader to open Experimenter.pdf as other pdf readers might not be able
to resolve the hyperlinks. Windows users should note that Experimenter vii

www.sumantaguha.com


will be slow in bringing up each project the first time, as various config files
have to be generated locally; it should be fast after that.

If you need to learn how to set up an environment in which to run OpenGL
code, see Appendix B of the book, which is also included at the end of this file.

Adding your own experiments to Experimenter : Presuming you are using
Latex, first include the hyperref package in your document. In our case,
we did so with the line

\usepackage[pdftex]{hyperref}

Subsequently, add hyperlinks as follows (a sample from Experimenter’s Latex
file):

Click for \ic{square.cpp}~~~

\href{run:ExperimenterSource/Chapter2/Square/square.cpp}

{{\color{red}\ic{Program}}}~~~

\href{run:ExperimenterSource/Chapter2/Square/Square.vcxproj}

{{\color{red}\ic{Windows Project}}}

Once you have created your own Experimenter-like document with clickable
hyperlinks, you can mix and match pages of it with Experimenter by using
a pdf document manipulating tool.

We hope you find Experimenter of help as you read the book. All feedback
is welcome: send mail to sg@sumantaguha.com.
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Part I

Hello World
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CHAPTER 1
An Invitation to Computer
Graphics

Executables for Windows and the Mac are in the folder
ExperimenterSource/Chapter1/Ellipsoid.

Experiment 1.1. Open the folder Invitation/Ellipsoid in the Code
directory and, hopefully, you’ll then be able to run at least one of the two
executables there for the Ellipsoid program – one for Windows and one
for the Mac. The program draws an ellipsoid (an egg shape). The left of
Figure 1.16 shows the initial screen. There’s plenty of interactivity to try
as well. Press any of the four arrow keys, as well as the page up and down
keys, to change the shape of the ellipsoid, and ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’ to
turn it.

It’s a simple object, but the three-dimensionality of it comes across rather
nicely does it not? As with almost all surfaces that we’ll be drawing ourselves,
the ellipsoid is made up of triangles. To see these press the space bar to
enter wireframe mode. Pressing space again restores the filled mode. The
wireframe reveals the ellipsoid to be made of a mesh of triangles decorated
with large points. A color gradient has apparently been applied toward the
poles as well.

That’s it. There’s really not much more to this program: no lighting or
blending or other effects you may have heard of as possible using OpenGL
(the program was written just a few weeks into the semester). It’s just a
bunch of colored triangles and points laid out in 3D space. The magic is in
those last two words: 3D space. 3D modeling is all about making things in
3D space – not just on a flat plane – to create an illusion of depth, even
when they are viewed on a flat screen. End 3



Chapter 1

An Invitation to

Computer Graphics

Executables for Windows and the Mac are in the folder
ExperimenterSource/Chapter1/AnimatedGarden.

Experiment 1.2. Our next program is animated. It creates a garden
that grows and grows and grows. You will find executables in the folder
Invitation/AnimatedGarden in the Code directory. Press enter to start
the animation; enter again to stop it. The delete key restarts the animation,
while the period (full stop) key toggles between the camera rotating and not.
Again, the space key toggles between wireframe and filled. The middle of
Figure 1.16 is a screenshot a few seconds into the animation.

As you can see from the wireframe, there’s again a lot of triangles (in fact,
the flowers might remind you of the ellipsoid from the previous program).
The plant stems are thick lines and, if you look carefully, you’ll spot points
as well. The one special effect this program has that Ellipsoid did not is
blending. End

Executables for Windows and the Mac are in the folder
ExperimenterSource/Chapter1/Dominos.

Experiment 1.3. Our final program is a movie which shows a Rube
Goldberg domino effect with “real” dominos. The executables are in the
folder Invitation/Dominos in the Code directory. Simply press enter to
start and stop the movie. The screenshot on the right of Figure 1.16 is from
part way through.

This program has a bit of everything – textures, lighting, camera
movement and, of course, a nicely choreographed animation sequence, among
others. End

4



CHAPTER 2
On to OpenGL and 3D Computer
Graphics

Click for square.cpp Program Windows Project

Experiment 2.1. Run square.cpp.

Note: See Appendix B for how to install OpenGL and run our programs on
Windows, Linux and Mac OS platforms.

In the OpenGL window appears a black square over a white background,
as shown in Figure 2.1 (where blue stands in for white to distinguish it from
the paper). We are going to understand next how the square is drawn, and
gain some insight as well into the workings behind the scene. End

Click for square.cpp Program Windows Project

Experiment 2.2. Change the glutInitWindowSize() parameter values
of square.cpp∗ – first to glutInitWindowSize(300, 300) and then
glutInitWindowSize(500, 250). The square changes in size, and even
shape, with the OpenGL window. Therefore, coordinate values appear not
to specify any kind of absolute units on the screen. End

Click for square.cpp modified Program Windows Project

∗When we refer to square.cpp, or any program.cpp, it’s always to the original version
in the Code directory, so if you’ve modified the code for an earlier experiment you’ll need
to copy back the original. 5
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Experiment 2.3. Change only the viewing box of square.cpp by replac-
ing glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100,
100.0, -100.0, 100.0, -1.0, 1.0). The location of the square in the
new viewing box is different and, so as well, the result of shoot-and-print.
Figure 2.10 explains how. End

Click for square.cpp Program Windows Project

Experiment 2.4. Change the parameters of glutInitWindowPosition(x,
y) in square.cpp from the current (100, 100) to a few different values to
determine the location of the origin (0, 0) of the computer screen, as well as
the orientation of the screen’s own x-axis and y-axis. End

Click for square.cpp modified Program Windows Project

Experiment 2.5. Add another square by inserting the following right
after the code for the original square in square.cpp (Block 2):

glBegin(GL POLYGON);

glVertex3f(120.0, 120.0, 0.0);

glVertex3f(180.0, 120.0, 0.0);

glVertex3f(180.0, 180.0, 0.0);

glVertex3f(120.0, 180.0, 0.0);

glEnd();

From the value of its vertex coordinates the second square evidently lies
entirely outside the viewing box.

If you run now there’s no sign of the second square in the OpenGL
window! This is because OpenGL clips the scene to within the viewing box
before rendering, so that objects or parts of objects drawn outside are not
rendered. Clipping is a stage in the graphics pipeline. We’ll not worry about
its implementation at this time, only the effect it has. End

Click for square.cpp modified Program Windows Project

Experiment 2.6. For a more dramatic illustration of clipping, first replace
the square in the original square.cpp with a triangle; in particular, replace
the polygon code with the following (Block 3):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();6



Next, lift the first vertex up the z-axis by changing it to glVertex3f(20.0,
20.0, 0.5); lift it further by changing its z-value to 1.5 (Figure 2.12 is a
screenshot), then 2.5 and, finally, 10.0. Make sure you believe that what you
see in the last three cases is indeed a triangle clipped to within the viewing
box – Figure 2.13 may be helpful. End

Click for square.cpp Program Windows Project

Experiment 2.7. The color of the square in square.cpp is specified by
the three parameters of the glColor3f(0.0, 0.0, 0.0) statement in the
drawScene() routine, each of which gives the value of one of the three
primary components, blue, green and red .

Determine which of the three parameters of glColor3f() specifies the
blue, green and red components by setting in turn each to 1.0 and the others
to 0.0. In fact, verify the following table:

Call Color
glColor3f(0.0, 0.0, 0.0) Black
glColor3f(1.0, 0.0, 0.0) Red
glColor3f(0.0, 1.0, 0.0) Green
glColor3f(0.0, 0.0, 1.0) Blue
glColor3f(1.0, 1.0, 0.0) Yellow
glColor3f(1.0, 0.0, 1.0) Magenta
glColor3f(0.0, 1.0, 1.0) Cyan
glColor3f(1.0, 1.0, 1.0) White

End

Click for square.cpp modified Program Windows Project

Experiment 2.8. Add the additional color declaration statement gl-
Color3f(1.0, 0.0, 0.0) just after the existing one glColor3f(0.0, 0.0,
0.0) in the drawing routine of square.cpp so that the foreground color
block becomes

// Set foreground (or drawing) color.

glColor3f(0.0, 0.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

The square is drawn red because the current value of the foreground color is
red when each of its vertices is specified. End

Click for square.cpp modified Program Windows Project 7



Chapter 2

On to OpenGL and

3D Computer

Graphics

Experiment 2.9. Replace the polygon declaration part of square.cpp
with the following to draw two squares (Block 5):

glColor3f(1.0, 0.0, 0.0);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

glColor3f(0.0, 1.0, 0.0);

glBegin(GL POLYGON);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(60.0, 40.0, 0.0);

glVertex3f(60.0, 60.0, 0.0);

glVertex3f(40.0, 60.0, 0.0);

glEnd();

A small green square appears inside a larger red one (Figure 2.14).
Obviously, this is because the foreground color is red for the first square,
but green for the second. One says that the color red binds to the first
square – or, more precisely, to each of its four specified vertices – and green
to the second square. These bound values specify the color attribute of either
square. Generally, the values of those state variables which determine how
it is rendered collectively form a primitive’s attribute set.

Flip the order in which the two squares appear in the code by cutting the
seven statements that specify the red square and pasting them after those to
do with the green one. The green square is overwritten by the red one and no
longer visible because OpenGL draws in code order : primitives are rendered
to the screen as they are specified in the code. This is called immediate
mode graphics. One could also call it memory-less graphics, as primitives
are not stored in the rendering pipeline, but drawn (and forgotten). End

Click for square.cpp modified Program Windows Project

Experiment 2.10. Replace the polygon declaration part of square.cpp
with (Block 6):

glBegin(GL POLYGON);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 1.0, 0.0);8



glVertex3f(20.0, 80.0, 0.0);

glEnd();

The different color values bound to the four vertices of the square are evidently
interpolated over the rest of the square as you can see in Figure 2.15. In fact,
this is most often the case with OpenGL: numerical attribute values specified
at the vertices of a primitive are interpolated throughout its interior. In a
later chapter we’ll see exactly what it means to interpolate and how OpenGL
goes about the task. End

Click for square.cpp modified Program Windows Project

Experiment 2.11. Replace glBegin(GL POLYGON) with glBegin(GL -
POINTS) in square.cpp and make the point size bigger with a call to
glPointSize(5.0), so that the part drawing the polygon is now

glPointSize(5.0); // Set point size.

glBegin(GL POINTS);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

End

Click for square.cpp modified Program Windows Project

Experiment 2.12. Continue, replacing GL POINTS with GL LINES, GL -
LINE STRIP and, finally, GL LINE LOOP. End

Click for square.cpp modified Program Windows Project

Experiment 2.13. Replace the polygon declaration part of square.cpp
with (Block 8):

glBegin(GL TRIANGLES);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(80.0, 40.0, 0.0);

glEnd(); 9
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End

Click for square.cpp modified Program Windows Project

Experiment 2.14. In fact, it’s often easier to decipher a 2D primitive
by viewing it in outline. Accordingly, continue the preceding experiment
by inserting the call glPolygonMode(GL FRONT AND BACK, GL LINE) in the
drawing routine and, further, replacing GL TRIANGLES with GL TRIANGLE -
STRIP. The relevant part of the display routine then is as below:

// Set polygon mode.

glPolygonMode(GL FRONT AND BACK, GL LINE);

// Draw a triangle strip.

glBegin(GL TRIANGLE STRIP);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(80.0, 40.0, 0.0);

glEnd();

End

Click for square.cpp modified Program Windows Project

Experiment 2.15. Replace the polygon declaration part of square.cpp
with (Block 9):

glBegin(GL TRIANGLE FAN);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(15.0, 90.0, 0.0);

glVertex3f(55.0, 75.0, 0.0);

glVertex3f(80.0, 30.0, 0.0);

glVertex3f(90.0, 10.0, 0.0);

glEnd();

Apply both the filled and outlined drawing modes. End

Click for square.cpp modified Program Windows Project

Experiment 2.16. Replace the polygon declaration part of square.cpp
with (Block 10):10



glBegin(GL QUADS);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(40.0, 20.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(15.0, 80.0, 0.0);

glVertex3f(20.0, 10.0, 0.0);

glVertex3f(90.0, 20.0, 0.0);

glVertex3f(90.0, 75.0, 0.0);

glEnd();

Apply both the filled and outlined drawing modes. End

Click for square.cpp modified Program Windows Project

Experiment 2.17. Replace the polygon declaration part of square.cpp
with (Block 11):

glBegin(GL QUAD STRIP);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(30.0, 80.0, 0.0);

glVertex3f(40.0, 15.0, 0.0);

glVertex3f(60.0, 75.0, 0.0);

glVertex3f(60.0, 25.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(85.0, 20.0, 0.0);

glEnd();

Apply both the filled and outlined drawing modes. End

Click for square.cpp modified Program Windows Project

Experiment 2.18. Replace the polygon declaration of square.cpp with
(Block 12):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 50.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

You see a convex 5-sided polygon (Figure 2.19(a)). End

Click for square.cpp modified Program Windows Project 11
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Experiment 2.19. Replace the polygon declaration of square.cpp with
(Block 13):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Display it both filled and outlined using appropriate glPolygonMode()
calls. A non-convex quadrilateral is drawn in either case (Figure 2.19(b)).
Next, keeping the same cycle of vertices as above, list them starting with
glVertex3f(80.0, 20.0, 0.0) instead (Block 14):

glBegin(GL POLYGON);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle,
while outlined it’s a non-convex quadrilateral identical to the one output
earlier (Figure 2.19(c))! Because the cyclic order of the vertices is unchanged,
shouldn’t it be as in Figure 2.19(b) both filled and outlined? End

Click for circle.cpp Program Windows Project

Experiment 2.20. Run circle.cpp. Increase the number of vertices in
the line loop

glBegin(GL LINE_LOOP);

for(i = 0; i < numVertices; ++i)

{
glColor3ub(rand()%256, rand()%256, rand()%256);

glVertex3f(X + R * cos(t), Y + R * sin(t), 0.0);

t += 2 * PI / numVertices;

}
glEnd();

by pressing ‘+’ till it “becomes” a circle, as in the screenshot of Figure 2.21.
Press ‘-’ to decrease the number of vertices. The glColor3ub() statement
is for eye candy. End

Click for parabola.cpp Program Windows Project12



Experiment 2.21. Run parabola.cpp. Press ‘+/-’ to increase/decrease
the number of vertices of the approximating line strip. Figure 2.23 is a
screenshot with enough vertices to make a smooth-looking parabola.

The vertices are equally spaced along the x-direction. The parametric
equations implemented are

x = 50 + 50t, y = 100t2, z = 0, −1 ≤ t ≤ 1

the constants being chosen so that the parabola is centered in the OpenGL
window. End

Click for circularAnnuluses.cpp Program Windows Project

Experiment 2.22. Run circularAnnuluses.cpp. Three identical-
looking red circular annuluses (see Figure 2.24) are drawn in three different
ways:

i) Upper-left: There is not a real hole. The white disc overwrites the red
disc as it appears later in the code.

glColor3f(1.0, 0.0, 0.0);

drawDisc(20.0, 25.0, 75.0, 0.0);

glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 25.0, 75.0, 0.0);

Note: The first parameter of drawDisc() is the radius and the
remaining three the coordinates of the center.

ii) Upper-right: There is not a real hole either. A white disc is drawn
closer to the viewer than the red disc thus blocking it out.

glEnable(GL DEPTH TEST);

glColor3f(1.0, 0.0, 0.0);

drawDisc(20.0, 75.0, 75.0, 0.0);

glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 75.0, 75.0, 0.5);

glDisable(GL DEPTH TEST);

Observe that the z-value of the white disc’s center is greater than the
red disc’s. We’ll discuss the mechanics of one primitive blocking out
another momentarily.

iii) Lower: A true circular annulus with a real hole.

if (isWire) glPolygonMode(GL FRONT, GL LINE);

else glPolygonMode(GL FRONT, GL FILL); 13
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glColor3f(1.0, 0.0, 0.0);

glBegin(GL TRIANGLE STRIP);

. . .
glEnd();

Press the space bar to see the wireframe of a triangle strip. End

Click for helix.cpp Program Windows Project

Experiment 2.23. Okay, run helix.cpp now. All we see is a circle as in
Figure 2.27(a)! There’s no sign of any coiling up or down. The reason, of
course, is that the orthographic projection onto the viewing face flattens the
helix. Let’s see if it makes a difference to turn the helix upright, in particular,
so that it coils around the y-axis. Accordingly, replace the statement

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

in the drawing routine with

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

Hmm, not a lot better (Figure 2.27(b))! End

Click for helix.cpp modified Program Windows Project

Experiment 2.24. Fire up the original helix.cpp program. Replace
orthographic projection with perspective projection; in particular, replace
the projection statement

glOrtho(-50.0, 50.0, -50.0, 50.0, 0.0, 100.0);

with

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

You can see a real spiral now (Figure 2.30(a)). View the upright version as
well (Figure 2.30(b)), replacing

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

with

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

A lot better than the orthographic version is it not?! End

Click for moveSphere.cpp Program Windows Project14



Experiment 2.25. Run moveSphere.cpp, which simply draws a movable
sphere in the OpenGL window. Press the left, right, up and down arrow
keys to move the sphere, the space bar to rotate it and ‘r’ to reset.

The sphere appears distorted as it nears the periphery of the window,
as you can see from the screenshot in Figure 2.31. Can you guess why?
Ignore the code, especially unfamiliar commands such as glTranslatef()
and glRotatef(), except for the fact that the projection is perspective.

This kind of peripheral distortion of a 3D object is unavoidable in any
viewing system which implements the synthetic-camera model. It happens
with a real camera as well, but we don’t notice it as much because the field
of view when snapping pictures is usually quite large and objects of interest
tend to be centered. End

Click for hemisphere.cpp Program Windows Project

Experiment 2.26. Run hemisphere.cpp, which implements exactly the
strategy just described. You can verify this from the snippet that draws the
hemisphere:

for(j = 0; j < q; j++)

{
// One latitudinal triangle strip.

glBegin(GL TRIANGLE STRIP);

for(i = 0; i <= p; i++)

{
glVertex3f(R * cos((float)(j+1)/q * PI/2.0) *

cos(2.0 * (float)i/p * PI),

R * sin((float)(j+1)/q * PI/2.0),

R * cos((float)(j+1)/q * PI/2.0) *

sin(2.0 * (float)i/p * PI));

glVertex3f(R * cos((float)j/q * PI/2.0) *

cos(2.0 * (float)i/p * PI),

R * sin((float)j/q * PI/2.0),

R * cos((float)j/q * PI/2.0) *

sin(2.0 *(float)i/p * PI));

}
glEnd();

}

Increase/decrease the number of longitudinal slices by pressing ‘P/p’.
Increase/decrease the number of latitudinal slices by pressing ‘Q/q’. Turn
the hemisphere about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’. See
Figure 2.34 for a screenshot. End

Click for hemisphere.cpp Program Windows Project 15
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Experiment 2.27. Playing around a bit with the code will help clarify
the construction of the hemisphere:

(a) Change the range of the hemisphere’s outer loop from

for(j = 0; j < q; j++)

to

for(j = 0; j < 1; j++)

Only the bottom strip is drawn. The keys ‘P/p’ and ‘Q/q’ still work.

(b) Change it again to

for(j = 0; j < 2; j++)

Now, the bottom two strips are drawn.

(c) Reduce the range of both loops:

for(j = 0; j < 1; j++)

. . .
for(i = 0; i <= 1; i++)

. . .

The first two triangles of the bottom strip are drawn.

(d) Increase the range of the inner loop by 1:

for(j = 0; j < 1; j++)

. . .
for(i = 0; i <= 2; i++)

. . .

The first four triangles of the bottom strip are drawn. End

16
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CHAPTER 3
An OpenGL Toolbox

Click for squareAnnulus1.cpp Program Windows Project

Experiment 3.1. Run squareAnnulus1.cpp. A screenshot is seen in
Figure 3.1(a). Press the space bar to see the wireframe in Figure 3.1(b).

It is a plain-vanilla program which draws the square annulus diagrammed
in Figure 3.2 using a single triangle strip (and multiply-colored vertices).

End

Click for squareAnnulus2.cpp Program Windows Project

Experiment 3.2. Run squareAnnulus2.cpp.
It draws the same annulus as squareAnnulus1.cpp, except that the

vertex coordinates and color data are now stored in two-dimensional global
arrays, vertices and colors, respectively. A vector of coordinate values is
retrieved by the pointer form (also called vector form) of vertex declaration,
namely, glVertex3fv(*pointer). Similarly, a vector of color values is
retrieved with the pointer form glColor3fv(*pointer).

Compared with squareAnnulus1.cpp, the obvious efficiency gained is
in placing vertex and color data at one place in the code and then simply
pointing to them from elsewhere. End

Click for squareAnnulus3.cpp Program Windows Project

Experiment 3.3. Run squareAnnulus3.cpp.
It again draws the same colorful annulus as before. The coordinates and

color data of the vertices are stored in one-dimensional global vertex arrays,
vertices and colors, respectively, as in squareAnnulus2.cpp, except, now, 19
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the arrays are flat and not 2D. The ith vector of values from both arrays is
retrieved simultaneously with a single glArrayElement(i) call.

Note the initialization steps:

1. Two vertex arrays are enabled with calls to glEnableClientState-
(array), where array is, successively, GL VERTEX ARRAY and GL COLOR -
ARRAY. There are other possible values for the parameter array to store
different kinds of data (we’ll be storing normal and texture coordinates
later).

2. The data for the two vertex arrays is specified with a call to gl-
VertexPointer(size, type, stride, *pointer) and a call to glColor-
Pointer(size, type, stride, *pointer). The parameter pointer is the
address of the start of the data array, type declares the data type, size
is the number of values per vertex (both coordinate and color arrays
store 3 values for each vertex) and stride is the byte offset between the
start of the values for successive vertices (0 indicates that values for
successive vertices are not separated). End

Click for squareAnnulus4.cpp Program Windows Project

Experiment 3.4. Run squareAnnulus4.cpp.
The code is even more concise with the application of a single call of

the form glDrawElements(primitive, count, type, *indices) to draw the
triangle strip. Parameter primitive is a geometric primitive, indices is the
address of the start of an array of indices, type is the data type of the indices
array and count is the number indices to use. The call itself is equivalent to
the loop

glBegin(primitive);
for(i = 0; i < count; i++) glArrayElement(indices[i]);

glEnd();

End

Click for squareAnnulusAndTriangle.cpp Program Windows Project

Experiment 3.5. Run squareAnnulusAndTriangle.cpp, which adds a
triangle inside the annulus of the squareAnnulus*.cpp programs. See
Figure 3.3 for a screenshot.

This program demonstrates the use of multiple vertex arrays. The
vertex arrays vertices1 and colors1 contain the coordinate and color
data, respectively, for the annulus, exactly as in squareAnnulus3.cpp and
squareAnnulus4.cpp.20



The single vertex array vertices2AndColors2Intertwined for the
triangle, on the other hand, is intertwined in that it contains both coordinate
and color data together. When pointing to data for the triangle, the stride
parameter of both the glVertexPointer() and glColorPointer() calls is
set to 6 times the number of bytes in a float data item, as there are 6
such items between the start of successive coordinate or color vectors in the
intertwined array. End

Click for helixList.cpp Program Windows Project

Experiment 3.6. Run helixList.cpp, which shows many copies of the
same helix, variously transformed and colored. Figure 3.4 is a screenshot.

Here’s the snippet from the initialization routine that makes a display
list to draw the helix:

aHelix = glGenLists(1);

glNewList(aHelix, GL COMPILE);

glBegin(GL LINE STRIP);

for(t = -10 * PI; t <= 10 * PI; t += PI/20.0)

glVertex3f(20 * cos(t), 20 * sin(t), t);

glEnd();

glEndList();

The call glGenLists(range) returns an integer which starts a block of
size range of available display list indices. If a block of size range is not
available, 0 is returned.

The set of commands to be cached in a display list – a helix-
drawing routine in the case of helixList.cpp – is grouped between a
glNewList(listName, mode) and a glEndList() statement. The parameter
listName – aHelix in helixList.cpp – is the index which identifies the list.
The parameter mode may be GL COMPILE (only store, as in the program) or
GL COMPILE AND EXECUTE (store and execute immediately).

Finally, the drawing routine of helixList.cpp invokes glCallList(aHelix)
six times to execute the display list. The glPushMatrix()-glPopMatrix()
statement pairs, as also the modeling transformations (viz., glTranslatef(),
glRotatef(), glScalef()) within these pairs, are used to position and scale
copies of the helix. Ignore them if they don’t make sense at present. End

Click for multipleLists.cpp Program Windows Project

Experiment 3.7. Run multipleLists.cpp. See Figure 3.5 for a
screenshot. Three display lists are defined in the program: to draw a
red triangle, a green rectangle and a blue pentagon, respectively.

The call glCallLists(n, type, *lists) causes n display list executions
(n is 6 in the program). The indices of the lists to be executed are 21
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obtained by adding the current display list base – this base is specified
by glListBase(base) – to the successive offset values of type type in the
array pointed by lists. End

Click for fonts.cpp Program Windows Project

Experiment 3.8. Run fonts.cpp. Displayed are the various fonts
available through the GLUT library. See Figure 3.7. End

Click for mouse.cpp Program Windows Project

Experiment 3.9. Run mouse.cpp. Click the left mouse button to draw
points on the canvas and the right one to exit. Figure 3.8 is a screenshot of
“OpenGL” scrawled in points. End

Click for mouseMotion.cpp Program Windows Project

Experiment 3.10. Run mouseMotion.cpp, which enhances mouse.cpp
by allowing the user to drag the just-created point using the mouse with the
left button still pressed. End

Click for moveSphere.cpp Program Windows Project

Experiment 3.11. Run moveSphere.cpp, a program we saw earlier in
Experiment 2.25, where you can see a screenshot as well. Press the left,
right, up and down arrow keys to move the sphere, the space bar to rotate
it and ‘r’ to reset.

Note how the specialKeyInput() routine is written to enable the arrow
keys to change the location of the sphere. Subsequently, this routine is
registered in main() as the handling routine for non-ASCII entry. End

Click for menus.cpp Program Windows Project

Experiment 3.12. Run menus.cpp. Press the right mouse button for
menu options which allow you to change the color of the initially red square
or exit. Figure 3.10 is a screenshot.

A glutCreateMenu(menu function) declaration in the makeMenu()
routine creates a menu, registers menu function() as its callback function
and returns a unique integer identifying the menu – to be used by any
higher-level menu which may call the current one.22



glutAddMenuEntry(tag, returned value) creates a menu entry titled
tag which, when clicked, returns returned value to the callback function
menu function(). The latter, therefore, must be of the form menu function-
(type of returned value).

glutAddSubMenu(tag, sub menu) is similar to glutAddMenuEntry(),
except that when tag is clicked a sub-menu pops up whose ID is sub menu.
Evidently, the statement creating a sub-menu must precede that for a higher-
level menu which calls it, as the former’s ID sub menu is needed in order to
create the latter.

glutAttachMenu(button) attaches the menu to a mouse button. End

Click for lineStipple.cpp Program Windows Project

Experiment 3.13. Run lineStipple.cpp. Press the space bar to cycle
through stipples. A screenshot is shown in Figure 3.11. End

Click for canvas.cpp Program Windows Project

Experiment 3.14. Run canvas.cpp, a simple program to draw on a flat
canvas with menu and mouse functionality.

Left click on an icon to select it. Then left click on the drawing area to
draw – click once to draw a point, twice to draw a line or rectangle. Right
click for menu options. Figure 3.13 is a screenshot. End

Click for glutObjects.cpp Program Windows Project

Experiment 3.15. Run glutObjects.cpp. Press the arrow keys to cycle
through the various GLUT objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn them.

End

Click for clippingPlanes.cpp Program Windows Project

Experiment 3.16. Run clippingPlanes.cpp, which augments circular-
Annuluses.cpp with two additional clipping planes which can be toggled
on and off by pressing ‘0’ and ‘1’, respectively.

The first plane clips off the half-space −z + 0.25 < 0, i.e., z > 0.25,
removing the floating white disc of the annulus on the upper-right. The
second one clips off the half-space x+ 0.5y < 60.0, which is the space below
an angled plane parallel to the z-axis. Figure 3.16 is a screenshot of both
clipping planes activated. End 23
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Click for hemisphere.cpp Program Windows Project

Experiment 3.17. Run hemisphere.cpp.
The initial OpenGL window is a square 500× 500 pixels. Drag a corner

to change its shape, making it tall and thin. The hemisphere is distorted
to become ellipsoidal (Figure 3.21(a)). Replace the perspective projection
statement

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

with

gluPerspective(90.0, 1.0, 5.0, 100.0);

As this is equivalent to the original glFrustum() call, there is still distortion
if the window’s shape is changed. Next, replace the projection statement
with

gluPerspective(90.0, (float)w/(float)h, 5.0, 100.0);

which sets the aspect ratio of the viewing frustum equal to that of the
OpenGL window. Resize the window – the hemisphere is no longer distorted
(Figure 3.21(b))! End

Click for viewports.cpp Program Windows Project

Experiment 3.18. Run viewports.cpp where the screen is split into two
viewports with contents a square and a circle, respectively. Figure 3.23 is a
screenshot.

A vertical black line is drawn (in the program) at the left end of the
second viewport to separate the two. As the aspect ratio of both viewports
differs from that of the viewing face, the square and circle are squashed
laterally. End

Click for windows.cpp Program Windows Project

Experiment 3.19. Run windows.cpp, which creates two top-level win-
dows (Figure 3.24). End

24
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CHAPTER 4
Transformation, Animation and
Viewing

Click for box.cpp Program Windows Project

Experiment 4.1. Run box.cpp, which shows an axis-aligned – i.e., with
sides parallel to the coordinate axes – GLUT wireframe box of dimensions
5× 5× 5. Figure 4.1 is a screenshot. Note the foreshortening – the back of
the box appears smaller than the front – because of perspective projection
in the viewing frustum specified by the glFrustum() statement.
Comment out the statement

glTranslatef(0.0, 0.0, -15.0);

What do you see now? Nothing ! We’ll explain why momentarily. End

Click for box.cpp modified Program Windows Project

Experiment 4.2. Successively replace the translation command of
box.cpp with the following, making sure that what you see matches your
understanding of where the command places the box. Keep in mind
foreshortening, as well as clipping to within the viewing frustum.

1. glTranslatef(0.0, 0.0, -10.0)

2. glTranslatef(0.0, 0.0, -5.0)

3. glTranslatef(0.0, 0.0, -25.0)

4. glTranslatef(10.0, 10.0, -15.0) 27
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End

Click for box.cpp modified Program Windows Project

Experiment 4.3. Add a scaling command, in particular, replace the
modeling transformation block of box.cpp with (Block 1∗):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(2.0, 3.0, 1.0);

Figure 4.4 is a screenshot – compare with the unscaled box of Figure 4.1.
End

Click for box.cpp modified Program Windows Project

Experiment 4.4. An object less symmetric than a box is more interesting
to work with. How about a teapot? Accordingly, change the modeling
transformation and object definition part of box.cpp to (Block 2):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 1.0, 1.0);

glutWireTeapot(5.0); // Teapot.

Of course, glScalef(1.0, 1.0, 1.0) does nothing and we see the original
unscaled teapot (Figure 4.6).

Next, successively change the scaling parameters by replacing the scaling
command with the ones below. In each case make, sure your understanding
of the command matches the change that you see in the shape of the teapot.

1. glScalef(2.0, 1.0, 1.0)

2. glScalef(1.0, 2.0, 1.0)

3. glScalef(1.0, 1.0, 2.0) End

Click for box.cpp modified Program Windows Project

Experiment 4.5. Replace the cube of box.cpp with a square whose sides
are not parallel to the coordinate axes. In particular, replace the modeling
transformation and object definition part of that program with (Block 3):

∗To cut-and-paste you can find the block in text format in the file
chap4codeModifications.txt in the directory Code/CodeModifications.28



// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glScalef(1.0, 3.0, 1.0);

glBegin(GL LINE LOOP);

glVertex3f(4.0, 0.0, 0.0);

glVertex3f(0.0, 4.0, 0.0);

glVertex3f(-4.0, 0.0, 0.0);

glVertex3f(0.0, -4.0, 0.0);

glEnd();

See Figure 4.8(a). Verify by elementary geometry that the line loop forms a
square with sides of length 4

√
2 angled at 45◦ to the axes.

Uncomment the scaling. See Figure 4.8(b). The square now seems skewed
to a non-rectangular parallelogram. Apply the transformation (x, y, z) 7→
(x, 3y, z) to each vertex of the original square to verify that the new shape
is indeed a parallelogram. End

Click for box.cpp modified Program Windows Project

Experiment 4.6. Add a rotation command by replacing the modeling
transformation and object definition part – we prefer a teapot – of box.cpp
with (Block 4):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(60.0, 0.0, 0.0, 1.0);

glutWireTeapot(5.0);

Figure 4.9 is a screenshot.
The rotation command glRotatef(A, p, q, r) rotates each point of an

object about an axis along the line from the origin O = (0, 0, 0) to the point
(p, q, r). The amount of rotation is A◦, measured counter-clockwise when
looking from (p, q, r) to the origin. In this experiment, then, the rotation is
60◦ CCW (counter-clockwise) looking down the z-axis. End

Click for box.cpp modified Program Windows Project

Experiment 4.7. Continuing with Experiment 4.6, successively replace
the rotation command with the ones below, in each case trying to match
what you see with your understanding of how the command should turn the
teapot. (It can occasionally be a bit confusing because of the perspective
projection.)

1. glRotatef(60.0, 0.0, 0.0, -1.0) 29
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2. glRotatef(-60.0, 0.0, 0.0, 1.0)

3. glRotatef(60.0, 1.0, 0.0, 0.0)

4. glRotatef(60.0, 0.0, 1.0, 0.0)

5. glRotatef(60.0, 1.0, 0.0, 1.0) End

Click for box.cpp modified Program Windows Project

Experiment 4.8. Appropriately modify box.cpp to compare the effects
of each of the following pairs of rotation commands:

1. glRotatef(60.0, 0.0, 0.0, 1.0) and glRotatef(60.0, 0.0, 0.0,
5.0)

2. glRotatef(60.0, 0.0, 2.0, 2.0) and glRotatef(60.0, 0.0, 3.5,
3.5)

3. glRotatef(60.0, 0.0, 0.0, -1.0) and glRotatef(60.0, 0.0, 0.0,
-7.5)

There is no difference in each case. One concludes that the rotation command
glRotatef(A, p, q, r) is equivalent to glRotatef(A,αp, αq, αr), where α is
any positive scalar. End

Click for box.cpp modified Program Windows Project

Experiment 4.9. Apply three modeling transformations by replacing the
modeling transformations block of box.cpp with (Block 5):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glTranslatef(10.0, 0.0, 0.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

It seems the box is first rotated 45◦ about the z-axis and then translated
right 10 units. See Figure 4.12(a). The first translation glTranslatef(0.0,
0.0, -15.0), of course, serves only to “kick” the box down the z-axis into
the viewing frustum.

Next, interchange the last two transformations, namely, the rightward
translation and the rotation, by replacing the modeling transformations
block with (Block 6):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0);30



It seems that the box is now first translated right and then rotated about
the z-axis causing it “rise”. See Figure 4.12(b). End

Click for box.cpp modified Program Windows Project

Experiment 4.10. Replace the entire display routine of the original
box.cpp with (Block 10):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

glFlush();

}

See Figure 4.14(a) for a screenshot. The objects are a box and a sphere.
End

Click for box.cpp modified Program Windows Project

Experiment 4.11. Continuing with the previous experiment, uncomment
the glRotatef() statement. Figure 4.14(b) is a screenshot.

Again, the individual placements are fairly straightforward. Working
backwards from where it is created we see that, after being translated to (5.0,
10.0, 0.0), the sphere is rotated 45◦ counter-clockwise about the z-axis and,
of course, finally pushed 15 units in the −z direction. We’ll not compute
the exact final coordinates of its center. The individual placement of the
box is simple to parse as well and left to the reader.

It’s the relative placement which is particularly interesting in this case.
The sphere is no longer vertically above the box, though the transformation
between them is still glTranslatef(0.0, 10.0, 0.0)! Before trying to
explain what’s going on let’s return to the basics for a moment. End 31
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Click for box.cpp modified Program Windows Project

Experiment 4.12. Repeat Experiment 4.11. The modeling transformation
and object definition part are as below (Block 11):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

First, comment out the last two statements of the first modeling
transformations block as below (the first translation is always needed to
place the entire scene in the viewing frustum):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

// glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

The output is as depicted in Figure 4.16(a).
Next, uncomment glTranslatef(5.0, 0.0, 0.0) as below:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

The output is as in Figure 4.16(b). Finally, uncomment glRotatef(45.0,
0.0, 0.0, 1.0) as follows:32



// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

glFlush();

The result is seen in Figure 4.16(c). Figure 4.16 shows the box’s local
coordinate system as well after each transition. Observe that in this particular
system the sphere is always 10 units vertically above the box, as one would
expect from the glTranslatef (0.0, 10.0, 0.0) call between the two.

End

Click for composeTransformations.cpp Program Windows Project

Experiment 4.13. Run composeTransformations.cpp. Pressing the up
arrow key once causes the last statement, viz., drawBlueMan, of the following
piece of code to be executed:

glScalef(1.5, 0.75, 1.0);

glRotatef(30.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0);

drawRedMan; // Also draw grid in his local coordinate system.

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(20.0, 0.0, 0.0);

drawBlueMan;

With each press of the up arrow we go back a statement and successively
execute that statement and the ones that follow it. The statements executed
are written in black text, the rest white. Pressing the down arrow key goes
forward a statement. Figure 4.17 is a screenshot after all transformations
from the scaling on have been executed.

The torso and arms of both men are aligned along their respective local
coordinate axes. The world coordinate axes which never change are drawn
in cyan. At the time of the red man’s creation also drawn is a 10 × 10
grid of boxes in his local coordinate system, the sides of each box being
5 units long. With each transformation going back from the red man’s
creation, observe – focus on a point like the blue man’s origin and trust
your eyes – how the blue man stays static in the red man’s local coordinate
system. A simple calculation shows that the blue man’s origin is actually 33
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at (20/
√

2, 20/
√

2) ' (14.14, 14.14) in the red man’s system. Even when
scaling skews the red man’s system so that it’s not rectangular any more,
the blue man skews the same way as well, staying put in the red system.

End

Click for box.cpp modified Program Windows Project

Experiment 4.14. We want to create a human-like character. Our plan
is to start by drawing the torso as an elongated cube and placing a round
sphere as its head directly on top of the cube (no neck for now). To this end
replace the drawing routine of box.cpp with (Block 12):

void drawScene(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0); // Box torso.

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8); // Spherical head.

glFlush();

}

Our calculations are as follows: (a) the scaled box is 5× 10× 5 and, being
centered at the origin, is 5 units long in the +y direction; (b) the sphere
is of radius 2; (c) therefore, if the sphere is translated 5 + 2 = 7 in the +y
direction, then it should sit exactly on top of the box (see Figure 4.18(a)).

It doesn’t work: the sphere is no longer round and is, moreover, some
ways above the box (Figure 4.18(b)). Of course, because the sphere is
transformed by glScalef(1.0, 2.0, 1.0) as well! So, what to do? A
solution is to isolate the scaling by placing it within a push-pop pair as below
(Block 13):

void drawScene(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

glTranslatef(0.0, 0.0, -15.0);

34



glPushMatrix();

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0); // Box.

glPopMatrix();

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8); // Sphere.

glFlush();

}

End

Click for rotatingHelix1.cpp Program Windows Project

Experiment 4.15. Run rotatingHelix1.cpp where each press of space
calls the increaseAngle() routine to turn the helix. Note the glutPostRedisplay()
command in increaseAngle() which asks the screen to be redrawn. Keeping
the space bar pressed turns the helix continuously. Figure 4.20 is a screenshot.

End

Click for rotatingHelix2.cpp Program Windows Project

Experiment 4.16. Run rotatingHelix2.cpp, a slight modification of
rotatingHelix1.cpp, where pressing space causes the routines increaseAngle()
and NULL (do nothing) to be alternately specified as idle functions.

The speed of animation is determined by the processor speed – in
particular, the speed at which frames can be redrawn – and the user cannot
influence it. End

Click for rotatingHelix3.cpp Program Windows Project

Experiment 4.17. Run rotatingHelix3.cpp, another modification of
rotatingHelix1.cpp, where the particular timer function animate() is
first called from the main routine 5 msecs. after the glutTimerFunc(5,
animate, 1) command there. The parameter value 1 which is passed to
animate() is not used in this program. The routine increaseAngle() called
by animate() turns the helix as before.

Subsequent calls to animate() are made recursively from that routine
itself after animationPeriod number of msecs., by means of its own
glutTimerFunc(animationPeriod, animate, 1) call. The user can vary
the speed of animation by changing the value of animationPeriod by
pressing the up and down arrow keys. End 35
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Click for rotatingHelix2.cpp modified Program Windows Project

Experiment 4.18. Disable double buffering in rotatingHelix2.cpp by
replacing GLUT DOUBLE with GLUT SINGLE in the glutInitDisplayMode()
call in main, and replacing glutSwapBuffers() in the drawing routine with
glFlush(). Ghostly is it not?! End

Click for ballAndTorus.cpp Program Windows Project

Experiment 4.19. Run ballAndTorus.cpp. Press space to start the
ball both flying around (longitudinal rotation) and in and out (latitudinal
rotation) of the torus. Press the up and down arrow keys to change the
speed of the animation. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to change the viewpoint.
Figure 4.21 is a screenshot.

The animation of the ball is interesting and we’ll deconstruct it. Comment
out all the modeling transformations in the ball’s block, except the last
translation, as follows:

// Begin revolving ball.

// glRotatef(longAngle, 0.0, 0.0, 1.0);

// glTranslatef(12.0, 0.0, 0.0);

// glRotatef(latAngle, 0.0, 1.0, 0.0);

// glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 10);

// End revolving ball.

The ball is centered at (20, 0, 0), its start position, by glTranslatef(20.0,
0.0, 0.0). See Figure 4.22. There is no animation.

The ball’s intended latitudinal rotation is in and out of the circle C1

through the middle of the torus. C1’s radius, called the outer radius of the
torus, is 12.0, as specified by the second parameter of glutWireTorus(2.0,
12.0, 20, 20). Moreover, C1 is centered at the origin and lies on the
xy-plane. Therefore, ignoring longitudinal motion for now, the latitudinal
rotation of the ball from its start position is about the line L through (12, 0, 0)
parallel to the y-axis (L is tangent to C1). This rotation will cause the
ball’s center to travel along the circle C2 centered at (12, 0, 0), lying on the
xz-plane, of radius 8.

As glRotatef() always rotates about a radial axis, how does one obtain
the desired rotation about L, a non-radial line? Employ the Trick (see
Example 4.2, if you don’t remember). First, translate left so that L is
aligned along the y-axis, then rotate about the y-axis and, finally, reverse the36



first translation to bring L back to where it was. Accordingly, uncomment
the corresponding three modeling transformations as below:

// Begin revolving ball.

// glRotatef(longAngle, 0.0, 0.0, 1.0);

glTranslatef(12.0, 0.0, 0.0);

glRotatef(latAngle, 0.0, 1.0, 0.0);

glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 10);

// End revolving ball.

Press space to view only latitudinal rotation.

Note: The two consecutive translation statements could be combined into
one, but then the code would be less easy to parse.

Finally, uncomment glRotatef(longAngle, 0.0, 0.0, 1.0) to im-
plement longitudinal rotation about the z-axis. The angular speed of
longitudinal rotation is set to be five times slower than that of latitudinal
rotation – see the increments to latAngle and longAngle in the animate()
routine. This means the ball winds in and out of the torus five times by the
time it completes one trip around it. End

Click for ballAndTorus.cpp modified Program Windows Project

Experiment 4.20. We want to add a satellite that tags along with the
ball of ballAndTorus.cpp. The following piece of code added to the end
of the drawing routine – just before glutSwapBuffers() – does the job
(Block 14):

glTranslatef(4.0, 0.0, 0.0);

// Satellite

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5);

See Figure 4.23 for a screenshot. For a revolving satellite add the following
instead (Block 15):

glRotatef(10*latAngle, 0.0, 1.0, 0.0);

glTranslatef(4.0, 0.0, 0.0);

// Satellite

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5); 37
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Observe how Proposition 4.1 is being applied in both cases to determine
the motion of the satellite relative to the ball by means of transformation
statements between the two. End

Click for throwBall.cpp Program Windows Project

Experiment 4.21. Run throwBall.cpp, which simulates the motion of a
ball thrown with a specified initial velocity subject to the force of gravity.
Figure 4.24 is a screenshot.

Press space to toggle between animation on and off. Press the right/left
arrow keys to increase/decrease the horizontal component of the initial
velocity, up/down arrow keys to increase/decrease the vertical component
of the initial velocity and the page up/down keys to increase/decrease
gravitational acceleration. Press ‘r’ to reset. The values of the initial velocity
components and of gravitational acceleration are displayed on the screen.

End

Click for ballAndTorusWithFriction.cpp Program Windows Project

Experiment 4.22. Run ballAndTorusWithFriction.cpp, which modi-
fies ballAndTorus.cpp to simulate an invisible viscous medium through
which the ball travels.

Press space to apply force to the ball. It has to be kept pressed in order
to continue applying force. The ball comes to a gradual halt after the key is
released. Increase or decrease the level of applied force by using the up and
down arrow keys. Increase or decrease the viscosity of the medium using the
page up and down keys. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to rotate the scene.

End

Click for clown3.cpp modified Program Windows Project

Experiment 4.23. We start with simply a blue sphere for the head. See
clown1.cpp, which has the following drawing routine:

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.38



glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

glutSwapBuffers();

}

Figure 4.25(a) is a screenshot.
Next, we want a green conical hat. The command glutWireCone(base,

height, slices, stacks) draws a wireframe cone of base radius base and
height height. The base of the cone lies on the xy-plane with its axis along
the z-axis and its apex pointing in the positive direction of the z-axis. See
Figure 4.26(a). The parameters slices and stacks determine the fineness of
the mesh (not shown in the figure).

Accordingly, insert the lines

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 4.0, 20, 20);

in clown1.cpp after the call that draws the sphere, so that the drawing
routine becomes (Block 17):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

glutSwapBuffers();

}

Not good! Because of the way glutWireCone() aligns, the hat covers
the clown’s face. This is easily fixed. Translate the hat 2 units up the z-axis
and rotate it −90◦ about the x-axis to arrange it on top of the head. Finally,
rotate it a rakish 30◦ about the z-axis! Here’s the modified drawing routine
of clown1.cpp at this point (Block 18):

void drawScene(void)

{ 39
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glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Transformations of the hat.

glRotatef(30.0, 0.0, 0.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 2.0);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

glutSwapBuffers();

}

Let’s add a brim to the hat by attaching a torus to its base. The command
glutWireTorus(inRadius, outRadius, sides, rings) draws a wireframe
torus of inner radius inRadius (the radius of a circular section of the torus),
and outer radius outRadius (the radius of the circle through the middle of
the torus). The axis of the torus is along the z-axis and it is centered at the
origin. See Figure 4.26(b). Insert the call glutWireTorus(0.2, 2.2, 10,
25) right after the call that draws the cone, so the drawing routine becomes
(Block 19):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Transformations of the hat and brim.

glRotatef(30.0, 0.0, 0.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 2.0);

// Hat.40



glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

// Brim.

glutWireTorus(0.2, 2.2, 10, 25);

glutSwapBuffers();

}

Observe that the brim is drawn suitably at the bottom of the hat and
stays there despite modeling transformations between head and hat – a
consequence of Proposition 4.1.

To animate, let’s spin the hat about the clown’s head by rotating it
around the y-axis. We rig the space bar to toggle between animation on
and off and the up/down arrow keys to change speed. All updates so far are
included in clown2.cpp. Figure 4.25(b) is a screenshot.

What’s a clown without little red ears that pop in and out?! Spheres
will do for ears. An easy way to bring about oscillatory motion is to make
use of the function sin(angle) which varies between −1 and 1. Begin by
translating either ear a unit distance from the head, and then repeatedly
translate each a distance of sin(angle), incrementing angle each time.

Note: A technicality one needs to be aware of in such applications is that
angle is measured in degrees in OpenGL syntax, e.g., in glRotatef(angle,
p, q, r), while the C++ math library assumes angles to be given in radians .
Multiplying by π/180 converts degrees to radians.

The ears and head are physically separate, though. Let’s connect them
with springs! Helixes are springs. We borrow code from helix.cpp, but
modify it to make the length of the helix 1, its axis along the x-axis and its
radius 0.25. As the ears move, either helix is scaled along the x-axis so that
it spans the gap between the head and an ear. The completed program is
clown3.cpp, of which a screenshot is seen in Figure 4.25(c). End

Click for floweringPlant.cpp Program Windows Project

Experiment 4.24. Run floweringPlant.cpp, an animation of a flower
blooming. Press space to start and stop animation, delete to reset, and
‘x/X’, ‘y/Y’ and ‘z/Z’ to change the viewpoint. Figure 4.27 is a screenshot.

End

Click for box.cpp modified Program Windows Project

Experiment 4.25. Replace the translation command glTranslatef(0.0,
0.0, -15.0) of box.cpp with the viewing command gluLookAt(0.0, 0.0, 41
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15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) so that the drawing routine is as
below (Block 20):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Viewing transformation.

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glutWireCube(5.0); // Box.

glFlush();

}

There is no change in what is viewed. The commands glTranslatef(0.0,
0.0, -15.0) and gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0,
1.0, 0.0) are exactly equivalent. To understand why, note that gluLook-
At(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) places the eye at
(0, 0, 15) looking down the z-axis toward the center at (0, 0, 0). Now, compare
Figures 4.31(a) and (b): should the box appear different to the viewer in
one from the other? No, because its position relative to the frustum is the
same in both.

The advantage of the command gluLookAt() over glTranslatef() is
that it allows one to write code according to one’s conception of where the
camera is situated and how it’s pointed at the scene. End

Click for boxWithLookAt.cpp Program Windows Project

Experiment 4.26. Continue the previous experiment, or run boxWith-
LookAt.cpp, successively changing only the parameters centerx , centery ,
centerz – the middle three parameters – of the gluLookAt() call to the
following:

1. 0.0, 0.0, 10.0

2. 0.0, 0.0,−10.0

3. 0.0, 0.0, 20.0

4. 0.0, 0.0, 15.0 End

Click for boxWithLookAt.cpp modified Program Windows Project42



Experiment 4.27. Restore the original boxWithLookAt.cpp program
with its gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
call and, again, first replace the box with a glutWireTeapot(5.0). Run:
a screenshot is shown in Figure 4.33(a). Next, successively change the
parameters upx , upy , upz – the last three parameters of gluLookAt() – to
the following:

1. 1.0, 0.0, 0.0

2. 0.0,−1.0, 0.0

3. 1.0, 1.0, 0.0

Screenshots of the successive cases are shown in Figures 4.33(b)-(d). The
camera indeed appears to rotate about its line of sight, the z-axis, so that
its up direction points along the up vector (upx , upy , upz ) each time. End

Click for boxWithLookAt.cpp modified Program Windows Project

Experiment 4.28. Replace the wire cube of boxWithLookAt.cpp with a
glutWireTeapot(5.0) and replace the gluLookAt() call with:

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)

The vector los = (0.0, 0.0, 0.0)− (15.0, 0.0, 0.0) = (−15.0, 0.0, 0.0), which is
down the z-axis. The component of up = (1.0, 1.0, 1.0), perpendicular to the
z-axis, is (1.0, 1.0, 0.0), which then is the up direction. Is what you see the
same as Figure 4.33(d), which, in fact, is a screenshot for gluLookAt(0.0,
0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0)? End

Click for box.cpp modified Program Windows Project

Experiment 4.29. Replace the display routine of box.cpp with (Block 21):

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Viewing transformation.

gluLookAt(0.0, 0.0, 15.0, 15.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// Modeling transformation block equivalent

// to the preceding viewing transformation.

// glRotatef(45.0, 0.0, 1.0, 0.0); 43
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// glTranslatef(0.0, 0.0, -15.0);

glutWireCube(5.0);

glFlush();

}

Run. Next, both comment out the viewing transformation and
uncomment the modeling transformation block following it. Run again.
The displayed output, shown in Figure 4.42, is the same in both cases. The
reason, as Figures 4.43(a)-(c) explain, is that the viewing transformation is
equivalent to the modeling transformation block. In particular, the former
is undone by the latter. End

Click for spaceTravel.cpp Program Windows Project

Experiment 4.30. Run spaceTravel.cpp. The left viewport shows a
global view from a fixed camera of a conical spacecraft and 40 stationary
spherical asteroids arranged in a 5 × 8 grid. The right viewport shows
the view from a front-facing camera attached to the tip of the craft. See
Figure 4.46 for a screenshot of the program.

Press the up and down arrow keys to move the craft forward and backward
and the left and right arrow keys to turn it. Approximate collision detection
is implemented to prevent the craft from crashing into an asteroid.

The asteroid grid can be changed in size by redefining ROWS and COLUMNS.
The probability that a particular row-column slot is filled is specified as a
percentage by FILL PROBABILITY – a value less than 100 leads to a non-
uniform distribution of asteroids. End

Click for spaceTravel.cpp modified Program Windows Project

Experiment 4.31. Run spaceTravel.cpp with ROWS and COLUMNS both
increased to 100. The spacecraft begins to respond so slowly to key input
that its movement seems clunky, unless, of course, you have a super-fast
computer (in which case, increase the values of ROWS and COLUMNS even
more). End

Click for animateMan1.cpp Program Windows Project

Experiment 4.32. Run animateMan1.cpp. This is a fairly complex
program to develop a sequence of key frames for a man-like figure, which
can subsequently be animated. In addition to its spherical head, the figure
consists of nine box-like body parts which can rotate about their joints. See
Figure 4.49. All parts are wireframe. We’ll explain the program next. End44



Click for animateMan2.cpp Program Windows Project

Experiment 4.33. Run animateMan2.cpp. This is simply a pared-down
version of animateMan1.cpp, whose purpose is to animate the sequence of
configurations listed in the file animateManDataIn.txt, typically generated
from the develop mode of animateMan1.cpp. Press ‘a’ to toggle between
animation on/off. As in animateMan1.cpp, pressing the up or down arrow
key speeds up or slows down the animation. The camera functionalities via
the keys ‘r/R’ and ‘z/Z’ remain as well.

The current contents of animateManDataIn.txt cause the man to do a
handspring over the ball. Figure 4.51 is a screenshot.

Think of animateMan1.cpp as the studio and animateMan2.cpp as the
movie. End

Click for ballAndTorusShadowed.cpp Program Windows Project

Experiment 4.34. Run ballAndTorusShadowed.cpp, based on ballAnd-
Torus.cpp, but with additional shadows drawn on a checkered floor. Press
space to start the ball traveling around the torus and the up and down arrow
keys to change its speed. Figure 4.52 is a screenshot. End

Click for selection.cpp Program Windows Project

Experiment 4.35. Run selection.cpp, which is inspired by a similar
program in the red book. It uses selection mode to determine the identity
of rectangles, drawn with calls to drawRectangle(), which intersect the
viewing volume created by the projection statement glOrtho (-5.0, 5.0,
-5.0, 5.0, -5.0, 5.0), this being a 10×10×10 axis-aligned box centered
at the origin. Figure 4.54 is a screenshot. Hit records are output to the
command window. In the discussion following, we parse the program carefully.

End

Click for ballAndTorusPicking.cpp Program Windows Project

Experiment 4.36. Run ballAndTorusPicking.cpp, which preserves all
the functionality of ballAndTorus.cpp upon which it is based and adds the
capability of picking the ball or torus with a left click of the mouse. The
picked object blushes. See Figure 4.57 for a screenshot. End
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Click for box.cpp modified Program Windows Project

Experiment 5.1. Fire up box.cpp and insert a rotation command just
before the box definition so that the transformation and object definition
part of the drawing routine becomes:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(90.0, 0.0, 1.0, 1.0);

glutWireCube(5.0); // Box.

The rotation command asks to rotate 90◦ about the line l from the origin
through (0, 1, 1). See Figure 5.24(a) for the displayed output.

Let’s try now, instead, to use the strategy suggested above to express the
given rotation in terms of rotations about the coordinate axes. Figure 5.24(b)
illustrates the following simple scheme. Align l along the z-axis by rotating
it 45◦ about the x-axis. Therefore, the given rotation should be equivalent
to (1) a rotation of 45◦ about the x-axis, followed by (2) a rotation of 90◦

about the z-axis followed, finally, by a (3) rotation of −45◦ about the x-axis.
Give it a whirl. Replace the single rotation command glRotatef(90.0,

0.0, 1.0, 1.0) with a block of three as follows:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(-45.0, 1.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0); 47
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glRotatef(45.0, 1.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

Seeing is believing, is it not?! End

Click for manipulateModelviewMatrix.cpp Program Windows Project

Experiment 5.2. Run manipulateModelviewMatrix.cpp. Figure 5.30
is a screenshot, although in this case we are really more interested in the
transformations in the program rather than its visual output.

The gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
statement we understand to multiply the current modelview matrix on the
right by the matrix of its equivalent modeling transformation. The current
modelview matrix is changed again by the glMultMatrixf(matrixData)
call, which multiplies it on the right by the matrix corresponding to a rotation
of 45◦ about the z-axis, equivalent to a glRotatef(45.0, 0.0, 0.0, 1.0)
call. It’s changed one last time by glScalef(1.0, 2.0, 1.0).

The current modelview matrix is output to the command window initially
and then after each of the three modelview transformations. We’ll discuss
next if the four output values match our understanding of the theory. End

Click for shear.cpp Program Windows Project

Experiment 5.3. Run shear.cpp. Press the left and right arrow keys
to move the ball. The box begins to shear when struck by the ball. See
Figure 5.34.

The shear matrix is explicitly computed in the code and multiplied from
the right into the current modelview matrix via a glMultMatrix() call.

End
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Click for spaceTravel.cpp modified Program Windows Project

Experiment 6.1. Run the program spaceTravel.cpp after increasing
ROWS and COLUMNS both to 100 from 8 and 5, respectively. Figure 6.1 is a
screenshot. The spacecraft now responds sluggishly to the arrow keys, at
least on a typical desktop. You may have to increase even more the values
of ROWS and COLUMNS if yours is exceptionally fast. End

Click for spaceTravelFrustumCulled.cpp Program Windows Project

Experiment 6.2. Run spaceTravelFrustumCulled.cpp, which enhances
spaceTravel.cpp with optional quadtree-based frustum culling. Pressing
space toggles between frustum culling enabled and disabled. As before, the
arrow keys maneuver the craft.

The current size of the asteroid field is 100× 100. Dramatic isn’t it, the
speed-up from frustum culling?!

Important : Make sure to place the file intersectionDetectionRoutines.cpp
in the same directory as spaceTravelFrustumCulled.cpp.

Note: When the number of asteroids is large, the display may take a while
to come up because of pre-processing to build the quadtree structure.

End

Click for eulerAngles.cpp Program Windows Project

Experiment 6.3. Run eulerAngles.cpp, which shows an L, similar to
the one in Figure 6.6(a), whose orientation can be interactively changed. 49
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The original orientation of the L has its long leg lying along the z-axis
and its short leg pointing up parallel to the y-axis. Pressing ‘x/X’, ‘y/Y’ and
‘z/Z’ changes the L’s Euler angles and delete resets. The Euler angle values
are displayed on-screen. Figure 6.7 is a screenshot of the initial configuration.

End

Click for interpolateEulerAngles.cpp Program Windows Project

Experiment 6.4. Run interpolateEulerAngles.cpp, which is based on
eulerAngles.cpp. It simultaneously interpolates between the tuples (0, 0, 0)
and (0, 90, 0) and between (0, 0, 0) and (−90, 90, 90). Press the left and right
arrow keys to step through the interpolations (delete resets). For the first
interpolation (green L) the successive tuples are (0, angle, 0) and for the
second (red L) they are (−angle, angle, angle), angle changing by 5 at each
step in both.

The paths are different! The green L seems to follow the intuitively
straighter path by keeping its long leg always on the xz-plane as it rotates
about the y-axis, while the red L arcs above the xz-plane, as diagrammed
in Figure 6.8. Figure 6.9 is a screenshot of interpolateEulerAngles.cpp
part way through the interpolation. End

Click for eulerAngles.cpp Program Windows Project

Experiment 6.5. Run eulerAngles.cpp again.
Press ‘x’ and ‘X’ a few times each – the L turns longitudinally. Reset by

pressing delete. Press ‘y’ and ‘Y’ a few times each – the L turns latitudinally.
Reset. Press ‘z’ and ‘Z’ a few times each – the L twists. There appear to be
three physical degrees of freedom of the L derived from rotation about the
three coordinate axes: longitudinal, latitudinal and “twisting”.

Now, from the initial configuration of eulerAngles.cpp press ‘y’ till
β = 90. Next, press ‘z’ or ‘Z’ – the L twists. Then press ‘x’ or ‘X’ – the L
still twists! End

Click for quaternionAnimation.cpp Program Windows Project

Experiment 6.6. Run quaternionAnimation.cpp, which applies the
preceding ideas to animate the orientation of our favorite rigid body, an
L, with the help of quaternions. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to change
the orientation of the blue L, whose current Euler angles are shown on the
display. Its start orientation is the currently fixed red L. See Figure 6.14 for
a screenshot.50



Pressing enter at any time begins an animation of the red L from the
start to the blue’s current orientation. Press the up and down arrow keys to
change the speed and delete to reset. End
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Click for square.cpp modified Program Windows Project

Experiment 7.1. Replace the polygon declaration part of our old favorite
square.cpp with the following (Block 1∗):

glBegin(GL TRIANGLES);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

Observe how OpenGL interpolates vertex color values throughout the triangle.
Figure 7.7 is a screenshot. End

Click for interpolation.cpp Program Windows Project

Experiment 7.2. Run interpolation.cpp, which shows the interpolated
colors of a movable point inside a triangle with red, green and blue vertices.
The triangle itself is drawn white. See Figure 7.8 for a screenshot.

As the arrow keys are used to move the large point, the height of each
of the three vertical bars on the left indicates the weight of the respective
triangle vertex on the point’s location. The color of the large point itself is
interpolated (by the program) from those of the vertices. End

∗To cut-and-paste you can find the block in text format in the file
chap7codeModifications.txt in the directory Code/CodeModifications. 55
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Click for convexHull.cpp Program Windows Project

Experiment 7.3. Run convexHull.cpp, which shows the convex hull of
8 points on a plane. Use the space bar to select a point and the arrow keys
to move it. Figure 7.14 is a screenshot.

Note: The program implements a very inefficient (but easily coded)
algorithm to compute the convex hull of a set F as the union of all triangles
with vertices in F . End
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Click for invalidTriangulation.cpp Program Windows Project

Experiment 8.1. Run invalidTriangulation.cpp, which implements
exactly the invalid triangulation {ABC,DBC,DAE} of the rectangle in
Figure 8.3(d). Colors have been arbitrarily fixed for the five vertices A-E.
Press space to interchange the order that ABC and DBC appear in the
code. Figure 8.4 shows the difference. End

Click for square.cpp modified Program Windows Project

Experiment 8.2. Replace the polygon declaration of square.cpp with
(Block 11):

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Display it both filled and outlined using appropriate glPolygonMode calls –
you see a non-convex quadrilateral in either case (see Figure 8.7(a)).

Next, keeping the same cycle of vertices as above, list them starting with
glVertex3f(80.0, 20.0, 0.0) instead (Block 2):

glBegin(GL POLYGON);

glVertex3f(80.0, 20.0, 0.0);

1To cut-and-paste you can find the block in text format in the file
chap8codeModifications.txt in the directory Code/CodeModifications. 57
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glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle,
while outlined it’s a non-convex quadrilateral identical to the one output
earlier (see Figure 8.7(b))! Because the cyclic order of the vertices is
unchanged, shouldn’t it be as in Figure 8.7(a) both filled and outlined?

End

Click for tesselateAnnulus.cpp Program Windows Project

Experiment 8.3. Run tesselateAnnulus.cpp, which uses GLU tesse-
lation routines to triangulate a square annulus, a non-simple non-convex
polygon. Press the space bar to see the triangulation (Figure 8.11(a)).
Compare with the triangulation we did ourselves of a square annulus in
squareAnnulus1.cpp. End

Click for tesselateE.cpp Program Windows Project

Experiment 8.4. Run tesselateE.cpp. Press space ((Figure 8.11(b)).
End
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Click for square.cpp modified Program Windows Project

Experiment 9.1. Replace the polygon declaration part of square.cpp
with (Block 11):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

This simply adds the two glPolygonMode() statements to the original
square.cpp. In particular, they specify that front-facing polygons are to be
drawn in outline and back-facing ones filled. Now, the order of the vertices
is (20.0, 20.0, 0.0), (80.0, 20.0, 0.0), (80.0, 80.0, 0.0), (20.0, 80.0, 0.0), which
appears CCW from the viewing face. Therefore, the square is drawn in
outline.

Next, rotate the vertices cyclically so that the declaration becomes
(Block 2):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

1To cut-and-paste you can find the block in text format in the file
chap9codeModifications.txt in the directory Code/CodeModifications. 59
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glVertex3f(80.0, 80.0, 0.0);

glEnd();

As the vertex order remains equivalent to the previous one, the square is
still outlined.

Reverse the listing next (Block 3):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The square is drawn filled as the vertex order now appears CW from the
front of the viewing box. End

Click for square.cpp modified Program Windows Project

Experiment 9.2. Replace the polygon declaration part of square.cpp
with (Block 5)

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLES);

// CCW

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

//CCW

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

// CW

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

// CCW

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();60



The specification is for front faces to be outlined and back faces filled,
but, as the four triangles are not consistently oriented, we see both outlined
and filled triangles (Figure 9.11(a)). End

Click for square.cpp modified Program Windows Project

Experiment 9.3. Continuing the previous experiment, next replace the
polygon declaration part of square.cpp with (Block 6):

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLE STRIP);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The resulting triangulation is the same as before, but, as it’s consistently
oriented, we see only outlined front faces. (Figure 9.11(b)). End

Click for squareOfWalls.cpp Program Windows Project

Experiment 9.4. Run squareOfWalls.cpp, which shows four rectangular
walls enclosing a square space. The front faces (the outside of the walls)
are filled, while the back faces (the inside) are outlined. Figure 9.12(a) is a
screenshot.

The triangle strip of squareOfWalls.cpp consists of eight triangles which
are consistently oriented, because triangles in a strip are always consistently
oriented. End

Click for threeQuarterSphere.cpp Program Windows Project

Experiment 9.5. Run threeQuarterSphere.cpp, which adds one half of
a hemisphere to the bottom of the hemisphere of hemisphere.cpp. The
two polygon mode calls ask the front faces to be drawn filled and back ones
outlined. Turn the object about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’
and ‘Z’.

Unfortunately, the ordering of the vertices is such that the outside of
the hemisphere appears filled, while that of the half-hemisphere outlined.
Figure 9.12(b) is a screenshot. Likely, this would not be intended in a 61
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real design application where one would, typically, expect a consistent look
throughout one side.

Such mixing up of orientation is not an uncommon error when assembling
an object out of multiple pieces. Fix the problem in the case of
threeQuarterSphere.cpp in four different ways:

(a) Replace the loop statement

for(i = 0; i <= p/2; i++)

of the half-hemisphere with

for(i = p/2; i >= 0; i--)

to reverse its orientation.

(b) Interchange the two glVertex3f() statements of the half-hemisphere,
again reversing its orientation.

(c) Place the additional polygon mode calls

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

before the half-hemisphere so that its back faces are drawn filled.

(d) Call

glFrontFace(GL CCW)

before the hemisphere definition and

glFrontFace(GL CW)

before the half-hemisphere to change the front-face default to be CW-
facing for the latter.

Of the four, either (a) or (b) is to be preferred because they go to the
source of the problem and repair the object, rather than hide it with the
help of state variables, as do (c) and (d). End

Experiment 9.6. Make a Möbius band as follows.
Take a long and thin strip of paper and draw two equal rows of triangles

on one side to make a triangulation of the strip as in the bottom of Figure 9.13.
Turn the strip into a Möbius band by pasting the two end edges together
after twisting one 180◦. The triangles you drew on the strip now make a
triangulation of the Möbius band.

Try next to orient the triangles by simply drawing a curved arrow in
each, in a manner such that the entire triangulation is consistently oriented.
Were you able to?! End62



Click for sphereInBox1.cpp Program Windows Project

Experiment 9.7. Run sphereInBox1.cpp, which draws a green ball
inside a red box. Press up or down arrow keys to open or close the box.
Figure 9.15(a) is a screenshot of the box partly open.

Ignore the statements to do with lighting and material properties
for now. The command glCullFace(face) where face can be GL FRONT,
GL BACK or GL FRONT AND BACK, is used to specify if front-facing or back-
facing or all polygons are to be culled. Culling is enabled with a call to
glEnable(GL CULL FACE) and disabled with glDisable(GL CULL FACE).

You can see at the bottom of the drawing routine that back-facing
triangles of the sphere are indeed culled, which makes the program more
efficient because these triangle are hidden in any case behind the front-facing
ones.

Comment out the glDisable(GL CULL FACE) call and open the box.
Oops, some sides of the box have disappeared, as you can see in Figure 9.15(b).
The reason, of course, is that the state variable GL CULL FACE is set when
the drawing routine is called the first time so that all back-facing triangles,
including those belonging to the box, are eliminated on subsequent calls.

End

Click for sphereInBox1.cpp modified Program Windows Project

Experiment 9.8. Here’s a trick often used in 3D design environments like
Maya and Studio Max to open up a closed space. Suppose you’ve finished
designing a box-like room and now want to work on objects inside it. A
good way to do this is to remove only the walls that obscure your view of the
inside and leave the rest, but the obscuring walls are either all front-facing
or all back-facing, so a cull will do the trick.

Insert the pair of statements

glEnable(GL CULL FACE);

glCullFace(GL FRONT);

in the drawing routine of sphereInBox1.cpp just before glDrawElements().
The top and front sides of the box are not drawn, leaving its interior visible.
Figure 9.15(c) is a screenshot. End

Click for squareOfWallsReflected.cpp Program Windows Project

Experiment 9.9. Run squareOfWallsReflected.cpp, which is square-
OfWalls.cpp with the following additional block of code, including a
glScalef(-1.0, 1.0, 1.0) call, to reflect the scene about the yz-plane. 63
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// Block to reflect the scene about the yz-plane.

if (isReflected)

{
. . .
glScalef(-1.0, 1.0, 1.0);

// glFrontFace(GL CW);

}
else

{
. . .
// glFrontFace(GL CCW);

}

The original walls are as in Figure 9.16(a). Press space to reflect. Keeping
in mind that front faces are filled and back faces outlined, it seems that
glScalef(-1.0, 1.0, 1.0) not only reflects, but turns the square of walls
inside out as well, as you can see in Figure 9.16(b)

Well, of course! The viewer’s (default) agreement with OpenGL is that
if she perceives a primitive’s vertex order as CCW, then she is shown the
front, if not the back. Reflection about the yz-plane, an orientation-reversing
Euclidean transformation, flips all perceived orientations, so those primitives
whose front the viewer used to see now have their back to her, and vice
versa.

We likely want the reflection to transform the primitives but not
simultaneously change their orientation. This is easily done by revising
the viewer’s agreement with OpenGL with a call to glFrontFace(GL CW).
Accordingly, uncomment the two glFrontFace() statements in the reflection
block. Now the reflection looks right, as shown in Figure 9.16(c). The
primitives are clearly still being reflected about the yz-plane, but front and
back stay same. End
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Click for parabola.cpp Program Windows Project

Experiment 10.1. Compare the outputs of circle.cpp, helix.cpp and
parabola.cpp, all drawn in Chapter 2.

The sample is chosen uniformly from the parameter space in all three
programs. The output quality is good for both the circle – after pressing ‘+’
a sufficient number of times for a dense enough sample – and the helix. The
parabola, however, shows a difference in quality between its curved bottom
and straighter sides, the sides becoming smoother more quickly than the
bottom. In curves such as this, one may want to sample non-uniformly, in
particular, more densely from parts of greater curvature. End

Click for astroid.cpp Program Windows Project

Experiment 10.2. Run astroid.cpp, which was written by modifying
circle.cpp to implement the parametric equations

x = cos3 t, y = sin3 t, z = 0, 0 ≤ t ≤ 2π

for the astroid of Exercise 10.2. Figure 10.9 is a screenshot. End

Click for cylinder.cpp Program Windows Project

Experiment 10.3. Run cylinder.cpp, which shows a triangular mesh
approximation of a circular cylinder, given by the parametric equations

x = f(u, v) = cosu, y = g(u, v) = sinu, z = h(u, v) = v, 67
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for (u, v) ∈ [−π, π]× [−1, 1]. Pressing arrow keys changes the fineness of the
mesh. Press ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the cylinder itself. Figure 10.28 is
a screenshot. End

Click for helicalPipe.cpp Program Windows Project

Experiment 10.4. Without really knowing what to expect (honestly!) we
tweaked the parametric equations of the cylinder to the following:

x = cosu+ sin v, y = sinu+ cos v, z = u, (u, v) ∈ [−π, π]× [−π, π]

It turns out the resulting shape looks like a helical pipe – run helical-
Pipe.cpp. Figure 10.31 is a screenshot.

Functionality is the same as for cylinder.cpp: press the arrow keys to
coarsen or refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the pipe.

Looking at the equations again, it wasn’t too hard to figure out how this
particular surface came into being. See the next exercise. End

Click for torus.cpp Program Windows Project

Experiment 10.5. Run torus.cpp, which applies the parametric equa-
tions deduced above in the template of cylinder.cpp (simply swapping new
f, g and h function definitions into the latter program). The radii of the
circular trajectory and the profile circle are set to 2.0 and 0.5, respectively.
Figure 10.35 is a screenshot.

Functionality is the same as for cylinder.cpp: press the arrow keys
to coarsen or refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the
torus. End

Click for torusSweep.cpp Program Windows Project

Experiment 10.6. Run torusSweep.cpp, modified from torus.cpp to
show the animation of a circle sweeping out a torus. Press space to toggle
between animation on and off. Figure 10.36 is a screenshot part way through
the animation. End

Click for table.cpp Program Windows Project

Experiment 10.7. These equations are implemented in table.cpp, again
using the template of cylinder.cpp. Press the arrow keys to coarsen or
refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the table. See
Figure 10.39 for a screenshot of the table.68



Note that the artifacts at the edges of the table arise because sample
points may not map exactly to corners (0,−8), (4,−8), . . . , (0, 8) of the profile
drawn in Figure 10.38(a) – which can be avoided by including always t values
0, 4, 5, 8, 22, 31, 32 and 42 in the sample grid. End

Click for doublyCurledCone.cpp Program Windows Project

Experiment 10.8. The plan above is implemented in doublyCurled-
Cone.cpp, again using the template of cylinder.cpp, with the value of A
set to π/4 and a to 0.05. Press the arrow keys to coarsen or refine the
triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the cone. Figure 10.41 is a
screenshot. End

Click for extrudedHelix.cpp Program Windows Project

Experiment 10.9. Run extrudedHelix.cpp, which extrudes a helix,
using yet again the template of cylinder.cpp. The parametric equations
of the extrusion are

x = 4cos(10πu), y = 4sin(10πu), z = 10πu+ 4v, 0 ≤ u, v ≤ 1

the constants being chosen to size the object suitably. As the equation for z
indicates, the base helix is extruded parallel to the z-axis. Figure 10.42 is a
screenshot. End

Click for bilinearPatch.cpp Program Windows Project

Experiment 10.10. Run bilinearPatch.cpp, which implements pre-
cisely Equation (10.19). Press the arrow keys to refine or coarsen the
wireframe and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the patch. Figure 10.47 is a
screenshot. End

Click for hyperboloid1sheet.cpp Program Windows Project

Experiment 10.11. Run hyperboloid1sheet.cpp, which draws a trian-
gular mesh approximation of a single-sheeted hyperboloid with the help of
the parametrization

x = cosu sec v, y = sinu sec v, z = tan v, u ∈ [−π, π], v ∈ (−π/2, π/2)

Figure 10.51(a) is a screenshot. In the implementation we restrict v to
[−0.4π, 0.4π] to avoid ±π/2 where sec is undefined. End 69
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Click for gluQuadrics.cpp Program Windows Project

Experiment 10.12. Run gluQuadrics.cpp to see all four GLU quadrics.
Press the left and right arrow keys to cycle through the quadrics and ‘x/X’,
‘y,Y’ and ‘z/Z’ to turn them. The images in Figure 10.52 were, in fact,
generated by this program. End

Click for glutObjects.cpp Program Windows Project

Experiment 10.13. Run glutObjects.cpp, a program we originally saw
in Chapter 3. Press the left and right arrow keys to cycle through the
various GLUT objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn them. Among
other objects you see all five regular polyhedra, both in solid and wireframe.

End

Click for tetrahedron.cpp Program Windows Project

Experiment 10.14. Run tetrahedron.cpp. The program draws a wire-
frame tetrahedron of edge length 2

√
2 which can be turned using the ‘x/X’,

‘y/Y’ and ‘z/Z’ keys. Figure 10.56 is a screenshot. End

Click for bezierCurves.cpp Program Windows Project

Experiment 10.15. Run bezierCurves.cpp. Press the up and down
arrow keys to select an order between 2 and 6 on the first screen. Press
enter to proceed to the next screen where the control points initially lie on a
straight line. Press space to select a control point and then the arrow keys
to move it. Press delete to start over. Figure 10.65 is a screenshot for order
6.

In addition to the black Bézier curve, drawn in light gray is its control
polygon, the polyline through successive control points. Note how the Bézier
curve tries to mimic the shape of its control polygon. End

Click for bezierCurveWithEvalCoord.cpp Program Windows Project

Experiment 10.16. Run bezierCurveWithEvalCoord.cpp, which draws
a fixed Bézier curve of order 6. See Figure 10.66 for a screenshot. End

Click for bezierCurveWithEvalMesh.cpp Program Windows Project70



Experiment 10.17. Run bezierCurveWithEvalMesh.cpp. This program
is the same as bezierCurveWithEval.cpp except that, instead of calls to
glEvalCoord1f(), the pair of statements

glMapGrid1f(50, 0.0, 1.0);

glEvalMesh1(GL LINE, 0, 50);

are used to draw the approximating polyline.
The call glMapGrid1f(n, t1, t2) specifies an evenly-spaced grid of

n + 1 sample points in the parameter interval, starting at t1 and ending
at t2. The call glEvalMesh1(mode, p1, p2) works in tandem with the
glMapGrid1f(n, t1, t2) call. For example, if mode is GL LINE, then it
draws a line strip through the mapped sample points, starting with the
image of the p1th sample point and ending at the image of the p2th one,
which is a polyline approximation of part of the Bézier curve. End

Click for bezierCurveTangent.cpp Program Windows Project

Experiment 10.18. Run bezierCurveTangent.cpp. The blue curve may
be shaped by selecting a control point with the space key and moving it with
the arrow keys. Visually verify that the two curves meet smoothly when
their control polygons meet smoothly. Figure 10.68 is a screenshot of such a
configuration. End

Click for bezierSurface.cpp Program Windows Project

Experiment 10.19. Run bezierSurface.cpp, which allows the user
herself to shape a Bézier surface by selecting and moving control points
originally in a 6× 4 grid. Drawn in black actually is a 20× 20 quad mesh
approximation of the Bézier surface. Also drawn in light gray is the control
polyhedron, which is the polyhedral surface with vertices at control points.

Press the space and tab keys to select a control point. Use the left/right
arrow keys to move the selected control point parallel to the x-axis, the
up/down arrow keys to move it parallel to the y-axis, and the page up/down
keys to move it parallel to the z-axis. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
the surface. Figure 10.69 is a screenshot. End

Click for bezierCanoe.cpp Program Windows Project

Experiment 10.20. Run bezierCanoe.cpp. Repeatedly press the right
arrow key for a design process that starts with a rectangular Bézier patch,
and then edits the control points in each of three successive steps until a 71
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canoe is formed. The left arrow reverses the process. Press ‘x/X’, ‘y/Y’ and
‘z/Z’ to turn the surface.

The initial configuration is a 6 × 4 array of control points placed in a
rectangular grid on the xz-plane, making a rectangular Bézier patch.

The successive steps are:

(1) Lift the two end columns of control points up in the y-direction and
bring them in along the x-direction to fold the rectangle into a deep
pocket.

(2) Push the middle control points of the end columns outwards along the
x-direction to plump the pocket into a “canoe” with its front and back
open.

(3) Bring together the two halves of each of the two end rows of control
points to stitch closed the erstwhile open front and back. Figure 10.70
is a screenshot after this step.

End

Click for torpedo.cpp Program Windows Project

Experiment 10.21. Run torpedo.cpp, which shows a torpedo composed
of a few different pieces, including bicubic Bézier patch propeller blades:

(i) Body: GLU cylinder.

(ii) Nose: hemisphere.

(iii) Three fins: identical GLU partial discs.

(iv) Backside: GLU disc.

(v) Propeller stem: GLU cylinder.

(vi) Three propeller blades: identical bicubic Bézier patches (control points
arranged by trial-and-error).

Press space to start the propellers turning. Press ‘x/X’, ‘y/Y’ and ‘z/Z’
to turn the torpedo. Figure 10.73 is a screenshot. End

Click for fractals.cpp Program Windows Project

Experiment 10.22. Run fractals.cpp, which draws three different
fractal curves – a Koch snowflake, a variant of the Koch snowflake and
a tree – all within the framework above, by simply switching source-sequel
specs! Press the left/right arrow keys to cycle through the fractals and the
up/down arrow keys to change the level of recursion. Figure 10.77 shows all
three at level 4. End72
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Click for sphereInBox1.cpp Program Windows Project

Experiment 11.1. Run again sphereInBox1.cpp, which we ran the first
time in Section 9.4. Press the up-down arrow keys to open or close the box.
Figure 11.17 is a screenshot of the box partly open. We’ll use this program
as a running example to explain much of the OpenGL lighting and material
color syntax. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.2. Run lightAndMaterial1.cpp.
The ball’s current ambient and diffuse reflectances are identically set to

a maximum blue of {0.0, 0.0, 1.0, 1.0}, its specular reflectance to the highest
gray level {1.0, 1.0, 1.0, 1.0} (i.e., white), shininess to 50.0 and emission to
zero {0.0, 0.0, 0.0, 1.0}.

Press ‘a/A’ to decrease/increase the ball’s blue Ambient and diffuse
reflectance. Pressing ‘s/S’ decreases/increases the gray level of its Specular
reflectance. Pressing ‘h/H’ decreases/increases its sHininess, while pressing
‘e/E’ decreases/increases the blue component of the ball’s Emission.

The program has further functionalities which we’ll explain as they
become relevant. End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.3. Run lightAndMaterial2.cpp.
The white light’s current diffuse and specular are identically set to a

maximum of {1.0, 1.0, 1.0, 1.0} and it gives off zero ambient light. The 75
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green light’s attributes are fixed at a maximum diffuse and specular of
{0.0, 1.0, 0.0, 1.0}, again with zero ambient. The global ambient is a low
intensity gray at {0.2, 0.2, 0.2, 1.0}.

Press ‘w’ or ‘W’ to toggle the White light off and on. Pressing ‘g’ or
‘G’ toggles the Green light off and on. Press ‘d/D’ to decrease/increase the
gray level of the white light’s Diffuse and specular intensity (the ambient
intensity never changes from zero). Pressing ‘m/M’ decreases/increases the
gray intensity of the global aMbient. Rotate the white light about the ball
by pressing the arrow keys.

The program has more functionality too which we’ll need later. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.4. Run lightAndMaterial1.cpp.
Reduce the specular reflectance of the ball. Both the white and green

highlights begin to disappear, as it’s the specular components of the reflected
lights which appear as specular highlights. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.5. Restore the original values of lightAndMaterial1.cpp.
Reduce the diffuse reflectance gradually to zero. The ball starts to lose its

roundness until it looks flat as a disc. The reason for this is that the ambient
intensity, which does not depend on eye or light direction, is uniform across
vertices of the ball and cannot, therefore, provide the sense of depth that
obtains from a contrast in color values across the surface. Diffuse light, on
the other hand, which varies across the surface depending on light direction,
can provide an illusion of depth.

Even though there is a specular highlight, sensitive to both eye and light
direction, it’s too localized to provide much contrast. Reducing the shininess
spreads the highlight but the effect is not a realistic perception of depth.
Moral : Diffusive reflectance lends three-dimensionality. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.6. Restore the original values of lightAndMaterial1.cpp.
Now reduce the ambient reflectance gradually to zero. The ball seems

to shrink! This is because the vertex normals turn away from the viewer at
the now hidden ends of the ball, scaling down the diffuse reflectance there
(recall the cos θ term in the diffusive reflectance equation (11.7)). The result
is that, with no ambient reflectance to offset the reduction in diffuse, the
ends of the ball are dark.76



Moral : Ambient reflectance provides a level of uniform lighting over a surface.
End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.7. Restore the original values of lightAndMaterial1.cpp.
Reduce both the ambient and diffuse reflectances to nearly zero. It’s

like the cat disappearing, leaving only its grin! Specular light is clearly for
highlights and not much else. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.8. Run lightAndMaterial1.cpp with its original values.
With it’s current high ambient, diffuse and specular reflectances the ball

looks a shiny plastic. Reducing the ambient and diffuse reflectances makes
for a heavier and less plastic appearance. Restoring the ambient and diffuse
to higher values, but reducing the specular reflectance makes it a less shiny
plastic. Low values for all three of ambient, diffuse and specular reflectances
give the ball a somewhat wooden appearance. End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.9. Run lightAndMaterial2.cpp.
Reduce the white light’s diffuse and specular intensity to 0. The ball

becomes a flat dull blue disc with a green highlight. This is because the
ball’s ambient (and diffuse) is blue and cannot reflect the green light’s diffuse
component, losing thereby three-dimensionality.

Raising the white global ambient brightens the ball, but it still looks flat
in the absence of diffusive light. End

Click for Nate’s site

Experiment 11.10. Nate Robins has a bunch of great tutorial programs
at the site [96]. This is a good time to run his lightmaterial tutorial, which
allows the user to control a set of parameters as well. End

Click for spotlight.cpp Program Windows Project

Experiment 11.11. Run spotlight.cpp. The program is primarily to
demonstrate spotlighting, the topic of a forthcoming section. Nevertheless, 77
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press the page-up key to see a multi-colored array of spheres. Figure 11.19
is a screenshot.

Currently, the point of interest in the program is the invocation of the
color material mode for the front-face ambient and diffuse reflectances by
means of the last two statements in the initialization routine, viz.,

glEnable(GL COLOR MATERIAL);

glColorMaterial(GL FRONT, GL AMBIENT AND DIFFUSE);

and subsequent coloring of the spheres in the drawing routine by glColor4f()
statements. End

Click for litTriangle.cpp Program Windows Project

Experiment 11.12. Run litTriangle.cpp, which draws a single triangle,
whose front is coded red and back blue, initially front-facing and lit two-sided.
Press the left and right arrow keys to turn the triangle and space to toggle
two-sided lighting on and off. See Figure 11.21 for screenshots.

Notice how the back face is dark when two-sided lighting is disabled –
this is because the normals are pointing oppositely of the way they should
be. End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.13. Press ‘p’ or ‘P’ to toggle between Positional and
directional light in lightAndMaterial2.cpp.

The white wire sphere indicates the positional light, while the white
arrow the incoming directional light. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.14. Run lightAndMaterial1.cpp. The current values
of the constant, linear and quadratic attenuation parameters are 1, 0 and 0,
respectively, so there’s no attenuation. Press ‘t/T’ to decrease/increase the
quadratic aTtenuation parameter. Move the ball by pressing the up/down
arrow keys to observe the effect of attenuation. End

Click for spotlight.cpp Program Windows Project

Experiment 11.15. Run spotlight.cpp, which shows a bright white
spotlight illuminating a multi-colored array of spheres. A screenshot was
shown earlier in Figure 11.19.78



Press the page up/down arrows to increase/decrease the angle of the
light cone. Press the arrow keys to move the spotlight. A white wire mesh
is drawn along the light cone boundary. End

Click for spotlight.cpp Program Windows Project

Experiment 11.16. Run again spotlight.cpp. The current value of the
spotlight’s aTtenuation is 2.0, which can be decreased/increased by pressing
‘t/T’. Note the change in visibility of the balls near the cone boundary as
the attenuation changes. End

Click for checkeredFloor.cpp Program Windows Project

Experiment 11.17. Run checkeredFloor.cpp, which creates a checkered
floor drawn as an array of flat shaded triangle strips. See Figure 11.24. Flat
shading causes each triangle in the strip to be painted with the color of the
last of its three vertices, according to the order of the strip’s vertex list.

End

Click for sphereInBox1.cpp Program Windows Project

Experiment 11.18. Run again sphereInBox1.cpp. The normal vector
values at the eight box vertices of sphereInBox1.cpp, placed in the array
normals[], are

[±1/
√

3 ± 1/
√

3 ± 1/
√

3]T

each corresponding to one of the eight possible combinations of signs. End

Click for sphereInBox2.cpp Program Windows Project

Experiment 11.19. Run sphereInBox2.cpp, which modifies sphereIn-
Box1.cpp. Press the arrow keys to open or close the box and space to toggle
between two methods of drawing normals.

The first method is that of sphereInBox1.cpp, specifying the normal
at each vertex as an average of incident face normals. The second creates
the box by first drawing one side as a square with the normal at each of
its four vertices specified to be the unit vector perpendicular to the square,
then placing that square in a display list and, finally, drawing it six times
appropriately rotated. Figure 11.32(b) shows the vertex normals to three
faces. Figure 11.33 shows screenshots of the box created with and without
averaged normals. End 79
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Click for litCylinder.cpp Program Windows Project

Experiment 11.20. Run litCylinder.cpp, which builds upon cyl-
inder.cpp using the normal data calculated above, together with color
and a single directional light source. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
the cylinder. The functionality of being able to change the fineness of the
mesh approximation has been dropped. Figure 11.37 is a screenshot. End

Click for litDoublyCurledCone.cpp Program Windows Project

Experiment 11.21. The program litDoublyCurledCone.cpp, in fact,
applies the preceding equations for the normal and its length. Press ‘x/X’,
‘y/Y’, ‘z/Z’ to turn the cone. See Figure 11.39 for a screenshot.

As promised, litDoublyCurledCone.cpp is pretty much a copy of
litCylinder.cpp, except for the different f(), g(), h(), fn(), gn() and
hn() functions, as also the new normn() to compute the normal’s length.

End

Click for litBezierCanoe.cpp Program Windows Project

Experiment 11.22. Run litBezierCanoe.cpp. Press ‘x/X’, ‘y/Y’, ‘z/Z’
to turn the canoe. You can see a screenshot in Figure 11.40.

This program illuminates the final shape of bezierCanoe.cpp of
Experiment 10.20 with a single directional light source. Other than the
expected command glEnable(GL AUTO NORMAL) in the initialization routine,
an important point to notice about litBezierCanoe.cpp is the reversal of
the sample grid along the u-direction. In particular, compare the statement

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0)

of litBezierCanoe.cpp with

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0)

of bezierCanoe.cpp. This change reverses the directions of one of the
tangent vectors evaluated at each vertex by OpenGL and, correspondingly,
that of the normal (which is the cross-product of the two tangent vectors).

Modify litBezierCanoe.cpp by changing

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0);

back to bezierCanoe.cpp’s

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

Wrong normal directions! The change from bezierCanoe.cpp is necessary.
Another solution is to leave glMapGrid2f() as it is in bezierCanoe.cpp,
instead making a call to glFrontFace(GL CW). End80



Click for shipMovie.cpp Program Windows Project

Experiment 11.23. Run shipMovie.cpp. Pressing space start an
animation sequence which begins with a torpedo traveling toward a moving
ship and which ends on its own after a few seconds. Figure 11.41 is a
screenshot as the torpedo nears the ship.

There are a few different objects. The hull of the ship is obviously
inspired by the Bézier canoe of the previous experiment. The deck is a flat
Bézier surface – all its control point y-values are identical – which is designed
to fit the hull. Each of the ship’s three storeys is a cylindrical quadric, as is
its chimney.

The torpedo should be familiar from the program torpedo.cpp of
Experiment 10.21. Each of the four grayish boats in the background is
a couple of quads, while the sea itself is a solid blue cube.

The smoke from the chimney is a simple-minded particle system. In
particular, we render a sequence of quadric discs in point mode and hack for
it a coloring and animation scheme. End

Click for sizeNormal.cpp Program Windows Project

Experiment 11.24. Run sizeNormal.cpp based on litTriangle.cpp.
The ambient and diffuse colors of the three triangle vertices are set to

red, green and blue, respectively. The normals are specified separately as
well, initially each of unit length perpendicular to the plane of the triangle.

However, pressing the up/down arrow keys changes (as you can see) the
size, but not the direction, of the normal at the red vertex. Observe the
corresponding change in color of the triangle. Figure 11.43 is a screenshot.

End

Click for sizeNormal.cpp modified Program Windows Project

Experiment 11.25. Run sizeNormal.cpp after placing the statement
glEnable(GL NORMALIZE) at the end of the initialization routine. Press the
up/down arrow keys. The triangle no longer changes color (though the
white arrow still changes in length, of course, because its size is that of the
program-specified normal). End
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Click for loadTextures.cpp Program Windows Project

Experiment 12.1. Run loadTextures.cpp, which loads an external
image of a shuttle launch as a texture and generates internally a chessboard
image as another.

Notes:

1. The Textures folder must be placed in the same one as the program
is in.

2. Because our programs all use the particular routine getBMPData()
to read image files, textures applied by them have all to be in the
uncompressed 24-bit bmp format for which this routine is written. Files
in other formats have first to be converted. You can use image-editing
software like Windows Paint, GIMP and Adobe Photoshop for this
purpose.

3. OpenGL requires that the width and height of a texture be powers of
two (in particular, for unbordered textures, which is the only kind we’ll
use). A further requirement is that both dimensions be at least 64;
the maximum possible value depends on the implementation. Image
files of dimensions not satisfying these conditions have to be resized
accordingly. Again, most image-editing software have the capability
to do this.

The program paints both the external and the procedural texture onto a
square. Figure 12.1 shows the two. Press space to toggle between them, the
left and right arrow keys to turn the square and delete to reset it. End

Click for loadTextures.cpp modified Program Windows Project 83
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Experiment 12.2. Replace every 1.0 in each glTexCoord2f() command
of loadTextures.cpp with 0.5 so that the polygon specification is (Block 11):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(0.5, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(0.5, 0.5); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(0.0, 0.5); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

The lower left quarter of the texture is interpolated over the square
(Figure 12.4(a)). Make sure to see both the launch and chessboard textures!

End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.3. Restore the original loadTextures.cpp and delete the
last vertex from the polygon so that the specification is that of a triangle
(Block 2):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(10.0, 10.0, 0.0);

glEnd();

Exactly as expected, the lower-right triangular half of the texture is
interpolated over the world-space triangle (Figure 12.4(b)).

Change the coordinates of the last vertex of the world-space triangle
(Block 3):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 10.0, 0.0);

glEnd();

Interpolation is clearly evident now. Parts of both launch and chessboard
are skewed by texturing, as the triangle specified by texture coordinates is
not similar to its world-space counterpart (Figure 12.4(c)).

Continuing, change the texture coordinates of the last vertex (Block 4):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(0.5, 1.0); glVertex3f(0.0, 10.0, 0.0);

glEnd();

1To cut-and-paste you can find the block in text format in the file
chap12codeModifications.txt in the directory Code/CodeModifications.84



The textures are no longer skewed as the triangle in texture space is
similar to the one being textured (Figure 12.4(d)). End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.4. Restore the original loadTextures.cpp and replace
launch.bmp with cray2.bmp, an image of a Cray 2 supercomputer. View
the original images in the Textures folder and note their sizes: the launch
is 512 × 512 pixels while the Cray 2 is 512 × 256. As you can see, the Cray
2 is scaled by half width-wise to fit the square polygon. End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.5. Restore the original loadTextures.cpp and then
change the coordinates of only the third world-space vertex of the textured
polygon (Block 5):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(20.0, 0.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

The launch looks odd. The rocket rises vertically, but the flames underneath
are shooting sideways! Toggle to the chessboard and it’s instantly clear
what’s going on. Figure 12.5 shows both textures.

The polygon and the texture have been triangulated equivalently – in
particular, triangles in the triangulation of one correspond to those in the
other via the texture map. Corresponding triangle in this case, though,
evidently differ in shape. Subsequently, either triangle of the texture has
been separately interpolated over the corresponding triangle of the polygon,
causing the perceived distortion. See Figure 12.6. End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.6. Restore the original loadTextures.cpp and change
the texture coordinates of the polygon as follows (Block 7):

glBegin(GL POLYGON);

glTexCoord2f(-1.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-1.0, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd(); 85
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It seems that the texture space is tiled using the texture. See Figure 12.7.
In particular, the texture seems repeated in every unit square of texture

space with integer vertex coordinates. As the world-space polygon is mapped
to a 3 × 2 rectangle in texture space, it is painted with six copies of the
texture, each scaled to an aspect ratio of 2:3. The scheme itself is indicated
Figure 12.8. End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.7. Change the texture coordinates again by replacing
each −1.0 with −0.5 (Block 8):

glBegin(GL POLYGON);

glTexCoord2f(-0.5, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-0.5, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

Again it’s apparent that the texture space is tiled with the specified texture
and that the world-space polygon is painted over with its rectangular image
in texture space. End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.8. Restore the original loadTextures.cpp and then
change the texture coordinates as below, which is the same as in
Experiment 12.6 (Block 7):

glBegin(GL POLYGON);

glTexCoord2f(-1.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-1.0, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

Next, replace the GL REPEAT parameter in the

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);

statement of both the loadExternalTextures() and loadProcedural-
Textures() routines with GL CLAMP so that it becomes

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP);

This causes the wrapping mode to be clamped in the s-direction. It’s
probably easiest to understand what happens in this mode by observing in86



particular the chessboard texture: see Figure 12.9. Texture s coordinates
greater than 1 are clamped to 1, those less than 0 to 0. Precisely, instead of
the texture space being tiled with the texture, points with coordinates (s, t),
where s > 1, obtain their color values from the point (1, t), while those with
coordinates (s, t), where s < 0, obtain them from (0, t). End

Click for loadTextures.cpp modified Program Windows Project

Experiment 12.9. Continue the previous experiment by clamping the
texture along the t-direction as well. In particular, replace the GL REPEAT
parameter in the

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

statement with GL CLAMP. We leave the reader to parse the output. End

Click for fieldAndSky.cpp Program Windows Project

Experiment 12.10. Run fieldAndSky.cpp, where a grass texture is tiled
over a horizontal rectangle and a sky texture clamped to a vertical rectangle.
There is the added functionality of being able to transport the camera over
the field by pressing the up and down arrow keys. Figure 12.10 shows a
screenshot.

As the camera travels, the grass seems to shimmer – flash and scintillate
are terms also used to describe this phenomenon. This is our first encounter
with the aliasing problem in texturing. Any visual artifact that arises owing
to the finite resolution of the display device and the correspondingly “large”
size of the individual pixels – at least to the extent that individual ones are
discernible by the human eye – is said to be caused by aliasing. End

Click for fieldAndSky.cpp modified Program Windows Project

Experiment 12.11. Change to linear filtering in fieldAndSky.cpp by
replacing every GL NEAREST with GL LINEAR. The grass still shimmers though
less severely. The sky seems okay with either GL NEAREST or GL LINEAR.
We’ll see next even more powerful filtering options that almost eliminate the
problem. End

Click for fieldAndSkyFiltered.cpp Program Windows Project

Experiment 12.12. Run fieldAndSkyFiltered.cpp, identical to field-
AndSky.cpp except for additional filtering options. Press the up/down arrow 87
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keys to move the camera and the left/right ones to cycle through filters for
the grass texture. A message at the top left tells the current filter.

Using gluBuild2DMipmaps() is straightforward. Simply replace the
glTexImage2D() command with

gluBuild2DMipmaps(GL TEXTURE 2D, GL RGB, image[0]->sizeX,

image[0]->sizeY, GL RGB, GL UNSIGNED BYTE,

image[0]->data);

to generate all the mipmaps for the base texture in image[0].
The loadExternalTextures() routine loads the same grass image as

six different textures with the min filter ranging from GL NEAREST to
GL LINEAR MIPMAP LINEAR. The mag filter used is GL NEAREST when the
min filter is GL NEAREST as well; otherwise, it’s GL LINEAR. The sky texture
is not mipmapped.

As one sees, the more expensive filters do nearly eliminate shimmering,
but at the same time tamp down possibly desirable sharpness. For example,
blades of grass can be distinguished in Figure 12.14(a), where the weakest
filter is applied, but not in Figure 12.14(b), which applies the strongest.

End

Click for compareFilters.cpp Program Windows Project

Experiment 12.13. Run compareFilters.cpp, where one sees side-by-
side identical images of a shuttle launch bound to a square. Press the up
and down arrow keys to move the squares. Press the left arrow key to cycle
through filters for the image on the left and the right arrow key to do likewise
for the one on the right. Messages at the top say which filters are currently
applied. Figure 12.15 is a screenshot of the initial configuration.

Compare, as the squares move, the quality of the textures delivered
by the various min filters. If one of the four mipmap-based min
filters – GL NEAREST MIPMAP NEAREST through GL LINEAR MIPMAP LINEAR
– is applied, then the particular mipmaps actually used depend on the screen
space occupied by the square. End

Click for mipmapLevels.cpp Program Windows Project

Experiment 12.14. Run mipmapLevels.cpp, where mipmaps are sup-
plied by the program, rather than computed automatically with use of
gluBuild2DMipmaps(). The mipmaps are very simple: just differently
colored square images, starting with blue, from size 64× 64 down to 1× 1,
created by the routine createMipmaps(). Commands of the form

glTexImage2D(GL TEXTURE 2D, level, GL RGB, width, height,
0, GL RGB, GL UNSIGNED BYTE, image);88



each binds a width × height mipmap image to the current texture index,
starting with the highest resolution image with level parameter 0, and with
each successive image of lower resolution having one higher level all the way
up to 6.

Move the square using the up and down arrow keys. As it grows smaller
a change in color indicates a change in the currently applied mipmap.
Figure 12.16 is screenshot after the first change. As the min filter setting is
GL NEAREST MIPMAP NEAREST, a unique color, that of the closest mipmap, is
applied to the square at any given time. End

Click for texturedTorus.cpp Program Windows Project

Experiment 12.15. Run texturedTorus.cpp, which shows a synthetic
(red-black) chessboard texture mapped onto a torus. Figure 12.18 is a
screenshot. Press space to see animation: the texture scrolls around the
torus. The pace of the animation can be changed by pressing the up and
down arrow keys. End

Click for texturedTorpedo.cpp Program Windows Project

Experiment 12.16. Run texturedTorpedo.cpp, which textures parts of
the torpedo of torpedo.cpp – from Experiment 10.21 – as you can see in
the screenshot in Figure 12.20. End

Click for fieldAndSkyLit.cpp Program Windows Project

Experiment 12.17. Run fieldAndSkyLit.cpp, which applies lighting to
the scene of fieldAndSky.cpp with help of the GL MODULATE option. The
light source is directional – imagine the sun – and its direction controlled
using the left and right arrow keys, while its intensity can be changed using
the up and down arrow keys. A white line indicates the direction and
intensity of the sun. Figure 12.22(a) is a screenshot.

The material colors are all white, as is the light. The normal to the
horizontal grassy plane is vertically upwards. Strangely, we use the same
normal for the sky’s vertical plane, because using its “true” value toward
the positive z-direction has the unpleasant, but expected, consequence of a
sky that doesn’t darken together with land. End

Click for litTexturedCylinder.cpp Program Windows Project
89
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Experiment 12.18. Run litTexturedCylinder.cpp, which adds a label
texture and a can top texture to litCylinder.cpp. Figure 12.22(b) is a
screenshot.

Most of the program is routine – the texture coordinate generation is, in
fact, a near copy of that in texturedTorus.cpp – except for the following
lighting model statement which we’re using for the first time:

glLightModeli(GL LIGHT MODEL COLOR CONTROL, GL SEPARATE SPECULAR COLOR)

We had briefly encountered this statement as an OpenGL lighting model
option in Section 11.4. It causes a modification of OpenGL’s GL MODULATE
procedure: the specular color components are separated and not multiplied
with the corresponding texture color components, as are the ambient and
diffuse, but added in after. The result is that specular highlights are preserved
rather than blended with the texture. End
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Click for blendRectangles1.cpp Program Windows Project

Experiment 13.1. Run blendRectangles1.cpp, which draws two translu-
cent rectangles with their alpha values equal to 0.5, the red one being closer
to the viewer than the blue one. The code order in which the rectangles are
drawn can be toggled by pressing space. Figure 13.2 shows screenshots of
either order. End

Click for blendRectangles2.cpp Program Windows Project

Experiment 13.2. Run blendRectangles2.cpp, which draws three
rectangles at different distances from the eye. The closest one is vertical
and a translucent red (α = 0.5), the next one is angled and opaque green
(α = 1), while the farthest is horizontal and a translucent blue (α = 0.5).
Figure 13.3(a) is a screenshot of the output.

The scene is clearly not authentic as no translucency is evident in either
of the two areas where the green and blue rectangles intersect the red. The
fault is not OpenGL’s as it is rendering as it’s supposed to with depth testing.

End

Click for blendRectangles2.cpp modified Program Windows Project

Experiment 13.3. Rearrange the rectangles and insert two glDepth-
Mask() calls in the drawing routine of blendRectangles2.cpp as follows:

// Draw opaque objects.

drawGreenRectangle(); // Green rectangle second closest, opaque. 91
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glDepthMask(GL FALSE); // Make depth buffer read-only.

// Draw translucent objects.

drawBlueRectangle(); // Blue rectangle farthest, translucent.

drawRedRectangle(); // Red rectangle closest to viewer, translucent.

glDepthMask(GL TRUE); // Make depth buffer writable.

Try both gluLookAt(0.0, 0.0, 3.0, . . .) and gluLookAt(0.0, 0.0,
-3.0, . . .). Interchange the drawing order of the two translucent rectangles
as well. The scene is authentic in every instance. End

Click for sphereInGlassBox.cpp Program Windows Project

Experiment 13.4. Run sphereInGlassBox.cpp, which makes the sides
of the box of sphereInBox2.cpp glass-like by rendering them translucently.
Only the unaveraged normals option of sphereInBox2.cpp is implemented.
Press the up and down arrow keys to open or close the box and ‘x/X’, ‘y/Y’
and ‘z/Z’ to turn it.

The opaque sphere is drawn first and then the translucent box sides,
after making the depth buffer read-only. A screenshot is Figure 13.5(a).

End

Click for fieldAndSkyTexturesBlended.cpp Program Windows
Project

Experiment 13.5. Run fieldAndSkyTexturesBlended.cpp, which is
based on fieldAndSkyLit.cpp. Press the arrow keys to move the sun.
As the sun rises the night sky morphs into a day sky. Figure 13.5(b) shows
late evening. The program’s a fairly straightforward application of alpha
blending. We point out a few interesting features:

(a) The sky rectangle is no longer lit as in fieldAndSkyLit.cpp because
the night texture itself causes the sky to darken.

(b) Source blending factors all 1 (GL ONE) and destination blending factors
all 0 (GL ZERO) enable the grass and night sky textures to initially
paint their respective rectangles without dilution.

(c) The statements

if (theta <= 90.0) alpha = theta/90.0;

else alpha = (180.0 - theta)/90.0;

glColor4f(1.0, 1.0, 1.0, alpha);92



in the drawing routine link the alpha value to the angle theta of the
sun in the sky, so that the former increases from 0 to 1 as the sun rises
from the horizon to vertically above.

(d) The day sky is blended into the night sky because both textures paint
the same rectangle and because the prior disabling of depth testing
allows an incoming fragment to write to a destination pixel, even if
its z-value is equal to the current one (with depth testing on it has
to be less in order to do so). The call glBlendFunc(GL SRC ALPHA,
GL ONE MINUS SRC ALPHA) in the drawing routine sets the source
blending factor equal to alpha and the destination blending factor to
1 - alpha. End

Click for ballAndTorusReflected.cpp Program Windows Project

Experiment 13.6. Run ballAndTorusReflected.cpp, which builds on
ballAndTorusShadowed.cpp. Press space to start the ball traveling around
the torus and the up and down arrow keys to change its speed.

The reflected ball and torus are obtained by drawing them scaled by a
factor of −1 in the y-direction, which creates their reflections in the xz-plane,
and then blending the floor into the reflection. Figure 13.5(c) shows a
screenshot. End

Click for fieldAndSkyFogged.cpp Program Windows Project

Experiment 13.7. Run fieldAndSkyFogged.cpp, which is based on our
favorite workhorse program fieldAndSky.cpp, adding to it a movable black
ball and controllable fog. Figure 13.6 is a screenshot. There’s interaction
as well, which we’ll describe after discussing next the code and how fog is
implemented. End

Click for billboard.cpp Program Windows Project

Experiment 13.8. Run billboard.cpp, where an image of two trees is
textured onto a rectangle. Press the up and down arrow keys to move the
viewpoint and the space bar to turn billboarding on and off. See Figure 13.9
for screenshots. End

Click for antiAlias.cpp Program Windows Project

Experiment 13.9. Run antiAlias.cpp, which draws a straight line
segment which can be rotated with the arrow keys and whose width changed 93
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with the page up/down keys. Press space to toggle between antialiasing off
and on. Figure 13.11 shows screenshots of antialiasing both off and on.

Antialiasing is simple to implement in OpenGL. One has to first enable
blending. The blending factors GL SRC ALPHA and GL ONE MINUS SRC ALPHA,
used in antiAlias.cpp, are the best choice. Antialiasing itself is enabled
with a call to

glEnable(GL LINE SMOOTH)

A final point to note in the program is that we ask for the best possible
antialiasing with the call

glHint(GL LINE SMOOTH HINT, GL NICEST)

End

Click for sphereMapping.cpp Program Windows Project

Experiment 13.10. Run sphereMapping.cpp, which shows the scene of
a shuttle launch with a reflective rocket cone initially stationary in the sky in
front of the rocket. Press the up and down arrow keys to move the cone. As
the cone flies down, the reflection on its surface of the launch image changes.
Figure 13.13 is a screenshot as it’s about to crash to the ground. End

Click for ballAndTorusStenciled.cpp Program Windows Project

Experiment 13.11. Run ballAndTorusStenciled.cpp, based on ball-
AndTorusReflected.cpp. The difference is that in the earlier program the
entire checkered floor was reflective, while in the current one the red floor is
non-reflective except for a mirror-like disc lying on it. Pressing the arrow
keys moves the disc and pressing the space key starts and stops the ball
moving. As you can see in the screenshot Figure 13.22, the ball and torus
are reflected only in the disc and nowhere else. End

Click for bumpMapping.cpp Program Windows Project

Experiment 13.12. Run bumpMapping.cpp, where a plane is bump
mapped to make it appear corrugated. Press space to toggle between
bump mapping turned on and off. Figure 13.25 shows screenshots. End
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Click for DDA.cpp Program Windows Project

Experiment 14.1. Run DDA.cpp, which is pretty much a word for word im-
plementation of the DDA algorithm above. A point of note is the simulation
of the raster by the OpenGL window: the statement gluOrtho2D(0.0,
500.0, 0.0, 500.0) identifies pixel-to-pixel the viewing face with the
500× 500 OpenGL window.

There’s no interaction and the endpoints of the line are fixed in the code
at (100, 100) and (300, 200). Figure 14.12 is a screenshot. End
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Click for deCasteljau3.cpp Program Windows Project

Experiment 15.1. Run deCasteljau3.cpp, which shows an animation of
de Casteljau’s method for three control points. Press the left or right arrow
keys to decrease or increase the curve parameter u. The interpolating points
a(u), b(u) and c(u) are colored red, green and blue, respectively. Figure 15.4
is a screenshot. End

Click for bezierCurves.cpp Program Windows Project

Experiment 15.2. Run bezierCurves.cpp, which allows the user to
choose a Bézier curve of order 2-6 and move each control point.

You can choose an order in the first screen by pressing the up and down
arrow keys. Select 3. Press enter to go to the next screen to find the control
points initially on a straight line. Press space to select a control point – the
selected one is red – and then arrow keys to move it. Delete resets to the
first screen. Figure 15.5 is a screenshot.

The polygonal line joining the control points, called the control polygon
of the curve, is drawn in light gray. Evidently, the Bézier curve “mimics” its
control polygon, but smoothly, avoiding a corner. End

Click for bezierCurves.cpp Program Windows Project

Experiment 15.3. Run bezierCurves.cpp and choose order 4 to get a
feel for cubic Bézier curves. Note again how the curve mimics its control
polygon. End 101
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Click for bezierCurves.cpp Program Windows Project

Experiment 15.4. Run bezierCurves.cpp and choose the higher orders.
It’s straightforward to enhance the code for orders even greater than 6. End

Click for bezierCurveTangent.cpp Program Windows Project

Experiment 15.5. Run bezierCurveTangent.cpp. The second curve
may be shaped by selecting a control point with the space bar and moving
it with the arrow keys. See Figure 15.10. Visually verify Proposition 15.1(f).

End

Click for sweepBezierSurface.cpp Program Windows Project

Experiment 15.6. Run sweepBezierSurface.cpp to see an animation
of the procedure. Press the left/right (or up/down) arrow keys to move the
sweeping curve and the space bar to toggle between the two possible sweep
directions. Figure 15.14 is a screenshot.

The 4 × 4 array of the Bézier surface’s control points (drawn as small
squares) consists of a blue, red, green and yellow row of four control points
each. The four fixed Bézier curves of order 4 are drawn blue, red, green and
yellow, respectively (the curves are in 3-space, which is a bit hard to make
out because of the projection). The sweeping Bézier curve is black and its
(moving) control points are drawn as larger squares. The currently swept
part of the Bézier surface is the dark mesh. The current parameter value is
shown at the top left. End

Click for bezierSurface.cpp Program Windows Project

Experiment 15.7. Run bezierSurface.cpp, which allows the user to
shape a Bézier surface by selecting and moving control points. Press the
space and tab keys to select a control point. Use the left/right arrow keys
to move the control point parallel to the x-axis, the up/down arrow keys to
move it parallel to the y-axis and the page up/down keys to move it parallel
to the z-axis.

Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the viewpoint. See Figure 15.15 for
a screenshot. End
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Click for bSplines.cpp Program Windows Project

Experiment 16.1. Run bSplines.cpp, which shows the non-zero parts
of the spline functions from first order to cubic over the uniformly spaced
knot vector

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Press the up/down arrow keys to choose the order. Figure 16.9 is a screenshot
of the first order. The knot values can be changed as well, but there’s no
need to now. End

Click for bSplines.cpp Program Windows Project

Experiment 16.2. Run again bSplines.cpp and select the linear B-
splines over the knot vector

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Figure 16.13 is a screenshot. End

Click for bSplines.cpp Program Windows Project

Experiment 16.3. Run again bSplines.cpp and select the quadratic
B-splines over the knot vector

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Figure 16.18 is a screenshot. Note the joints indicated as black points. End 103
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Click for quadraticSplineCurve.cpp Program Windows Project

Experiment 16.4. Run quadraticSplineCurve.cpp, which shows the
quadratic spline approximation of nine control points over a uniformly
spaced vector of 12 knots. Figure 16.21 is a screenshot.

The control points are green. Press the space bar to select a control point
– the selected one turns red – and the arrow keys to move it. The knots are
the green points on the black bars at the bottom. At this stage there is no
need to change their values. The blue points are the joints of the curve, i.e.,
images of the knots. Also drawn in light gray is the control polygon. End

Click for bSplines.cpp Program Windows Project

Experiment 16.5. Run bSplines.cpp and change the order to see a
sequence of cubic B-splines. End

Click for cubicSplineCurve1.cpp Program Windows Project

Experiment 16.6. Run cubicSplineCurve1.cpp, which shows the cubic
spline approximation of nine control points over a uniformly-spaced vector
of 13 knots. The program is similar to quadraticSplineCurve.cpp. See
Figure 16.23 for a screenshot.

The control points are green. Press the space bar to select a control
point – the selected one is colored red – then the arrow keys to move it. The
knots are the green points on the black bars at the bottom. The blue points
are the joints of the curve. The control polygon is a light gray. End

Click for bSplines.cpp Program Windows Project

Experiment 16.7. Run again bSplines.cpp. Change the knot values
by selecting one with the space bar and then pressing the left/right arrow
keys. Press delete to reset knot values. Note that the routine Bspline()
implements the CdM formula (and its convention for 0 denominators).

In particular, observe the quadratic and cubic spline functions. Note
how they lose their symmetry about a vertical axis through the center, and
that no longer are they translates of one another.

Play around with making knot values equal – we’ll soon be discussing
the utility of multiple knots.

Figures 16.27(a) and (b) are screenshots of the quadratic and cubic
functions, respectively, both over the same non-uniform knot vector with a
triple knot at the right end. End104



Click for quadraticSplineCurve.cpp Program Windows Project

Experiment 16.8. Run again quadraticSplineCurve.cpp. Press ‘k’ to
enter knots mode and alter knot values using the left/right arrow keys and
‘c’ to return to control points mode. Press delete in either mode to reset.

Try to understand what happens if knots are repeated. Do you notice
a loss of C1-continuity when knots in the interior of the knot vector
coincide? What if knots at the ends coincide? Figure 16.28 is a screenshot
of quadraticSplineCurve.cpp with a double knot at 5 and a triple at the
end at 11. End

Click for cubicSplineCurve1.cpp Program Windows Project

Experiment 16.9. Run again cubicSplineCurve1.cpp. Press ‘k’ to enter
knots mode and alter knot values using the left/right arrow keys and ‘c’ to
return to control points mode. Press delete in either mode to reset. End

Click for quadraticSplineCurve.cpp Program Windows Project

Experiment 16.10. Use the programs quadraticSplineCurve.cpp and
cubicSplineCurve1.cpp to make the quadratic and cubic B-spline approx-
imations over the knot vector T = {0, 1, 2, 3, 3, 4, 5, 6, 7, . . .} of nine control
points placed as in Figure 16.31(a) (or (b)). See Figure 16.32(a) and (b) for
screenshots of the quadratic and cubic curves, respectively.

(a) (b)

Figure 16.1: Screenshots of (a) quadraticSplineCurve.cpp and
(b) cubicSplineCurve1.cpp over the knot vector T = {0, 1, 2, 3, 3, 4, 5, 6, 7, . . .} and
approximating nine control points arranged in two horizontal rows.

The quadratic approximation loses C1-continuity precisely at the control
point P2, which it now interpolates as the curve point c(3). It’s still C0

everywhere. 105
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It’s not easy to discern visually, but the cubic spline drops from C2 to
C1-continuous at c(3). End

Click for cubicSplineCurve1.cpp Program Windows Project

Experiment 16.11. Continuing with cubicSplineCurve1.cpp with
control points as in the preceding experiment, press delete to reset and
then make equal t4, t5 and t6, creating a triple knot. Figure 16.33 is a
screenshot of this configuration. Evidently, the control point P3 is now
interpolated at the cost of a drop in continuity there to mere C0. Elsewhere,
the curve is still C2. End

Click for quadraticSplineCurve.cpp Program Windows Project

Experiment 16.12. Make the first three and last three knots separately
equal in quadraticSplineCurve.cpp (Figure 16.34(a)). Make the first
four and last four knots separately equal in cubicSplineCurve1.cpp
(Figure 16.34(b)). The first and last control points are interpolated in
both. Do you notice any impairment in continuity? No! End

Click for quadraticSplineCurve.cpp Program Windows Project

Experiment 16.13. Change the last parameter of the statement

gluNurbsProperty(nurbsObject, GLU_SAMPLING_TOLERANCE, 10.0);

in the initialization routine of quadraticSplineCurve.cpp from 10.0 to
100.0. The fall in resolution is noticeable. End

Click for cubicSplineCurve2.cpp Program Windows Project

Experiment 16.14. Run cubicSplineCurve2.cpp, which draws the cubic
spline approximation of 30 movable control points, initially laid out on a
circle, over a fixed standard knot vector. Press space and backspace to cycle
through the control points and the arrow keys to move the selected control
point. The delete key resets the control points. Figure 16.36 is a screenshot
of the initial configuration.

The number of control points being much larger than the order, the user
has good local control. End

Click for bicubicSplineSurface.cpp Program Windows Project106



Experiment 16.15. Run bicubicSplineSurface.cpp, which draws a
spline surface approximation to a 15 × 10 array of control points, each
movable in 3-space. The spline is cubic in both parameter directions and a
standard knot vector is specified in each as well.

Press the space, backspace, tab and enter keys to select a control point.
Move the selected control point using the arrow and page up and down keys.
The delete key resets the control points. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to
turn the surface. Figure 16.38 is a screenshot. End

Click for bicubicSplineSurfaceLitTextured.cpp Program Windows
Project

Experiment 16.16. Run bicubicSplineSurfaceLitTextured.cpp, which
textures the spline surface of bicubicSplineSurface.cpp with a red-white
chessboard texture. Figure 16.39 is a screenshot. The surface is illuminated
by a single positional light source whose location is indicated by a large black
point. User interaction remains as in bicubicSplineSurface.cpp. Note
that pressing the ‘x’-‘Z’ keys turns only the surface, not the light source.

The bicubic B-spline surface, as well as the fake bilinear one in texture
space, are created by the following statements in the drawing routine:

gluBeginSurface(nurbsObject);

gluNurbsSurface(nurbsObject, 19, uknots, 14, vknots,

30, 3, controlPoints[0][0], 4, 4, GL_MAP2_VERTEX_3);

gluNurbsSurface(nurbsObject, 4, uTextureknots, 4, vTextureknots,

4, 2, texturePoints[0][0], 2, 2, GL_MAP2_TEXTURE_COORD_2);

gluEndSurface(nurbsObject);

We’ll leave the reader to parse in particular the third statement and verify
that it creates a “pseudo-surface” – a 10× 10 rectangle – in texture space
on the same parameter domain [0, 12]× [0, 7] as the real one. End

Click for trimmedBicubicBsplineSurface.cpp Program Windows
Project

Experiment 16.17. Run trimmedBicubicBsplineSurface.cpp, which
shows the surface of cubicBsplineSurface.cpp trimmed by multiple loops.
The code is modified from bicubicBsplineSurface.cpp, functionality
remaining same. Figure 16.41(a) is a screenshot. End
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Click for hermiteCubic.cpp Program Windows Project

Experiment 17.1. Run hermiteCubic.cpp, which implements Equa-
tion (17.10) to draw a Hermite cubic on a plane. Press space to select
either a control point or tangent vector and the arrow keys to change it.
Figure 17.4 is a screenshot. The actual cubic is simple to draw, but as you
can see in the program we invested many lines of code to get the arrow heads
right! End
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CHAPTER 18
Applications of Projective Spaces

Click for manipulateProjectionMatrix.cpp Program Windows
Project

Experiment 18.1. Run manipulateProjectionMatrix.cpp, a simple
modification of manipulateModelviewMatrix.cpp of Chapter 5. Figure 18.3
is a screenshot, though the output to the OpenGL window is of little
interest. Of interest, though, are the new statements in the resize()
routine that output the current projection matrix just before and after the
call glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0).

Compare the second matrix output to the command window with
P (glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0)) computed with the
help of Equation (18.3). End

Click for ballAndTorusPerspectivelyShadowed.cpp Program Windows
Project

Experiment 18.2. Run ballAndTorusPerspectivelyShadowed.cpp, a
program which adds to ballAndTorusShadowed.cpp (Experiment 4.34) a
back wall, lying along the z = −35 plane, and shadows of the ball and
torus cast on it by a light source at the origin. Press space to start the ball
traveling around the torus and the up and down arrow keys to change its
speed. Figure 18.4 is a screenshot. End

Click for rationalBezierCurve1.cpp Program Windows Project

Experiment 18.3. Run rationalBezierCurve1.cpp, which draws the
cubic rational Bézier curve specified by four control points on the plane at
fixed locations, but with changeable weights. 113
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The control points on the plane (light gray triangular mesh) are all red,
except for the currently selected one, which is black. Press space to cycle
through the control points. The control point weights are shown at the
upper-left, that of the currently selected one being changed by pressing the
up/down arrow keys. The rational Bézier curve on the plane is red as well.
Figure 18.6 is a screenshot.

Drawn in green are all the lifted control points, except for that of the
currently selected control point, which is black. The projective polynomial
Bézier curve approximating the lifted control points is green too. The lifted
control points are a larger size as well.

Note: The lifted control points and the projective Bézier curve are primitives
in P2, of course, but represented in R3 using their homogeneous coordinates.

Also drawn is a cone of several gray lines through the projective Bézier
curve which intersects the plane in its projection, the rational Bézier curve.

Observe that increasing the weight of a control point pulls the (red
rational Bézier) curve toward it, while reducing it has the opposite effect.
Moreover, the end control points are always interpolated regardless of
assigned weights. It’s sometimes hard to discern the very gradual change in
the shape of the curve as one varies the weights. A trick is to press delete
for the curve to spring back to its original configuration, at which moment
the difference should be clear.

It seems, then, that the control point weights are an additional set of
“dials” at the designer’s disposal for use to edit the curve.

The code of rationalBezierCurve1.cpp is instructive as well, as we’ll
see in the next section on drawing. End

Click for rationalBezierCurve2.cpp Program Windows Project

Experiment 18.4. Run rationalBezierCurve2.cpp, which draws a red
quadratic rational Bézier curve on the plane specified by the three control
points [1, 0]T , [1, 1]T and [0, 1]T . See Figure 18.7. Also drawn is the unit
circle centered at the origin. Press the up/down arrow keys to change the
weight of the middle control point [1, 1]T . The weights of the two end control
points are fixed at 1.

Decrease the weight of the control point [1, 1]T from its initial value of
1.5. It seems that at some value between 0.70 and 0.71 the curve lies exactly
along a quarter of the circle (the screenshot of Figure 18.7 is at 1.13). This
is no accident, as the following exercise shows. End

Click for rationalBezierCurve3.cpp Program Windows Project

Experiment 18.5. Run rationalBezierCurve3.cpp, which shows a
rational Bézier curve on the plane specified by six control points. See114



Figure 18.8 for a screenshot. A control point is selected by pressing the
space key, moved with the arrow keys and its weight changed by the page
up/down keys. Pressing delete resets. End

Click for turnFilm2.cpp Program Windows Project

Experiment 18.6. Run turnFilm2.cpp, which animates the snapshot
transformation of a polynomial Bézier curve described above. Three control
points and their red dashed approximating polynomial Bézier curve are
initially drawn on the z = 1 plane. See Figure 18.10(a). The locations of
the control points, and so of their approximating curve as well, are fixed in
world space. However, they will appear to move as the film rotates.

Initially, the film lies along the z = 1 plane. Pressing the right arrow
key rotates it toward the x = 1 plane, while pressing the left arrow key
rotates it back. The film itself, of course, is never seen. As the film changes
position, so do the control points and the red dashed curve, these being
the projections (snapshot transformations, particularly) onto the current
film of the control points and their approximating curve (all fixed, as said,
in world space). Also drawn on the film is a green dashed curve, which is
the polynomial Bézier curve approximating the current projections of the
control points.

Note: The control points and their approximating curve, all fixed on the
z = 1 plane, and corresponding to the control points p0, p1 and p2 and the
solid red curve in Figure 18.9, are not drawn by the program – only their
snapshot transformations on the turning film.

Initially, when the plane of the film coincides with that on which the
control points are drawn, viz., z = 1, the projection onto the film of
the polynomial Bézier curve approximating the control points (the red
dashed curve) coincides with the polynomial Bézier curve approximating the
projected control points (the green dashed curve). This is to be expected
because the control points coincide with their projections. However, as the
film turns away from the z = 1 plane, the red and green dashed curves begin
to separate. Their final configuration, when the film lies along x = 1, is
shown in Figure 18.10(b).

There is more functionality to the program that we’ll discuss momentarily.
End

Click for turnFilm2.cpp Program Windows Project

Experiment 18.7. Fire up turnFilm2.cpp once again. Pressing space at
any time draws, instead of the green dashed curve, a blue dashed rational
Bézier curve approximating the projected control points on the current plane 115
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of the film. The control point weights of the blue dashed curve are computed
according to the strategy just described. Voilà! The blue dashed rational
curve and the red dashed projection are inseparable. End

Click for rationalBezierSurface.cpp Program Windows Project

Experiment 18.8. Run rationalBezierSurface.cpp, based on bezier-
Surface.cpp, which draws a rational Bézier surface with the functionality
that the location and weight of each control point can be changed. Press
the space and tab keys to select a control point. Use the arrow and page
up/down keys to translate the selected control point. Press ‘</>’ to change
its weight. Press delete to reset. The ‘x/X’, ‘y/Y’ and ‘z/Z’ keys turn the
viewpoint. Figure 18.12 is a screenshot.

Mark the use of glMap2f(GL MAP2 VERTEX 4, . . .), as also of glEnable-
(GL MAP2 VERTEX 4). The 2’s in the syntax are for a surface. End
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Fixed-Functionality Pipelines

Click for box.cpp modified Program Windows Project

Experiment 19.1. Replace the box glutWireCube(5.0) of box.cpp with
the line segment

glBegin(GL_LINES);

glVertex3f(1.0, 0.0, -10.0);

glVertex3f(1.0, 0.0, 0.0);

glEnd();

and delete the glTranslatef(0.0, 0.0, -15.0) statement. You see a
short segment, the clipped part of the defined line segment, whose first
endpoint [1 0 − 10]T is inside the viewing frustum defined by the program’s
projection statement glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0),
while the second [1 0 0]T is outside. Figure 19.2 is a screenshot.

Here’s what’s interesting though – the second endpoint is mapped to a
point at infinity by multiplication by OpenGL’s projection matrix! This
is easy to verify. Simply take the dot product of [0 0 − 1 0], which is the
last row of the projection matrix corresponding to glFrustum(-5.0, 5.0,
-5.0, 5.0, 5.0, 100.0) as given by Equation (18.3), and [1 0 0 1], the
homogeneous coordinates of the second endpoint, to find that the endpoint’s
transformed w-value is 0 (the other coordinate values are irrelevant). End

Click for perspectiveCorrection.cpp Program Windows Project

Experiment 19.2. Run perspectiveCorrection.cpp. You see a thick
straight line segment which starts at a red vertex at its left and ends at a
green one at its right. Also seen is a big point just above the line, which can
be slid along it by pressing the left/right arrow keys. The point’s color can 119
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be changed, as well, between red and green by pressing the up/down arrow
keys. Figure 19.4 is a screenshot.

The color-tuple of the segment’s left vertex, as you can verify in the code,
is (1.0, 0.0, 0.0), a pure red, while that of the right is (0.0, 1.0, 0.0), a pure
green. As expected by interpolation, therefore, there is a color transition
from red at the left end of the segment to green at its right.

The number at the topmost right of the display indicates the fraction of
the way the big movable point is from the left vertex of the segment to the
right. The number below it indicates the fraction of the “way” its color is
from red to green – precisely, if the value is u then the color of the point is
(1− u, u, 0).

Initially, the point is at the left and a pure red; in other words, it is 0
distance from the left end, and its color 0 distance from red. Change both
values to 0.5 – the color of the point does not match that of the segment
below it any more. It seems, therefore, that the midpoint of the line is not
colored (0.5, 0.5, 0.0), which is the color of the point. Shouldn’t it be so,
though, by linear interpolation, as it is half-way between two end vertices
colored (1.0, 0.0, 0.0) and (0.0, 1.0, 0.0), respectively? End

The program sphereInBoxPOV.pov is in the folder
ExperimenterSource/Chapter19/SphereInBoxPOV.

Experiment 19.3. We’re going to use POV-Ray (Persistence of Vision Ray
Tracer), a freely downloadable ray tracer from povray.org [109]. Download
and install POV-Ray. The executable is about 10 MB and there are Linux,
Mac OS and Windows versions. It comes packaged with a nicely written
tutorial and a reference manual. However, if for some reason you don’t want
to install POV-Ray, we have a compiled and rendered image file for you to
simply open and compare with OpenGL’s rendering.

If you have successfully installed POV-Ray, then open sphereIn-
BoxPOV.pov from that program; if not, use any editor.

The code itself is fairly self-explanatory. It’s written in POV-Ray’s scene
description language (SDL), which, unlike OpenGL, is not a library meant
to be called from a C++ program – the SDL is stand-alone. We’ve obviously
tried to follow the settings in our OpenGL program sphereInBox1.cpp as
far as possible. The camera and a white light source are placed identically
as in sphereInBox1.cpp. The red box, as in sphereInBox1.cpp, is an
axis-aligned cube of side lengths two centered at the origin. It comprises six
polygonal faces, each originally drawn as a square with vertices at (−1,−1),
(1,−1), (1, 1) and (−1, 1) on the xy-plane, and then appropriately rotated
and translated. The top face is opened to an angle of 60◦. Finally drawn is
a green sphere of radius one. The material finishes are minimally complex,
just enough to obtain reflection and a specular highlight on the sphere.

If you have installed POV-Ray, then press the Run button at the top;120



otherwise, open the output image file sphereInBoxPOV.jpg in our Code
folder. Figure 19.16(a) is a screenshot. Impressive, is it not, especially
if you compare with the output in Figure 19.16(b) of sphereInBox1.cpp?
The inside of the box, with the interplay of light evident in shadows and
reflections, is far more realistic in the ray-traced picture. End

The program sphereInBoxPOV.pov is in the folder
ExperimenterSource/Chapter19/ExperimentRadiosity.

Experiment 19.4. Run again sphereInBoxPOV.pov. Then run again
after uncommenting the line

global_settings{radiosity{}}

at the top to enable radiosity computation with default settings. The
difference is significant, is it not?

Figure 19.24(a) is the output without radiosity (or see it separately as the
image file sphereInBoxPOV.jpg in our Code folder), while Figure 19.24(b)
is the output with radiosity (sphereInBoxPOVWithRadiosity.jpg in Code).
There clearly is much more light going around inside the box in the latter
rendering. End
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Click for redSquare.cpp Program Windows Project

Experiment 20.1. Fire up redSquare.cpp in the folder Code/GLSL/Red-
Square.

Note: For how to set up the environment to run GLSL programs see
Appendix B. Each of our GLSL programs is in a similarly named folder in
the GLSL subdirectory of Code, with two accompanying shader files. Make
sure, when running a GLSL program, to keep it in the same directory as its
two shader files.

Now, redSquare.cpp is exactly square.cpp with the barest minimum
amount of code added to be able to attach a vertex shader, called
passThrough.vs, and a fragment shader, called red.fs. The output is
a red square in the OpenGL window, as in Figure 20.2(a). End

Click for redSquare.cpp – vertex shader modified
Program Windows Project

Experiment 20.2. Replace the vertex shader code for redSquare.cpp
with

void main()

{
vec4 scaledPos = vec4(0.5 * gl_Vertex.xy, 0.0, 1.0);

gl_Position = gl_ModelViewProjectionMatrix * scaledPos;

}

As expected, the xy-values of the square’s vertices are both halved. See
Figure 20.2(b) for a screenshot. End 123
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Click for multiColoredSquare1.cpp Program Windows Project

Experiment 20.3. Run multiColoredSquare1.cpp. The program itself
is a copy of redSquare.cpp, except for a different color at each square
vertex and enabling of two-sided coloring with a call to glEnable(GL -
VERTEX PROGRAM TWO SIDE) in the setup routine. The output initially is a
multi-colored square (Figure 20.3(a)).

The vertex shader simpleColorizer.vs writes out both a front and
a back color to the built-in variables gl FrontColor and gl BackColor,
respectively:

gl_FrontColor = gl_Color;

gl_BackColor = vec4(1.0, 0.0, 0.0, 1.0);

It reads the front color from the user-defined colors, which it accesses through
the built-in state variable gl Color, while the back color is a fixed red.

The fragment shader passThrough.fs, on the other hand, simply sets

gl_FragColor = gl_Color;

Now, the way the GLSL works, the fragment shader does not receive its
gl Color values from the program; rather they are computed by interpolation
from either the gl FrontColor or gl BackColor values specified in the
vertex shader, depending on the visible face. The use of the same name
gl Color to represent actually different variables in the two shaders – the
vertex shader using gl Color to access the program, while the fragment
shader to access its sibling – can be a source of confusion. One needs to
keep the context in mind when using this variable. As the current fragment
shader does no more than assign colors interpolated from the vertex shader,
it is called a pass-through fragment shader.

As the square itself is oriented counter-clockwise and, therefore, front-
facing, the fragment shader computes its gl Color values by interpolation
from gl FrontColor, which in turn tracks the vertex color values as specified
in the program. Consequently, a multi-colored square is drawn.

A fun way to reverse the square’s orientation next is with a bit of swizzling.
Accordingly, replace the vertex shader code with

void main()

{
gl_FrontColor = gl_Color;

gl_BackColor = vec4(1.0, 0.0, 0.0, 1.0);

vec4 transposePos = gl_Vertex.yxzw; // Interchanges x and y

// coordinate values, reversing the order of the vertices.

gl_Position = gl_ModelViewProjectionMatrix * transposePos;

}

to see now a back-facing red square (Figure 20.3(b)). End124



Click for multiColoredSquare2.cpp Program Windows Project

Experiment 20.4. Run multiColoredSquare2.cpp. The code is exactly
as redSquare.cpp, except this time the output is a multi-colored square
because of the new shaders. Figure 20.5 is a screenshot. End

Click for wavyCylinder1.cpp Program Windows Project

Experiment 20.5. Run wavyCylinder1.cpp. This program, based on
cylinder.cpp, draws a cylinder with a wavy surface, allowing the user to
control the number of waves, as well as change its color from red to green.
Press the up/down arrow keys to change the waviness, the left/right arrow
keys to change the color and ‘x’-‘Z’ keys to turn the cylinder. Figure 20.6
shows the cylinder initially. End

Click for wavyCylinder2.cpp Program Windows Project

Experiment 20.6. Run wavyCylinder2.cpp. The output and controls
are exactly as for wavyCylinder1.cpp. The difference between the two is
in the mechanism by which the cross-section of the cylinder is scaled, which
we discuss next. End

Click for bumpMappingPerVertexLighting.cpp Program Windows
Project

Experiment 20.7. Run bumpMappingPerVertexLighting.cpp, which is
code-wise almost exactly bumpMapping.cpp, but with a couple of shaders
attached. Interaction is the same as well: press space to toggle between
bump mapping on and off. Figures 20.7(a) and (b) are screenshots of
bumpMapping.cpp and bumpMappingPerVertexLighting.cpp, respectively,
doing bump mapping. Yes, they are exactly the same and we’ll see
momentarily why! End

Click for bumpMappingPerVertexLighting.cpp – vertex shader modified
Program Windows Project

Experiment 20.8. If you are skeptical that we have actually replicated
fixed-functionality lighting calculations in the vertex shader perVertex-
LightingSimple.vs and wondering if we are still somehow sneaking the
output from fixed-functionality, then replace the gl FrontColor specification
in that shader with 125
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gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0);

Figure 20.8 is a screenshot. There is no doubt, is there, that it’s the vertex
shader that’s in charge of color calculation?! End

Click for bumpMappingPerPixelLighting.cpp Program Windows
Project

Experiment 20.9. Run bumpMappingPerPixelLighting.cpp. The pro-
gram itself is identical to bumpMappingPerVertexLighting.cpp – the
difference is in the shaders, which now implement Phong shading, or per-
pixel lighting as it is called. Again, press space to toggle between bump
mapping on and off. Figure 20.7(c) is a screenshot. End

Click for interpolateTextures.cpp Program Windows Project

Experiment 20.10. Run interpolateTextures.cpp, which allows the
user to interpolate between (or, blend, if you like) two textures painted on
a square. Figure 20.9 shows screenshots of the start, a part way and end
configurations. End
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Click for turnFilm1.cpp Program Windows Project

Experiment A.1. Run turnFilm1.cpp, which animates the setting of the
preceding exercise by means of a viewing transformation. Initially, the film
lies along the z = 1 plane. Pressing the right arrow key rotates it toward the
x = 1 plane, while pressing the left one reverses the rotation. Figure A.11 is
a screenshot midway. You cannot, of course, see the film, only the view of
the lines as captured on it.

The reason that the lower part of the X-shaped image of the power lines
cannot be seen is that OpenGL film doesn’t capture rays hitting it from
behind, as the viewing plane is a clipping plane too. Moreover, if the lines
seem to actually meet to make a V after the film turns a certain finite
amount, that’s because they are very long and your monitor has limited
resolution!

This program itself is simple with the one statement of interest being
gluLookAt(), which we ask the reader to examine next. End

127





APPENDIX B
Installing OpenGL and Running
Code
(by Chansophea Chuon)

W
e explain here how to install OpenGL and run the book
programs, and create and execute your own, on Windows,
Mac OS and Ubuntu Linux platforms.

B.1 Microsoft Windows XP and Higher

Download and install Microsoft Visual C++ 2010 Express edition from http:
//www.microsoft.com/express/. After Visual C++ has been successfully
installed, do the following.

• Install GLUT:

1. Download and unzip the file glut-3.7.6-bin.zip from http:
//www.xmission.com/~nate/glut.html.

(a) Copy glut32.dll to C:\Windows\System32.
(b) Copy glut32.lib to C:\Program Files\Microsoft Visual

Studio 10.0\VC\lib
(c) Copy glut.h to C:\Program Files\Microsoft Visual Stu-

dio 10.0\VC\include\GL. Note that you may have to create
the GL directory.

• Install GLEW (if your graphics card supports at least OpenGL 1.5): 129
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1. Download glext.h from http://www.opengl.org/registry/
api/glext.h to C:\Program Files\Microsoft Visual Studio
10.0\VC\include\GL.

2. Download and unzip the file glew-1.5.4-win32.zip from http:
//glew.sourceforge.net/.

(a) Copy glew32.dll from the bin directory to C:\Windows\Sys-
tem32.

(b) Copy glew32.lib and glew32s.lib from the lib directory
to C:\Program Files\Microsoft Visual Studio 10.0\
VC\lib

(c) Copy glew.h, glxew.h and wglew.h from the include\GL
directory to C:\Program Files\Microsoft Visual Studio
10.0\VC\include\GL.

Now you are ready to run the book programs and write and run your
own. Follow the steps in the next pages.
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Section B.1

Microsoft Windows

XP and Higher

• Open Visual C++ 2010 from the Start Menu to bring up the welcome
screen. See Figure B.1.

Figure B.1: Visual Studio 2010 Express welcome screen.
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• Create a new project by going to File→ New→ Project. See Figure B.2.

Figure B.2: New project window.
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Microsoft Windows

XP and Higher

• Select Win32 from the Installed Templates panel and then Win32
Console Application from the next panel. Name your project and
select the folder where you want to save it. Uncheck the box which
says “Create directory for solution”. Click OK to bring up a wizard
welcome window. See Figure B.3.

Figure B.3: Win32 application wizard welcome window.
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• Click Application Settings for the settings dialog box. See Figure B.4.

Figure B.4: Win32 application settings dialog box.
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• Uncheck the Precompiled header box, check the Empty project box
and choose Console application. Click Finish to see a new project
window. See Figure B.5

Figure B.5: New project window.
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• Right click on Source Files and choose Add → New Item to bring up
a dialog box. See Figure B.6.

Figure B.6: Add new item dialog box.
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Microsoft Windows

XP and Higher

• Select Code from the Installed Templates panel and C++ File(.cpp)
from the next panel. Name your file and click Add to see an empty
code panel in the project window titled with your chosen name. See
Figure B.7.

Figure B.7: Project window with empty code panel.
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• Copy any of our book programs into or write your own in the code
panel. See Figure B.8.

Figure B.8: Code panel with square.cpp copied into it.
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Microsoft Windows

XP and Higher

• Save and build your project by going to Debug → Build Solution.
Then execute the program with Debug → Start Debugging. If the
program has been built successfully, then you should see no error in
the output window.

Congratulations! Output from our square.cpp program is shown in
Figure B.9.

Figure B.9: Square.cpp output in Windows XP.
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B.2 Mac OS X Snow Leopard

The steps to installing and running OpenGL on the Mac OS X are few
because OpenGL is integrated into the operating system:

• Install GLEW by going to http://glew.darwinports.com/ and
following instructions there.

• Open a book program or write your own using your preferred editor.
Let’s assume the program file is square.cpp.

• Open the terminal window, change to the directory where the
source code is located and compile the program with the com-
mand g++ square.cpp -o square -framework Cocoa -framework
OpenGL -framework GLUT.

• Run the program by entering the command ./square. Figure B.10
shows the output of our square.cpp program.

Note: For a GLSL program the command is g++ glslProgram.cpp -o
glslProgram -framework Cocoa -framework OpenGL -framework
GLUT -I/opt/local/include -L/opt/local/lib -lGLEW

Figure B.10: Square.cpp output in Mac OS X Snow Leopard.
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Ubuntu Linux

B.3 Ubuntu Linux

Here are the steps to setting up and running OpenGL on the Ubuntu Linux
distribution:

• Go to System → Administration → Synaptic Package Manager
and check the boxes to install g++, libglut3-dev and libglew-dev.
Synaptic Package Manager will ask you to install dependent packages
if necessary for the C++, GLUT and GLEW libraries.

• Open a book program or write your own using your preferred editor.
Let’s assume the program file is square.cpp.

• Open the terminal window, change to the directory where the source
code is located and compile the program with the command gcc
square.cpp -o square -I/usr/include -L/usr/lib -lglut -lGL
-lGLU -lX11.

• Run the program by entering the command./square. Figure B.11
shows the output of square.cpp program.

Note: For a GLSL program the command is gcc glslProgram.cpp -o
glslProgram -I/usr/include -L/usr/lib -lglut -lGLEW -lGL
-lGLU -lX11.

Figure B.11: Square.cpp output in Ubuntu 10.04.
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